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Abstract

To handle the diverse implements they wield in their workshops, people group
tools into functional and task-oriented collections, and set recently-used ones aside
for re-use. Surprisingly, these strategies have not been transferred effectively to
interactive computer interfaces. The chief problem in designing a command inter-
preter that lets people reuse and organize their on-line activities is the dearth of
knowledge of how users behave when issuing commands to general-purpose com-
puter systems. Consequently, existing user support facilities are ad hoc designs that

do not really support natural work habits.

Recent studies which examined people’s behavior in interactive interfaces paid
undue attention to command choice and not enough to complete command lines.
By examining both aspects, this thesis abstracts general principles governing how
often people repeat their activities from usage data gleaned from different classes of
user over several months. These provide design guidelines for “history” mechanisms
that make old submissions available for re-use. The problem is to identify likely
candidates, and several ways of conditioning the distribution to enhance predictive
power are evaluated. A case study of actual usage of a widely-available history

system is included.

Users also organize their activities by task and by function. This can be sup-
ported by an on-line “workspace” that allows people to group tools for related
activities. A system loosely based on the metaphor of a handyman’s workbench is
described and used to illustrate the problems that are encountered when facilities

to expedite interaction are bolted on to existing computer systems.
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Chapter 1

Introduction

There is nothing quite so frustrating for the avid do-it-yourselfer than
to begin a project, suddenly need a particular tool, but have no idea

where in the house to look for it.

— Practical Homeowner’s 1987 Do-It-Yourself Annual,

Rodale Press, p191

General-purpose computer environments that furnish a large set of diverse tools
are often hard to use. Although some difficulty is associated with using any partic-
ular tool, this dissertation is concerned with the problems that a person faces when
selecting a tool from the many available, reusing that tool while performing a task,
and organizing his chosen tools in a way that makes them ready to hand later on.
Surprisingly, methods and habits for using physical tools that have evolved over

millions of years have not been transferred effectively to the computer domain.

The goal of this dissertation is to identify properties of a human-computer
interface that supports how people select, reuse, and organize the tools available
in general purpose computing environments. These properties come from empirical
analyses of user behaviour. This introduction sets the scene by first reviewing phys-

ical tools, from their very natural use by animals to ultra-sophisticated machinery

1



that taxes human capabilities beyond acceptable performance limits. Section 1.2
moves to the focus of this document — general-purpose computing environments
that make diverse collections of online tools available. It identifies two problem
areas; the dearth of knowledge about people’s use of online tools, and the poor ex-
isting user support for everyday interactions with them. The final section outlines

the major themes covered by each of the following chapters.

1.1 Using physical tools

Until the late eighteenth century, Man distinguished himself from other animals by
claiming to be the only tool-user. Since then, ethologists have reported extensive

tool use by many species of animals. A few examples follow!.

The myrmicine ant drops debris (bits of leaf and bark) on to soft foods that are
otherwise difficult to move. After the food has soaked into the “sponge tool”, it is
all carried back to the colony (Fellers and Fellers, 1976). The Egyptian vulture feeds
on tough-shelled ostrich eggs by picking up a stone in its bill and throwing it down
repeatedly until the egg cracks (van Lawick-Goodall and van Lawick, 1968). Fig-
ure 1.1 illustrates the well-known woodpecker finch of the Galapagos Islands. Using
twigs and cactus spines held in its bill, the finch probes for otherwise unattainable
insects living in trees or under bark. The elephant is a frequent tool user too. Twigs
and branches grasped in its trunk extend its reach, particularly for scratching and
chasing flies away, and the elephant also threatens intruders by waving branches
or by throwing missiles at them. Sea otters break open shells by pounding them
on rocks balanced on their chests (Hall and Schaller, 1964). Excluding humans,
primates are the most habitual tool users of all animals. Depending on the species,

untrained monkeys, apes and chimpanzees throw or drop things (stones, branches)

1The definitive treatment of tool use by animals is Benjamin Beck’s Animal Tool Behaviour (Beck,
1980). Unless stated otherwise, all references to tool use by animals and early Man reported in
this section are taken from Beck’s extensive catalog.
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Figure 1.1: The Galapagos finch probing for insects with a cactus spine. Illustration
by J. Poehlman, in Smullen (1978) p17

at intruders, use leaves as sponges to gather water, brandish sticks as clubs, wipe
wounds with leaves, and use various implements to pound open, extend their reach
towards, or probe and rake in food. The extensive tool behaviour of captive chim-
panzees is evident to any circus or zoo visitor. They stack and climb upon objects

to reach food, and they have been trained to ride bicycles.

