Computer Science Technical Reports

A SURVEY OF REUSE FACILITIES

lan H Witten and Saul Greenberg
1989-374-36
December 1, 1989

Feuse facilities help people to recall and modify their earlier activities and re-submit them to the
computer. This paper surveys existing reuse facilities under three main headings: history
mechanisms, adaplive systems, and programming by example. The first Kind relies on
temporally ordered lists of interactions, the second builds abstract models of past activities and
uses them to expedite future interaction, while the third collects and generalizes more extensive
sequences of activities for future reuse. A companion paper (Greenberg & Witten, 1989)
presents the results of a large-scale study of how users actually repeat their activities on
computers and contrasts the multitude of opporunities for reuse with the relatively infrequent
use of an actual history mechanism.

Department of Computer Science, University of Calgary, Calgary, Alberta, CANADA.

saul
Stamp

saul
Text Box
Department of Computer Science, University of Calgary, Calgary, Alberta, CANADA.

1 Introduction

Users often repeat activities that they have previously submitted to the computer. In command-driven
systems, these activities include not only individual commands, but also complete command lines, including
filenames and options. Likewise, people repeat the ways they traverse paths within menu hierarchies, select
icons within graphical interfaces, and choose documents within hypertext systems. Often, recalling the
original activity is difficult or tedious. For example, problem-solving processes must be re-created for complex
activities, command syntax or search paths in hierarchies must be remembered, input lines retyped, icons
found, and so on. Given these difficulties, potential exists for a well-designed “reuse facility™ to alleviate the

problems of activity reformulation by keeping previous activities ready to hand.

This paper explores interactive reuse facilities that allow users to recall, modify, and re-submit their
previous entries to computers. Although the idea is simple—anything used before may be used again—
it is only effective when recalling old activities is less work for the user (cognitively and physically) than
submitting new ones. As we shall see, the main differences between reuse facilities arise from their ability to
offer a small but good set of candidates for possible reuse, and from the user interface available to manipulate

these candidates.

Reuse facilities have loose analogies in non-computer contexts. A cook can explicitly mark preferred
recipes by using bookmarks. “Adaptive” marking takes place by the book naturally opening to highly used
locations through wear of the binding and food-encrusted pages. Or consider the audiophile who places
records just listened to at the top of the pile. Assuming that certain records are favored over others, popular
records tend to remain near the top of the stack and unpopular ones near the bottom. A carpenter’s
workbench has an implicit reuse facility—the work surface is large enough to keep recently used tools ready

to hand.

Existing reuse facilities for computers fall into three classes, as described and illustrated in the following
sections. The first class includes history mechanisms that let users manipulate a temporally-ordered list
of their previous command-line interactions. Depending upon the interface style, items are retrieved and
selected through textual syntactic constructs, by pointing to menu items and buttons, or by editing dialog
transcripts. Included in this category are path traces and “bookmarks” maintained by systems requiring user
navigation, such as hypertext systems and menu hierarchies. The second class of reuse facilities, adaptive
systems, use dynamic non-temporal models of previous inputs to predict subsequent ones which are then
made available to the user. These include menu-based interfaces that dynamically reconfigure the menu
hierarchy so that high frequency items are treated preferentially, and text predictors that maintain Markov
models of the text entered so far to predict further submissions. The third class, programming by example, is

concerned with reuse and generalization of long input sequences—its technology is significantly less developed

than in the other two cases.

A large number of implemented designs will be surveyed within this taxonomy of reuse facilities, illus-

trating the diversity of techniques available.

2 History mechanisms

. . . few .. .
History mechanisms are based upon the assumption that the last * Submissions provide a reasonable set
of candidates for reuse. This notion of “temporal recency” is cognitively attractive. Since users generally
remember what they have just entered, they can predict the offerings available. Little time is wasted

reviewing the list of candidates only to discover that the desired item is missing.

History mechanisms are by far the most common reuse facility available, and are implemented across
diverse systems in a variety of flavours. Four fundamentally different interaction styles are described in this
section: glass teletypes; graphical selection; editing transcripts; and navigational traces. The first three
provide a reuse facility for command-line interfaces, while the last illustrates its application to systems in

which users navigate within some information structure.

2.1 History in glass teletypes

Before graphical interfaces came into vogue, dialogs were simple command-line systems designed for the
teletype—the VDU being a fixed viewport into a virtual roll of paper. Two functionally rich history systems
designed for such physically limited “glass teletypes” are the UNIX csh and the INTERLISP-D Programmer’s
Assistant. In both systems, old commands are retrieved by “history” directives, themselves commands

interpreted in a special way.