Man cannot even claim to be the only manufacturer. Although most animals
obtain tools from the natural debris of their environment, a few also fabricate
tools. Beck (1980) recognized four modes of tool manufacture in animals. The
first is detach, as performed by a woodpecker finch breaking off its twig tool from
branches. An example of subtract, the second mode, is a parrot who removes bark
from a twig before scratching himself, or chimpanzees stripping leaves from branches
before digging for termites. Some chimpanzees are known to reshape pieces of wood
into tools with pointed tips by chewing. Finally, implements can be combined
together, although this has been observed only with captive animals. Chimpanzees,

for example, join sticks together to create a further-reaching tool.



Although Man cannot lay claim to exclusive tool use and manufacture, he does
distinguish himself by the complexity of his tools, how they are used and reused,
and how they inter-relate. First, Man is the only animal known that uses one tool
to produce another. This behaviour is believed to date back 2,500,000 years to our
hominid ancestors who whittled wooden tools with sharp flakes of stone (Leakey and
Lewin, 1978). Second, Man retains tools for repeated reuse, unlike most animals

2, Again, early hominid records indicate

who discard them immediately after use
that stone tools were transported from foreign fabrication locations and then used
extensively before being discarded. Third, Man uses tools at special-purpose sites.
Early hominids had special food preparation areas, while archeological evidence
from later periods shows much tool-based activity around the hearth and well-lit
work areas (Gowlett, 1984). The final distinguishing point of Man’s tool use arises

from his tools becoming more numerous and more diverse over the course of history.

One only has to step into a modern kitchen or handyman’s workshop for proof.

The present age heralds unprecedented availability of numerous tools for indi-
vidual use. Some, like the hammer, are simple refinements of our ancestor’s stone
implements. At the other extreme are machines — like airplanes and spacecraft —
so complex that only a few highly-trained individuals can use them. During World
War II, human ability was pushed to — and beyond — acceptable performance lim-
its by the difficulty of using these complex machines. Some aircraft accidents, for
example, were directly attributed to cockpit complexity. This resulted in a demand
for experts in psychological engineering — called Human Factors in America, and
Ergonomics in Europe — who recognize human limitations and apply their knowl-
edge to the design of effective human-machine systems (Fitts, 1951). One area of
human factors involves designing and simplifying tools that are inherently complex.

For example, the highly inter-related controls and gauges in large power plants are

20One of the few reported cases of tool retention by animals is the otter, who sometimes keeps

shell-cracking stones in his armpit between several successive feeds while diving for other shells
(Hall and Schaller, 1964).



often positioned on a map that mimics the physical location of their corresponding
devices, making the plant’s state easier to understand. Another area of concern —
and the theme of this dissertation — is the difficulty of using and managing large

collections of loosely-related tools.

When a person’s activity is highly dynamic or not readily specified, the actual
choice and arrangements of loosely-related tools cannot be effectively predicted by
some other person. Instead, people have general methods for structuring their
workspaces, and special “organizing tools” for gathering and locating tools and

materials. The list below indicates a few important strategies.

Recently used tools are available for reuse. People recognize when a tool just used
will be used again in the near future. Rather than select tools and then
immediately return them to their original location, they are kept on hand for
a period of time. Examples include retaining used cooking implements on
counters while preparing a meal, and keeping a dictionary and thesaurus on
a desk while writing.

Arranging tools by function. Tools are categorized by function, and each collection
is gathered separately. A mechanic, for example, uses the drawers in a tool
cabinet to organize wrenches, screwdrivers, ratchets, and sockets. The of-
fice worker may arrange her desk with a pen and pencil holder, a stationary
drawer, and a forms drawer. A tailor uses pin-cushions, racks for holding
spools of thread, shelves for bolts of cloth, and boxes for sewing machine
accessories.

Arranging tools by task. People sometimes store together tools that address a par-
ticular repetitive task. Workbenches and the tools located on them in a large
carpenter’s shop may reflect specialized activities; cutting (power saw, blades,
fences), preparation (large table, glue, vice, clamps, finishing nails), drilling

(drill, bits), nailing (work belt with hammer and nail pouches), and so on.



Figure 1.2: A carpenter’s workshop, adapted from page 51 in Working in Wood, by
E. Scott, Putnam, NY, 1980



The carpenter’s workshop in Figure 1.2 illustrates an integrated use of these
management strategies. Recently used tools and material lying on the central work-
bench are readily available for reuse. The tool cabinet and tool panels arrange tools

by function, while other work areas are dedicated to certain tasks.