UNIX csh maintains a record of user inputs, where every string entered on the command line is placed on
a numbered event list (Joy, 1980). Special syntactic constructs allow previous events to be recalled, either by
position on the event list (relative or absolute), or by pattern-matching. Actions on recalled events include
viewing, re-execution, retrieval of specific command line words, and text substitution. Although the set of
predictions is unbounded in size, it is practically small—users forget all but the last few items, and reviewing

a long list is cognitively unattractive.

Figure 1 illustrates a possible event list and a few examples of csh history in use. The inputs in the left
column are translated by csh to the actions shown in the middle. The translation is described in the column
on the right. As the examples illustrate, the syntax is quite arcane, and deters use of the more powerful
features. Additionally, since the event list is generally invisible—snapshots of its current state are displayed

only by special request— it is difficult to refer to any but the last few events.

—Figure 1 around here—

Another functionally powerful history mechanism is the Programmer’s Assistant, designed for the INTER-
Lisp-D programming environment (Teitelman & Masinter, 1985; Xerox, 1985). Although INTERLISP-D is
window-based, the top-level “Lisp listener” window resembles a glass teletype. The Programmer’s Assistant
history mechanism improves upon that of UNIX csh. More than one event can be retrieved and manipulated
at a time, iteration and conditional specification are allowed, items can be edited, effects of previous entries
may be undone, and so on. In normal use, events are selected and processed by special command directives
entered in the Lisp listener window. These tend to be verbose. For example, the request ['SE cons FOR setq
IN -1 will replace the string “setq” by the string “cons” in the previous command. Figure 2 shows a sample
dialog in the window labeled “Interlisp-D Executive”, where events 85 and 87 make use of the Programmer’s

Assistant. As with csh, neither duplicates nor erroneous statements are pruned from the event list.

2.2 History through graphical selection

The technology of terminals has evolved since the early glass teletypes. All terminals now have positional
control of text on the screen, and high-resolution graphics terminals with locators are common. Interaction
styles have also progressed from text-oriented menus and forms to locator-oriented graphical systems running
within windows (Witten & Greenberg, 1985). Within the latter, history mechanisms have been extended to
present a (possibly transient) menu of previous events. Items are selected and manipulated with a locator,
usually a mouse. In contrast to glass teletype history, predictions are offered by presenting them explicitly

on the screen.

One example is HISTMENU, which provides a limited yet simple way of accessing and modifying the
INTERLISP-D Programmer’s Assistant history list (Bobrow, 1986). Figure 2 illustrates its use. Commands
entered to the INTERLISP-D Executive window are recorded on the history list, part of which is displayed
in the History window (by default, the last 50 items are shown). Although the history list itself is updated
on every command, the window is only redrawn when the user explicitly requests it. When pointed at with
a mouse, items (which may not fit completely in the narrow History window) are printed in the Prompt
window. Any entry can be re-executed by selecting it. Moreover, a pop-up menu allows limited further
action: items can be “fixed” (ie edited), undone, printed in full including additional detail (the “?7"), or

deleted from view. The History window also has a shrunken form, as shown by the icon in the Figure.
—Figure 2 around here—

MINIT is another graphical package that combines command processing and the history list into a single

“window management window” (wmuw) (Barnes & Bovey, 1986). MiINIT differs from other systems in that

only through this window can the user send commands to the other ones. The wmw is divided into three
regions. The first is an editable typing line at the window’s bottom, where commands are entered. Once
entered, they are added to the second region which contains a scrollable history list. As with HisTMENU,
the user selects items in the list through a locator and controls further action with pop-up menu options. A

specialized history management menu comprises the final region. Options are available to

o scroll the history list, clear it, or save it for future use;
o textually search for specific items;
o delete specific items;

e insert text in the typing line without executing it.

Two more mechanisms complete MINIT’s history management capabilities. First, the user can customize the
system to prevent short commands which are easily retyped from being added to the list. Second, history
is viewable in either alphabetic or execution order. Although duplicate lines are eliminated, the user can
control whether a command entry which is repeated remains in its original position on the execution-ordered
list or is relocated to the end. A side effect of moving recurrences to the end is that the most frequently

used commands tend to cluster around one another.