1.2 Soft tools in general-purpose computing en-

vironments

1.2.1 Definitions

Some important terms are introduced here. Others are defined and elaborated as

needed throughout the dissertation.

A shell is the top level interface placed upon a general-purpose computing envi-
ronment (the characteristics of these environments are discussed further in Section
1.2.2). A shell allows users to access a library of existing programs as utilities, to
combine existing utilities as needed, and to extend the library at will. An activity or
submission is defined as a single request submitted to the shell by a person. Activ-
ities typically specify actions and arguments. Actions are commands that indicate
the utility to be invoked. Arguments supply information to the utility, through
options that dictate how it is to work, and objects that indicate the computer ma-
terial to be manipulated. Incremental interaction is a style of human-computer
dialog characterized by successive activity requests that are submitted to the shell
and responded to in turn (Thimbleby, in press). A computer tool is another name
for a system utility. However, a user may consider the tool as including specific

arguments as well.

Interfaces to conventional operating systems provide good examples of incre-

mental interaction dialogs involving all the notions above. One usually submits



activities to a top-level command shell by typing simple commands and arguments,
although some modern systems augment or replace this primitive dialogue style
with menus, forms, natural language, graphics, and so on (Witten and Greenberg,
1985). The user then waits for the utility to do its task before entering the next

line.

1.2.2 From appliances to manufacturing

Computers and their uses fall under an enormous variety of often overlapping cat-
egories. They range from dedicated turnkey “appliances” that are specialized tools
addressing highly specific domains, to interactive programming environments that
function as software “manufacturing” plants. This dissertation is only concerned
with those general, flexible, and heterogeneous computer environments whose shell
provides end users with many diverse tools and materials, selected through incre-

mental interaction. These environments lie somewhere between the extremes above.

The design emphasis in human-computer interfaces for the non-programming
mass market is currently on application areas perceived to be used frequently by the
target population. There is a proliferation of packages for word processing, painting
and drafting, spread-sheet calculations, and so on. These packages may be consid-
ered appliances, highly specialized tools handling very specific tasks. Some have
excellent interfaces, finely-tuned to meet specific user needs. Modern appliance-
oriented top-level interfaces, augmented with a limited repertofy of generic capabil-
ities, act as delivery vehicles for these application packages (eg the Apple Macintosh;
Williams, 1984). However, those users who do not wish to program may only pursue
the relatively small set of tasks addressed by the applications which are provided.

This poses appreciable difficulties.

Computers are increasingly used ...in complex areas ...characterized

by the lack of generally accepted methods and techniques to be used for



problem solving. For this reason it is impossible to construct software

tools covering problem solving completely.

— Dzida, Hoffmann and Valder, 1987, page 30

At the other end of the spectrum, programming environments provide users
with the means to pursue goals not addressed specifically by any one application.
Historically, these systems arose from the second and third generation comput-
ers that emphasized programming in high-level languages (Denning, 1971). Their
contemporary versions are highly interactive programming environments that sim-
plify programming “in the small”. Some examples are: SMALLTALK (Goldberg,
1984); INTERLISP-D (Teitelman and Masinter, 1981); PICT (Glinert and Tani-
moto, 1984); and PECAN (Reiss, 1984). By analogy, these programming environ-
ments are highly sophisticated manufacturing plants that can be re-tooled rapidly

to design and create a variety of complex machinery.

While appliance environments are overly restrictive for those wishing to pursue
general tasks, programming environments are impractical for non-programmers, for
the actions, objects, and complexity of discourse are expressed in programming
terms (Cuff, 1980). The computer industry is not blind to this incompatibility, and
has spent considerable effort trying to bridge the gap between specialization and
generalization through integrated systems. This approach groups a set of limited
applications into one large integrated product, so that the boundaries between these
applications are minimized or eliminated (Nielsen et al, 1986). Although a promising
direction, these systems currently offer only slightly more power than appliance-

oriented computers.

Midway between the two extremes are those top-level interfaces that provide
their end users with a rich set of actions and objects, actions ranging from primitive
to high-level ones. Each action, together with the object it manipulates, is available

as a tool, and they can be combined in simple ways to manufacture new tools,
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often without resorting to conventional programming. These form the focus of this
dissertation. As summarized by Lee, environments in this general-purpose computer

genre include

... collections of heterogeneous but complementary tools that allow users
to perform a wide and varying range of tasks. Furthermore, the envi-
ronment provides fairly uniform access to the software tools and permits

users to use them for various purposes.