How does one review and modify the actions performed within a purely graphical interface, such as those
provided by painting or drawing applications? One solution, offered by Kurlander and Feiner (1988) in a
system called chimera, builds on the visual metaphor of a “comic strip.” The strip is a visual, graphical
record of the user’s past activities, where each panel in the sequence illustrates an important moment in a
story. Instead of just showing miniatures, a panel emphasizes the objects being manipulated and the actions
performed on them, removing unnecessary detail. The user can then expand the detail shown in a particular
panel to a level appropriate to the task to be performed; delete, modify, undo and redo the actions expressed

in the panel; and add new actions.

2.3 History by editing transcripts

Some systems do not have a command history mechanism per se, but provide similar capabilities through

editing the transcript of the dialog.

The glass teletypes described previously are actually more limited than paper teletypes, for it is not
possible to review text that has scrolled off the screen. This limitation is exacerbated by high-speed terminal
lines, for text appears and disappears faster than it can be read. Although page-holding mechanisms that

stop scrolling after every screenful offer a palliative, the advantages of the original paper telctype were finally

realized when scrollable transcripts of the dialog were maintained.! Unlike paper teletypes, these transcripts
have potential as a history mechanism, for text appearing previously can be pointed at and used as input to

the system.

In Apollo’s DOMAIN window system, for example, text appearing within specialized windows called “pads”
can be copied and then pasted and edited in any command input area (Apollo, 1986). Explicit history lists
are not maintained except as part of the scrollable dialog transcript. Similar cut and paste capabilities are
available in most modern-day window-based environments. The trade-off here is evident. Although any
text in a pad is potentially executable, the mixing of previous input commands with output probably makes

useful candidates difficult to find.

A second system which encourages use of command history through editing is emacs, an editing envi-
ronment which provides multiple views of buffers through tiled windows (Stallman, 1981). Although buffers
typically allow users to view and edit files, it is also possible to run interactive processes (or programs) within
them. In most Unix-based implementations of emacs, it is a simple matter to call up a window running UNIX
csh (for example: Stallman, 1987; Unipress, 1986). All capabilities of emacs are then available—commands

may be edited, sessions scrolled, pieces of text picked up from any buffer and used as input, and so on.

As a further variant, consider the zmacs editor running within the Symbolics Genera Lisp environment,
which contains features of all history systems discussed so far (Symbolics, 1985). Within the top-level Lisp
Listener, zmacs extends the functionality of emacs. Although used here primarily for entering and editing
command lines, previous inputs appearing within the transcript become mouse-sensitive. A box appears
around them as the mouse passes over them, while clicking one of the three mouse buttons causes some
action to occur. For example, pressing the left button of the mouse over the old command line copies it
into the input area, which is then available for further editing. Other combinations of keys immediately
re-execute previous commands, copy arbitrary command words, show context-sensitive documentation, and
so on. Using the standard editing commands within the one-line input area, a user can search, cycle through,
and recall previous events, similar to the command-line capabilities of the VMS operating system (DEC,
1985), the UNIX tcsh (Ellis et al, 1987), and GnuEmacs (Stallman, 1987). Alternatively, part or all of the

mouse-sensitive event list can be displayed within the Lisp Listener window.

2.4 History by navigational traces

While the above techniques deal only with command-line interfaces, history has also been applied to infor-

mation systems and networks where items are retrieved through navigation. These are also considered to be

! An alternative solution to transcripts is to make every system facility responsible for formatting its output appropriately.
The tradeoff between the two approaches is discussed by Pike and Kernighan (1984).

history systems as they are usually based upon temporal route paths taken through the data base.

There are many examples of systems and databases where users tend to retrieve items of imformation
that have been accessed previously (Greenberg & Witten, 1985). History for hypertext systems, for example,
are based on the assumption that previously-read documents are referred to many times. This assumption
has been supported by a study of man, the UNIX on-line manual (Greenberg, 1984), Each user frequently
retrieved the same small set of pages from the large set available, where sets differed substantially between
users. By keeping a history list of the documentation retrieved, users can avoid re-navigating the hypertext
route for a previously viewed topic. Since items on the list can be viewed as place-holders in a large document,

they are known as “bookmarks.”

The Macintosh HyperCard is a hypertext facility that allows authoring and browsing of stacks of informa-
tion comprised of cards. Navigating cross links between stacks and cards is usually accomplished by simple
button or menu selections. Recent is a bookmark facility within HyperCards that maiutains a pictorial list of
up to the last 42 unique cards visited (Figure 3). Each picture is a miniature view of the card, placed in the
list by order of first appearance.? The last card visited is distinguished by a larger border, as illustrated by
the second miniature in the first row of the Figure. A pull-down menu option pops up the recent display, and
old cards are revisited by selecting their miniature from the list (Good, Whiteside & Jones, 1987). When
more than 42 unique items have been selected, the first row of seven items is cleared and made available for

new ones (even though a card in the first row may have recently been selected).
—Figure 3 around here—

The Symbolics environment includes a very large on-line manual viewable with the Document Examiner—
a window-based hypertext system (Symbolics, 1985). The main window is divided into functionally different
panes: a documentation display area; a menu of topics; a bookmarks area; and a command line. The
bookmarks area displays a history list of titles of previously-viewed topics, where each title is a bookmark.
Further bookmarks may be explicitly added by the user (these are visually distinguished from historical
bookmarks). Selecting a bookmark displays either full documentation or a brief summary of the topic in
the documentation area. A similar bookmark strategy has been proposed previously for videotext systems

(Engel, Andriessen & Schmitz, 1983).

Of course, these techniques are not limited to hypertext. Navigation is ubiquitous in many human-
computer interfaces, from hierarchical menu and folder systems, to structured browsers for programming

systems. All could profit from maintaining a history map of the user’s route through the structure.

2Figure 3 is a fairly accurate representation of the screen. As these miniature pictures are of surprisingly poor quality, the
value of the current recent implementation is questionable. However, this problem could be overcome by a higher-resolution
display or by including a “magnifying glass”.

3 Adaptive systems

History mechanisms model the user’s previous inputs by recording them in a history list. Adaptive systems
build more elaborate dynamic models and use them to predict subsequent inputs, which are presented to
the user for selection or approval. Here we describe two types of adaptive systems, one for accelerating
selection in a hierarchical menu system and the other for the entry of free text. Both employ predominantly

frequency-based, rather than recency-based, models.

3.1 Dynamic menu hierarchies

It is possible to devise interactive menu-based interfaces that dynamically reconfigure a menu hierarchy so
that high-frequency items are treated preferentially, at the expense of low-frequency ones. This provides
an attractive way of reducing the average number of choices that a user must make to select an item
without adding further paraphernalia to the interface (Witten, Cleary & Greenberg, 1984). Consider a
telephone directory where the access frequencies of names define a probability distribution on the set of
entries (Greenberg & Witten, 1985) This reflects the “popularity” of the names selected. Instead of selecting
regions at each stage to cover approximately equal ranges of names, it is possible to divide the probability
distribution into approximately equal portions. During use, the act of selection will alter the distribution
and thereby increase the probability of the names selected. Thus the user will be directed more quickly to
entries which have already been selected—especially if they have been selected often and recently —than to

those which have not.

Figures 4a and 4b depict two menu hierarchies for a very small dictionary with 20 name entries and their
corresponding top-level menu. Figure 4c calculates the average number of menus traversed per selection. In
Figure 4a, the hierarchy was obtained by subdividing the name space as equally as possible at each stage,
with a menu size of 4. The number following each name shows how many menu pages have to be scanned
before that name can be found. Figure 4b shows a similar hierarchy that now reflects a particular frequency
distribution (the second number following the name shows the item’s probability of selection). Popular
names, such as Graham and Zlotky, appear immediately on the first-level menu. Less popular ones are
accessed on the second-level menu, while the remainder are relegated to the third level. For this particula
case, the average menus traversed by probability subdivision are reduced from uniform subdivision, although

not as much as is theoretically possible (Figure 4c).

As probabilities also decay over time, once-popular (or erroneously-chosen) names eventually drop to a
low value. A decay factor also builds in a way of balancing frequency and recency. While low decay will see

frequently-chosen items migrate up the tree, a high decay rate gives more room to recently-chosen items.

—Figure 4 around here—

Given a frequency distribution, it is a surprisingly difficult problem to construct a menu hierarchy that
minimizes the average number of selections required to find a name. Exhaustive search over all menu trees,
while possible, is infeasible for all but the smallest problems. Witten, Cleary and Greenberg (1984) have

studied the problem and describe simple splitting algorithms that achieve good performance in practice.

The novelty of dynamic menus is that previous actions are almost always easier to resubmit. Also, since
no extra detail is added to the interface presentation, screen real estate is preserved. To their disadvantage,
users must now scan the menus for their entries all the time, even for those accessed frequently. Since paths
change dynamically, memory cannot be used to bypass the search process. However, experimental evidence
suggests that this is not a problem in practice. As long as the database of entries is very large, the benefits

far outweigh the deficiencies (Greenberg and Witten, 1985; Trevellyan and Browne, 1987).

3.2 Reuse through text prediction

History mechanisms assume that the last submissions entered are likely candidates for re-execution. They
are the ones visible on the screen in graphical and editing systems, the ones most easily remembered by the
user in glass teletypes, and the ones given a greater probability in dynamic menus (although this depends

on the decay factor).