— Lee, 1988b

Generally, tools are flexible to use, can be combined in many ways, and are re-
shaped as needed. In addition, these environments support and encourage both

tool manufacture and sharing by a variety of end users.

1.2.3 Problem statement

The hypothesis of this dissertation is that, as with physical tools, people select
and often immediately reuse their recently submitted activities to general-purpose
computing environments, and consciously organize their activities by both task and
function. If this hypothesis holds, then the interface should give the user support by
keeping recently-used activities available for reuse and by allowing him to organize

activities by function or task.

Yet existing shells invariably either provide uniform access to all system utili-
ties or group them in a pre-defined way. Except for a few ad hoc and un-evaluated
implementations, there is no on-line support by even contemporary interfaces for
people’s natural strategies for organizing their workspace. Command-based inter-
faces, for example, provide uniform access to all system actions, even though actual
usage of these commands is far from uniform. “History systems” that allow people

to recall old submissions are badly designed, and their effectiveness is unknown.
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Menus that explicitly reveal pre-grouped system actions may not reflect the user’s

actual task organization.

The dissertation addresses two major problems. First, there is a dearth of
knowledge of how users actually behave when interacting with a general-purpose
environment. Second, current interfaces do not adequately support a user’s natural
work. Although some have studied how people choose system utilities from a large
set, no statistics are available on how people generate, select and repeat their activ-
ities. The bulk of this thesis is devoted to filling this void, based upon analyses of
long-term observations made of people using UNIX®, a general purpose computing
environment. The experimental findings are then used to derive design principles

of a user support facility that aids one’s natural work.

1.3 Outline

The dissertation is divided into four distinct parts. Chapters 2 and 3 list how ob-
servations of user activity in general-purpose computing environments have been
collected and analyzed in the past. The method employed here is described, and
selected previous works are replicated and the findings discussed. Chapters 4
through 7 form the heart of the dissertation. They detail how people repeat their
activities, and how the results can be applied to designing a facility that lets one
reuse (as opposed to re-enter) previous submissions. Chapter 8 examines how peo-
ple organize activities. Finally, Chapter 9 describes the design and implementation
of a user support tool that allows people to both reuse and impose a structure upon

their old activities. Each chapter is briefly summarized below.

Chapter 2 introduces a study of natural everyday human usage of the UNIX

operating system and its command line interface. The observations made are the

SUNIX is a trademark of AT & T Bell Laboratories.
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basis for most investigative work performed in later chapters. UNIX is argued
to be a general-purpose environment and therefore appropriate for observation.
After several existing data collection methodologies are described, the one finally

employed is detailed.

Chapter 3 covers previous work on how people use commands in UNIX. The
results of several studies are reviewed, and portions of these are replicated. Although
the statistical details of the replicated studies are supported, some of the conclusions
made by the original researchers are misleading. In particular, studying command
use — the verbs of a command line — is not sufficient and presents a distorted
view of what is actually occurring. The complete command line entered by the user

must be considered too.

Chapter 4 introduces and surveys existing reuse facilities that let users recall,
modify, and re-submit their previous entries to computers. Although the survey
is not exhaustive, it is representative of facilities on commercial, state of the art,
and research systems. The chapter concludes by noting that there is no empirical
evidence justifying any of these designs, either a priori through knowledge of how

people repeat activities, or post hoc through evaluating their actual use.

Chapter 5 continues by providing empirical evidence that people not only repeat
their activities, but that they do so in quite regular ways. It starts with the notion of
recurrent systems, where most users predominantly repeat their previous activities.
A few suspected recurrent systems from both non-computer and computer domains
are examined in this context to help pinpoint salient features. The UNIX data is
analysed from this perspective, particular attention being paid to the statistics of
complete command line recurrences. Although people are seen to generate many
new activities, old ones are repeated to a surprising degree. The probability distri-
bution of the next submission repeating a previous one as a function of recency is

also reported.

Chapter 6 considers the potential and actual reuse opportunities within UNIX.
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First, several methods are suggested that could increase the likelihood that the next
submission occurs in a small set of predictions offered to the user for review and
reuse. The UNIX data is conditioned by these methods, and the resulting improve-
ments are determined quantitatively. The second part of the chapter investigates

how well the reuse facilities supplied by the UNIX shell are used in practice.

Chapter 7 summarizes the results as a set of design principles, and existing reuse
facilities are revisited and briefly criticized from this perspective. The findings
of previous chapters are then corroborated by analyzing a different domain — a
functional programming environment — as a recurrent system. A final discussion
concludes that the notion of reuse facilities are conceptually, as well as empirically,

justified as a user support tool.

Chapter 8 argues that a user organizes his computer activities by task and
by function. The concept of a user support tool called a workspace is developed.
Similar to a physical workspace, this online facility allows people to reuse and
organize their tools for their related activities. Although the idea is not new, several
novel properties of workspaces are elaborated. This chapter reveals how limited our
knowledge is in this area and suggests that much more investigative research is

required — work that is beyond the scope of this dissertation.

Chapter 9 describes the design of a system that loosely follows the metaphor of
a handyman’s workbench. It embodies the reuse properties suggested in Chapters 4
through 7, and the structuring properties of Chapter 8. The implementation is a
front end to UNIX, and serves to illustrate that serious pragmatic problems are
encountered when user support tools are built as add-ons to existing systems. The

problems encountered during its design and use indicate a few open research areas.

The thesis ends with a brief concluding chapter. The contributions are sum-

marized, and future research directions are proposed.



Chapter 2

Studying Unix

This chapter introduces a study of natural everyday human usage of the UNIX
operating system and its command-line interface. Analysis of the data collected is
central to the pursuit of knowledge of user behaviour when interacting with general
purpose environments. The chapter begins by describing UNIX and gives reasons
why it is an appropriate vehicle for research. Section 2.2 reviews several methods of
data collection used with previous UNIX investigations, while Section 2.3 describes

the details of the current study. Analyses of data is deferred to later chapters.

2.1 Choosing Unix

Why perform natural studies on UNIX, with its baroque and outdated user inter-
face, instead of controlled experiments on a modern system? This section starts
by advocating a natural study for exploratory investigation of human-computer in-
teraction. After recognizing several pragmatic problems with such investigations,

UNIX is introduced and its choice is justified.

14
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2.1.1 Natural studies

The thrust of this thesis is that it is possible to capitalize on patterns evident in
human-computer interaction by building special user support tools. A prerequisite
is to first “know the user” (W. Hansen, 1971). One way is through analysing
everyday natural user interactions with current systems so that existing patterns of
activity can be discovered and exploited. S. Hanson et al justify this approach by

contrast with traditional controlled experimentation.

Although [a controlled experiment is] appropriate and useful in theory-
guided research ... it is less appropriate when the researcher needs to
identify new variables or complex unknown relations between new vari-
ables. Nor does it deal efficiently with highly multivariate phenomena
such as human-computer interaction. Where neither theory nor time
will tolerate the isolation of a few controlling variables, assessing peo-
ple’s natural use of a computer system may be highly informative. ...
Generally, observational data of human-computer interaction can allow
the testing of simple hypotheses and intuitions, the discovery of com-
puter features that cause problems for users, and guidelines for interface

design.

— Hanson, Kraut, and Farber, 1984

Investigating people’s natural behaviour when using computer systems is not
easy. Several major problems present themselves. First, there is no established
methodology of study. Past experimenters used various different methods, leading
not only to hard choices for new researchers, but also to difficulties for those wish-
ing to contrast or replicate results of previous work. Even when similar methods
are chosen, the lack of controls make comparison questionable. Investigations are
often performed on widely different or rapidly evolving operating systems and user

interfaces, and habits of user populations may be site-specific.
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A second problem with natural studies of user interfaces is the difficulty of col-
lecting data. Monitoring real-life human-computer interaction is not easy. Source
code may not be available for modification; interactions may gd through a suite
of programs rather than through a single one; security measures at the site may
preclude close study. Furthermore, subjects may be hard to obtain. People resist
conscription, perhaps due to concerns about privacy or plain inertia, or site popu-
lations are just too small for adequate sampling. Corporate reluctance also hinders
data collection, for computer and human resources are expensive. Monitoring users
takes processor time, physical records of user activities need substantial disk space,

and subjects’ time is costly.

With these provisos in mind, natural studies can, at least in principle, give
valuable insight into people’s behaviour when using computers. One popular vehicle

for such studies is UNIX.

2.1.2 A brief introduction to Unix

UNIX is a widely-used multi-tasking operating system that runs on a variety of
different computers, and is well described in many academic and popular publi-
cations (eg Ritchie and Thompson, 1974; Kernighan and Mashey, 1981; Pike and
Kernighan, 1984; Waite, 1987). From the user’s point of view, it has a variety of
important components. One is the file system, where all files are organized within
hierarchical directories. Directories and files can be manipulated by users in all the
standard ways. Users often work within the confines of a single “current” directory,

although resources located in other directories are generally available as well.