Two systems provide an alternative strategy for textual input—the “Reactive Keyboard” (Witten, Cleary
& Darragh, 1983; Darragh, 1988) and its precursor predict (Witten, 1982). Although implementation details
differ, both use a dynamic adaptive model of the text entered so far to predict further submissions. At
each point during text entry, the system estimates for each character the probability that it will be the next
one typed. This is based upon a Markov model that conditions the probability that a particular symbol is
seen on the fixed-length sequence of characters that precede it. The order of the model is the number of
characters in the context used for prediction. For example, suppose an order-3 model is selected, and the
user’s last two characters are denoted by ‘zy’. The next character, denoted by ¢, is predicted based upon

occurrences of ‘zy¢’ in previous text (Witten et al, 1983).

Predict filters any glass-teletype package, although limited character graphics capabilities are required for
its own interface. It selects a single prediction {or none at all) as the most likely and displays it in reverse
video in front of the current cursor position. The user has the option of accepting correct predictions as
though he had typed them himself, or rejecting them by simply continuing to type. Because only a single
prediction is displayed, much of the power of the predictive method is lost: for at any point the model will
have a range of predictions with associated probabilities, and it is hard to choose a single “best” one (Witten,

1982).

The Reactive Keyboard, on the other hand, has two versions of a more sophisticated interface that
allows one to choose from multiple predictions. The first, called RK-pointer, displays a menu containing
the best p predictions, which changes dynamically with the immediate context of the text being entered
(Darragh, 1988). Figure 5 shows the user composing some free text in the window on the left, and the menu
of predictions on the upper right. The underlined “context” string is derived from the last few characters
entered, and is followed by the highlighted best prediction. These are shown in both windows. The menu
items represent alternative pieces of text from which the user can choose the next characters. Interaction
is through a pointing device, such as a mouse. Selection is two-dimensional, in that the user can point
anywhere within a prediction to accept only the previous characters (Figure 5). Less likely predictions are

available through page-turning.

4 Programming by example

The schemes discussed so far attempt to facilitate the reuse of individual items of activity, be they commands,
command lines, menu selections, or characters predicted in context. This is sufficient if incremental activities
have a one-to-one correspondence with tasks the user may wish to repeat later. Often, however, tasks are

accomplished by sequences of several primitive activities.

“Closure” is defined as the user’s subjective sense of reaching a goal, of completion or of understanding
(Thimbleby, 1980). Previous sections have assumed that closure was associated with each individual user
action (the entry of a command or command line, the selection of a document, etc). If the task to be
redone involves a sequence of such activities, even though they are all independently available through a
reuse facility, the user would have to mentally decompose his task into its primitives and choose them from
the event list. For example, viewing a specific file can comprise two activities—navigating to the correct
directory, and printing the desired file to the screen. It will often be easier for the user to think about and

recall these items as a single chunk rather than as two separate activities.

When tasks are a fixed sequence of fixed activities, they constitute a simple procedure that can easily
be specified by the user giving an instance of the sequence. The goal of “programming by example” is to
allow sequences and more complex constructs to be communicated concretely, without resorting to abstract
specifications of control and data structure (in a programming language, for example). At its simplest, the
user performs an example of the required procedure and the system remembers it for later repetition. For
example, the use of “start-remembering,” “stop-remembering,” and “do-it” commands enable a text editor
to store macros of editing sequences (Gosling, 1981; Stallman, 1987). Except for these special commands, the
macro sequence is completely specified by normal editing operations. With a little more eflort, such sequences

can be named and filed for later use. A practical difficulty with having a special mode—remembering mode—

10

for recording a sequence is that one has frequently already started the sequence before deciding to record it,

and so must retrace one’s steps and begin again.

The ability to generalize these simple macros could extend their power enormously. Some programming by
example strategies allow inclusion of standard programming concepts—variables, conditionals, iteration, and
so on—either by inference from a number of sample sequences, or through explicit elaboration of an example
by the user. To illustrate the latter, an experimental system has been constructed for the Xerox Star office
workstation that operates according to the direct manipulation paradigm (Halbert 1981 & 1984). In earlier
versions of this system, a pop-up menu allowed one to indicate explicitly the generalization required. For
example, icons selected at specification time are disambiguated by name, position, or by asking for a similar
object. But because people found it hard to elaborate programming constructs when tracing through an
example, a later version had users employ an editor to specify constructs after macro composition {(Halbert,

1984).