Another important feature of UNIX is that no distinction is made between
files containing programs and those containing other things; any file is eligible for

execution!. Although UNIX contains a large but standard repertory of programs,

1Technically, an execution bit has to be set before a file can be run as a program. However, this
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there is no difference between invoking a system program and a user program. This
is significant because it allows one to tailor a system to individual needs simply
by writing utility programs and putting them in the right place, without having to
alter the innards of the system in any way. By setting search paths, users can tell
UNIX to look for executable programs in specific directories containing the standard
system libraries, one’s own personal libraries, or files belonging to other members
of the community. However, this flexibility has drawbacks. It encourages users to
build and share extensive libraries of commands, causing difficulty with the naming
of different programs and multiple versions of programs. Others may have come
to rely on programs in a personal library without the owner’s knowledge, in the

erroneous belief that they were “standard” utilities (Witten and Greenberg, 1985).

The third UNIX component is its user interface, a command line interpreter
called a shell? that comes in several flavours, the most popular in America being csh
(Joy, 1980). As with most conventional command-driven systems, esh is a passive
slave awaiting orders; no attempt is made to guide or help the user. Csh implements
incremental interaction. Once an order is received, it carries it out and then awaits
the next command. Despite the proliferation of screen-based programs (especially
editors), the basic csh interface is teletype-like. No use is made of the cursor control
features provided by most VDU’s. With the exceptions of the character-erase,
word-erase, and line-erase capabilities, the screen is treated as a long roll of paper.
Through the shell, users compose, edit, and then submit an input line to UNIX.
The usual form of a submission is a command, optionally followed by an argument
list3. Although the command may be handled directly by esh, it typically creates
a new process by executing a file containing either compiled code produced by a

programming language, or a script of further command lines. The argument list

bit can be easily set by a user with the appropriate permissions.

2The command line interpreter is called a shell because it surrounds the kernel of the operating
system (Quarterman, Silberschatz and Peterson, 1985).

3Although csh contains a rudimentary programming language, it is rarely used at the command
line level.
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is made available to the program, and it can have two components: options and
objects. Options modify the standard meaning of the program ie they “reshape”
the tool. The program acts on the objects, which are usually UNIX filenames or
strings. Arguments may contain regular expressions that are replaced by the shell

with the names of files matching the expression.

UNIX users can tie together resources by redirecting input and output between
programs, files, the keyboard and the screen; this feature distinguishes UNIX from
other command line systems. A standard UNIX program takes its input from the
keyboard and places its output on the screen. Yet the same program can work with
files, simply by using the two redirection symbols ‘<’ and ‘>’, which stream input
from file to program and output from program to file respectively. Program-to-
program communication is supported through the pipe symbol ¢|’, eliminating the
need for explicit temporary files. For example, consider the sort command that sorts
its input lines, and the unig command that removes succeeding copies of identical
lines. Typed by itself, sort waits for a user to enter all the input lines through the
keyboard, and prints the ordered results to the screen afterwards. In the command
line sort < #n > out, the lines in the file in are sorted and then written to the new
file out. Finally, the sequence sort < in | uniq uses the output of sort as the input
to uniq; an ordered list of the unique lines contained in the file in are written to

the screen. Through redirection and pipes, the user can “combine” his UNIX tools.

Because no distinction is made between user and system software, and because
input and output are easily passed between programs, UNIX works well when many
small, general-purpose modules are available as building blocks for new programs.

This follows from the cornerstone philosophy of UNIX:

Make each program do one thing well. To do a new job, build afresh
rather than complicate old programs by adding “new” features. Expect

the output of every program to become the input of another, as yet
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unknown program. ...Do not insist on interactive input*.

— MclIlroy, Pinson and Tague, 1978

The building blocks approach has drawbacks. Although small programs can be
combined in many ways not anticipated by the original designer, it is sometimes
hard to perform common operations without resorting to some level of rudimentary
“programming”. Less experienced users are often overwhelmed by the complexity of
the system (Dzida, Hoffmann and Valder, 1987). Still, it is the power and richness of
UNIX that makes it interesting. Because diverse utilities are available, and program
creation and sharing are encouraged, UNIX fits the description of a general-purpose

environment given in the last chapter.

2.1.3 Why study Unix?

UNIX is a twenty-year old operating system whose command line interface no longer
represents current ideas in interface design®. Even at its best, the UNIX interface
is full of well-known deficiencies (Norman, 1981). Then why study UNIX? Why
not look at, say, a modern icon-based interface instead? This section argues that
studying UNIX is indeed fruitful for several reasons: it generalizes across many other
systems; a body of knowledge of UNIX behaviour currently exists; and finding and

monitoring subjects is relatively straightforward.