Other research on programming by example has concentrated on inferring control constructs from traces
of execution given by the user (Witten, MacDonald & Greenberg, 1987), and some systems use domain
knowledge, teaching metaphors, and highly interactive interfaces to maximize the speed of transfer of proce-
dures (eg Maulsby & Witten 1989; Maulsby, Witten & Kittlitz 1989). However, there has been little research
on ways of naming, filing and accessing procedures taught by example, and particularly on knowledge-
and history-based methods of splitting up a stream of activities into user-oriented “tasks.” This limits the

practical use of programming by example in reuse systems.

The appeal of programming by example is the belief that a user’s activity follows a preconceived plan
that can be encapsulated as a procedure. Intentions are realized as plans-for-actions that directly guide
behaviour, and plans are actually prescriptions or instructions for actions. These plans reduce to a detailed
set of instructions (which may also be sub-plans) that actually serve as the program that controls the action.
Suchman (1985) disputes this notion by claiming that plans are derived from situated action—the necessarily
ad hoc responses to the contingencies of particular situations. Initial plans must be inherently vague if they
are to accommodate the unforeseeable contingencies of actual situations of action. It is only the post hoc
analysis of situated action that make it appear as if a rational plan were followed. Assuming that user
activity on computers does follow situated action, then a programming by example system would not suffice
by itself as a complete user support tool, for it would not respond well to the changing circumstances of
situations. When previous actions are collected as fixed goal-related scripts of events, flexibility 1s lost. It
should be augmented by a reuse facility that collects the actual responses to given situations, allowing one

to select, possibly modify, and redo the individual activities.

11

5 Summary

A reuse facility arranges for submissions entered to the application to be collected and presented so that they
can be selected for reuse. Its appeal is the assistance it offers in any dialog that exhibits recurrence. Since
no semantic knowledge of the domain is needed, it is quite a general approach. In addition, the mechanism
underlying reuse facilities—monitoring the user’s interaction and maintaining an internal model of it—has
potential for supplying more extensive user support. Possibilities include using the transaction history for
undo/redo to allow recovery from errors, providing an external memory aid that allows users to consult or

recall information associated with past activities, and building user models (Lee, 1989).

A key deficiency in this general area is the dearth of empirical evidence justifying designs for reuse facili-
ties, either a priori through knowledge of how people repeat activities, or post hoc by evaluating their actual
use. Nor are there any guidelines for how intuitive and empirical knowledge gleaned from one application
might generalize to others. As a consequence, existing reuse facilities—as surveyed in this paper—are based

on ad hoc designs that may not adequately support a person’s natural and intuitive way of working.

To rectify this, we have performed a large-scale study of how users actually repeat tleir activities on
computers; preliminary results were described in Greenberg and Witten (1988a & 1988h). and a further
report is given in the companion paper to this survey (Greenberg & Witten, 1989). Empirical foundations
behind reuse are explored and design principles for reuse facilities offered through a model of human-computer
interaction called recurrent systems. We find that users’ activities are repeated to a surprising degree, and
furthermore the probability distribution of the next submission repeating a previous one confirms that
recency—the premise behind many history mechanisms—is in fact a reasonable predictor of what the person
will do next. Still, there are ways to improve the predictive ability of reuse facilities. A variety of methods
using differing predictive strategies are contrasted, some that are provably better than existing ones. In
marked contrast to the theoretical potential of reuse facilities, one widely-available history system is shown

to be used poorly in practice.

References

Apollo (1986) DOMAIN system user’s guide. Apollo Computer Inc, Chelmsford, Mass.

Barnes, D. and Bovey, J. (1986) Managing command submission in a multiple-window environment. Software

Engineering Journal, 1(5):177-183, September.

Bobrow, D. (1986) HistMenu. Lisp User Library Packages Manual, Koto Release. Xerox Artificial Intelligence
Systems, April.

12

Darragh, J. (1988) Adaptive predictive text generation and the Reactive Keyboard. Master's thesis, De-

partment of Computer Science, University of Calgary, Alberta, September.
DEC (1985) VAX/VMS DCL concepts manual. Digital Equipment Inc, Maynard, Mass, April.

Ellis, M., Greer, K., Placeway, P., and Zochariassen, R. (1987) TCSH—Cshell with filename completions

and command line editing. Revised University of Toronto edition.

Engel, F., Andriessen, J., and Schmitz, H. (1983) What, where and whence: means for improving electronic

data access. International Journal of Man Machine Studies, 18:145-160.

Goodman, D. (1987) The Complete HyperCard Handbook. The Macintosh Performance Library. Bantam
Books, New York.

Gosling, J. (1981) Uniz Emacs Manual. Carnegie-Mellon University.

Greenberg, S. (1984) User modeling in interactive computer systems. Master’s thesis, Department of

Computer Science, University of Calgary, Alberta.

Greenberg, S. and Witten, I. (1985) Adaptive personalized interfaces — a question of viability. Behariour

and Information Technology, 4(1):31-45.

Greenberg, S. and Witten, I. (1988a) Directing the user interface: how people use command-based systems.

In Proceedings of the 3rd IFAC Conference on Man-Machine Systems, Oulu, Finland, June 14-16.

Greenberg, S. and Witten, I. (1988b) How users repeat their actions on computers: principles for design of
history mechanisms. In Proceedings of the ACM SIGCHI 88 Human Factors in Computing Systems,
pages 171-178, Washington, D.C., May 15-19.

Greenberg, S. and Witten, I. (1989) Supporting command reuse: Empirical foundations and principles.

International Journal of Man Machine Studies. Submitted paper.

Halbert, D. (1981) An example of programming by example. Technical report, Xerox Office Products
Division, Palo Alto, California. Also available as Master’s thesis, Department of Computer Science,

Stanford.

Halbert, D. (1984) Programming by example. Technical report, Xerox Office Products Division, Palo Alto,

California, December. Also available as PhD thesis, Department of Computer Science, Stanford.

Joy, W. (1980) An introduction to the C shell, volume 2c. Unix Programmer’s Manual. University of

California, Berkely, California, seventh edition.

13

Kurlander, D. and Feiner, S. (1988) Editable graphical histories. In Proceedings of the IEEE Visual languages

workshop.

Lee, A. (1989) A taxonomy of interaction history. Internal report, Department of Computer Science,

University of Toronto, October.

Maulsby, M. and Witten, I. (1989) Inducing programs in a direct-manipulation environment. In Proceedings

of the ACM SIGCHI '89 Human Factors in Computing Systems, Austin, Texas, May 2-May 4.

Maulsby, M., Witten, 1., and Kittlitz, K. (1989) Metamouse: Specifying graphical procedures by example.
Computer Graphics, 23(3):127-136, August. (Proceedings of the ACM SIGRAPII conference, Boston.

Pike, R. and Kernighan, B. (1984) Program design in the UNIX environment. AT&T Bell Laboratories
Technical Journal, 63(8/2):1595-1605.

Stallman, R. (1981) Emacs: the extensible, customizable self-documenting display editor. ACM Sigplan
Notices — Proceedings of the ACM SIGPLAN SIGOA symposium on tert manipulation, 16(6):147~
155.

Stallman, R. (1987) GNU Emacs manual. Free Software Foundation, Cambridge, MA, March.

Suchman, L. (1985) Plans and situated actions: The problem of human-machine communication. PhD

Thesis ISL-6, Intelligent Systems Laboratory, Xerox PARC Research Center, Palo Alto, California.
Symbolics (1985) User’s Guide to Symbolics Computers, Volume 1. Symbolics, Inc.

Teitelman, W. and Masinter, L. (1981) The Interlisp programming environment. IEEE Computer, 14(4):25-
34,

Thimbleby, H. (1980) Dialogue determination. International Journal of Man Machine Studies, 13.

Trevellyan, R. and Browne, D. (1987) A self-regulating adaptive system. In Procecdings of the ACA
SIGCHI+GI 1987 Human Factors in Computing Systems and Graphics Interface, pages 103-107,
Toronto, April 5-9.

Unipress (1986) UniPress Emacs screen editor — user’s guide. Unipress Software Inc, Edison, NJ.

Witten, I. (1982) An interactive computer terminal interface which predicts user entries. In Proc IEE

Conference on Man-machine Interaction, pages 1-5, Manchester, England, July.

Witten, I, Cleary, J., and Darragh, J. (1983) The reactive keyboard: A new technology for text entry. In

Proc Canadian Information Processing Conference, pages 131156, Ottawa, Ontario, May.

14

Witten, 1., Cleary, J., and Greenberg, S. (1984) On frequency-based menu-splitting algorithms. International
Journal of Man Machine Studies, 21(2):135-148, August.

Witten, I. and Greenberg, S. (1985) User interfaces for office systems In Zorkoczy, P. (1983), editor, Ozford
Surveys in Information Technology, Volume 2, pages 69-104. Oxford University Press.