Generalization. One attraction of UNIX is that it is not a contrived “toy” sys-

tem. Rather, it is widely used, very powerful and potentially complex, and has a

4Some people believe that current versions of UNIX have seriously compromised the “one tool one
job” philosophy (Pike and Kernighan, 1984; Wait, 1987).

5UNIX was first developed in 1969 by Ken Thompson and the Computer Science Research Center of
Bell Laboratories in Murray Hill. Originally written for the DEC PDP-7 computer and influenced
by the Multics operating system, it was not publically licensed and widely released until 1976
(Quarterman et al 1985).
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broad range of users (Kraut, Hanson and Farber, 1983). Because it is a general-
purpose computing environment fulfilling many needs, any results garnered from
it may generalize to other systems. In contrast, many high-performance graphical
interfaces are so customized to particular applications that generalizations would

be difficult to make and support.

Although direct-manipulation systems are becoming more popular, command
line interfaces like UNIX still pervade computer use. Some examples from mainframe
and personal computing environments are Vax VMS, Honeywell Multics, Apollo
Domain, CPM, and IBM VM and DOS. Hierarchical menus based on either text or
graphics are usually little more than syntactic sugar placed on top of a command
line system®. Observations made of UNIX usage probably apply to all these systems

too.

If UNIX findings could not be generalized, they would still be valuable in their
own right. Although old, UNIX is far from dying. Rather, it is being rapidly
disseminated as a de facto open system standard on diverse machines, running the
gamut from mainframes to workstations and personal computefs. Even users of
graphical direct-manipulation interfaces thirst for UNIX, as illustrated by Apple’s
Macintosh/ UNIX fusion. Vendors are now trying to modernize UNIX by embedding
it within a window environment. The Sun workstation, for example, has a suite of
window-based front ends to popular UNIX facilities, including the shell, debugger,

mail system, terminal emulator, and so on (Sun Microsystems, 1986a).

An existing body of knowledge. Another appeal of UNIX to researchers is that
it has already been studied extensively. There is probably more knowledge and raw
data on UNIX usage than any other computer system. The scientific process is more

easily realized; other UNIX studies can be replicated, and previous findings can be

SMENUNIX, summarized in Chapter 8, is an example of a menu-based interface built directly on
UNIX (Perlman, 1984).
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built upon.

Finding and monitoring subjects. A pragmatic advantage of studying UNIX
is that it is relatively easy to do, since large groups of diverse people use it at many
different sites. Although generally perceived to be expert-oriented, there is no
question that a significant number of non-programmers with widely varying needs
also harness its powers. UNIX is often the standard system employed by research
institutions. The benevolent setting allows large-scale realistic studies that span

user categories.

At the University of Calgary, for example, UNIX is used heavily in the Depart-
ment of Computer Science by people with quite diverse programming skills and
personal requirements. It is also available to people in several non-computer de-
partments. The academic setting not only provides a captive audience, but also
encourages participation — bureaucratic procedures are in place for conscripting
subjects for study. Finally, UNIX source code for its programs are available for

modification.

In summary, it is assumed that observed usage patterns of UNIX are funda-
mental to most computer-based imperative interactions. Methodological motivation
arises from the number of diverse users, the relative ease of collecting data, and the
existence of other findings for comparison. Studies of UNIX usage are generalizable,
and have already affected the design of leading-edge systems. For example, Card
and Henderson (1987) describe a multiple virtual-workspace interface to support
user task switching, motivated by the UNIX study of Bannon, Cypher, Greenspan
and Monty (1983) (see Sections 8.3 and 8.1).
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2.2 Techniques for analysing activities of Unix

users

As mentioned previously, a problem with many computer studies is the lack of a
standard methodology for data collection. UNIX is no exception, and records of
interactions obtained range from low-level input traces collected over large user
populations through to protocol analysis elicited from a few select subjects. This
section surveys common methods that have been used for studying UNIX, and

indicates their associated drawbacks.

2.2.1 Traces of user activity

A record of interactions between user and computer, usually collected through an
unobtrusive software monitor, is called a trace. In natural studies of UNIX usage,
voluminous amounts of data are often collected and sifted through in the hope that
something interesting may turn up. Alternatively, a subject may be asked to solve
particular problems, and his performance monitored over short-term tasks. This
second approach is fruitful for testing hypotheses about user behaviour and for
exploring sub-domains of UNIX. A measure of validity is obtained by comparing
traces generated by the artificial task to those generated under normal circum-

stances (Lewis, 1986).