Witten, I., MacDonald, B., and Greenberg, S. (1987) Specifying procedures to office systems. In A utomaling
Systems Debelopment Conference, Leicester, April 14-16.

Xerox (1985) The Interlisp-D reference manual - Environment, Volume 2. Xerox Artificial Intelligence

Systems, April.

15

List of Figures

1 Examples of the UNIX csh History Mechanisminwuse 17
2 A portion of the INTERLISP-D environment, showing HistMenuinuse 18
3 The HyperCard Recentscreen v, 19
4 Menu trees generated by uniform and probability subdivision 20
5 RKA-pointer menu and feedback, from Figure 4.5 in Darragh (1988). 21

16

Example Event List
9 mail 1an
10 emacs figl fig2 figd
11 cat figl
12 diff fig*
Examples and Results of History Uses
User Input Action Description
3 diff fig* Redo the last event
11 cat figl Redo event 11
1.2 cat figl Redo the second event from last
!mai mail ian Redo last event with prefix “mail”
?jan? mail ian Redo last event containing the string “ian”
1 figd diff fig* figd | Append “fig3” to the last event and redo
AdiffApage page fig* Substitute “page” for “diff” in the last command
p diff fig* Print without executing the last event
page !10:1-2 | page figl fig2 | Include the Ist and 2nd argument of event 10 and redo

Figure 1: Examples of the UNIX ¢sh History Mechanism in use

17

32¢(SETQ A 15)
15

33+(SETQ B 30)
(B reset)

30

34«(PLUS & B)
45

35+use 20 for &
5@

88<(SETQ C 5)

5

87¢use A for C
(A reset)
5

384
8
39«

(SETQ A 5)
(SETQ CH)
(PLUS 20 B)
(FLUS A B)
(SETCQ B 30)
{SETQ A 15)

(+ & 8)
DIRECTORY
(HistoryMers 15)
(CLOSEW {#HICHW))
DIRECTORY

(SYZSOUT (QUOTE {FileSer

Bﬂew

Figure 2: A portion of the INTERLIsP-D environment, showing HistMenu in use

18

& File Edit Jf)

ation whagle

Figure 3: The HyperCard Recent screen

19

Arbor (2)
Barney (2)
Dacker (2)

Danby (3)
Eagan (3)

Fael (2)
Graham (2)
Issac (2)

Jacobs (3)
Kruger (3)

Moreen (3)
Obrien (3}

Unger (3)
Jotky (3)

a) Menu tree generaled by uniform subdivision

(1) Arbor -- Eagan
(2) Farel - Kruger
(3) Kwant - Obrien
(4) Perry - Ziotky

The top level menu

/Arbor (2, .09)
Barney (3, .02)
&< Dacker (3

 .02)
Danby (3, .02)
Eagan (3, .02)

Farel (2,.09)

Graham (1, .25)

Issac (3, .02)
Jaoobs (3, .02)
Kruger (3, .02)
Kwant (3, .02)
levin (3, .02)
Martin (3, .02)
Moreen (3, .02)
QObrien (3, .02)
Perry (3, .02)
Ridder (3, .02)
Sagin (3, .02)
Unger (3, .02)

Zotky (1,.25)

b) Menu tree reflecting popularity of items

Let n = numberofilems
mj = menus traversed to reach item i
pi = probability that item i is selected

A) Average menus traversed by unilorm

subdivision
_ Z'T'i _ (12°2)+(8"3)
- n - 20

= 2.4 menus lraversed / item

B) Average menus traversed by probability
subdivision
m; pi
(2°1°.25) + (2'2°.09) + (16°3*.02)
1.82 menus traversed / item

C) Theoretical optimum menus traversed with
the given probabilities (4-choice entropy)
= =4 pi*logypi

—((12°.02'log4.02) + (2'.09‘Iog4.09)

+(2".25'l0g4.25))

1.49 menus / item

¢) Calculating the average menus traversed
for various conditions

—

(1) Arbor - Farel
(2) Graham
(3) Issac - Unger
(4) Zloky

The top level menu

Figure 4: Menu trees generated by uniform and probability subdivision

20

<context> <prediction>

The text for this figure was| is made., ~J

generated using the Reactive generatlfion is
Keyboard primed with the current unde
text of Section 4.5 of this required® in th
thesis (excluding tables and directly tied
figures). easily impleme

quoted in the
Once an item/extent is sel-

ected, the text is inserted
into the text buffer and

a new prediction is beneratl
<context> <prediction>

(Meta-Dialogue Menu)

Figure 5: RK-pointer menu and feedback, from Figure 4.5 in Darragh (1938).

21