The methods listed below describe ways that traces have been generated on

UNIX.

Method 1: Recording all keystrokes entered. Every single character entered
on the command line is recorded, including the special line-editing characters (eg
<backspace>) and non-alphanumeric characters (eg <return>). The monitoring

software is fairly easy to write. In UNIX, for example, an interposed pseudo-tty
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filter can catch and note all keystrokes on entry before passing them on to the
primary application. This easily-implemented method supplies a complete record of
all input. Yet there are several disadvantages. First, unnecessary data is collected.
Unless the study is concerned with line editing or similar low-level concerns, no
benefit is gained by including such primitive operations. The final line, as seen by
the user before a <return> is selected, would suffice for most purposes. Second,
such traces are not easily read due to the inclusion of special editing characters.
Consider, for example, the following input characters for a line taken from a typical
script (Lewis, 1986), where AH represents a <backspace>, AM a return, and Li a

space:

lsasUNHUAHAHUAHAHUAHm — AHUANHAH UAHsU —FAM

After editing, the line translates to Is —-F7. A third more serious disadvantage is that
the esh manipulations of the line are not recorded. Once a line is entered, the csh
expands wild cards, history substitutions and aliases. Although the expanded line
may reflect the intention of the user more closely, it is not captured by recording

keystrokes only.

Method 2: Session Transcripts. A variant of recording keystrokes is record-
ing complete transcripts of a login session, which includes the user’s input and the
system’s response. Saving transcripts as human-readable textual records is simple
when the user interface follows a glass-teletype style of dialog. When cursor con-
trol or graphical interaction is used, the transcript may be viewed as an animated
playback record instead. Transcripts are information-rich, which is their weakness

as well as their strength. Although they work well for small studies involving short

"The number of keystrokes used to enter text is significantly more than the number of final char-
acters. In a study of document creation through an editor, Whiteside et al (1982) observed that
only one-half of a user’s keystrokes are for text entry. The rest were for cursor movement (1/4),
text deletion (1/8), and so on.
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sessions, the data produced for anything larger is so voluminous that it is almost
impossible to handle. Transcripts are best used in pilot studies, or as a way of

augmenting other data collection methods.

For example, Akin et al (1987) performed a case study of the structure of the
UNIX directory space by reviewing transcripts of users asked to carry out certain
tasks. Even though only two subjects were used, and the task duration was limited
to half an hour, they reported that the records were lengthy and hard to analyze.
However, the transcripts did provide insight into user’s movement in the directory

space.

Method 3: Recording lines expanded by csh. Instead of collecting data
by catching keystrokes as they are entered, the complete line submitted can be
captured as a chunk after it has been entered and processed by csh. All the noise
produced by line editing would be removed. This is easily accomplished through
the csh history facility, where lines automatically recorded by the system can be
saved in a file. Desmarais and Pavel (1987), for example, collected and analyzed
short-term UNIX traces by this method, and applied the information to generation

of user models.

Extra information known to ¢sh can be trapped and noted as well by placing
“hooks” within esh. Inline expansion of history use, aliases and regular expressions
could be included, as well as the current working directory of the user and the error
status after execution is attempted. This is the method used in the current study,

and will be described further in Section 2.3.

There are several problems with recording lines from within esh. First, the
source for esh must be modified if extra information is desired. Since this con-

tains over 16000 lines of sparsely documented and quite complex code, the task is
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daunting®. Second, and more seriously, not all user activity is captured. Although
recording c¢sh lines works well for “batch” style programs that execute and return
without user intervention, it is not appropriate when highly interactive applications
are used (eg editors). Interactive information is lost since data is collected from
the ¢sh command line only. Also, commands cannot be considered “equal.” For
example, consider a trace containing only two UNIX commands: Is for listing files;
and emacs which invokes a sophisticated interactive editor. Whereas file listing is
accomplished almost immediately, an editing session can last for hours. This dis-
tinction is not captured by esh. A further disadvantage with this recording method
is that the actual processes spawned by the command line are not noted. There
are many ways to execute programs in UNIX; directly by name, indirectly through
an alias or csh variable, or as a suite of programs through a script. Because of
this diversity, users can invoke the same program by many different names. For
example, e, emacs and ed may all invoke the same editor. As only the text typed

to csh is collected, the actual processes executed is left as an educated guess.

Tracing lines expanded by esh is a tradeoff between recording too much and
too little information. By selectively combining this method with other ways of
recording data, most problems noted above are correctable. For example, Lewis

(1986) includes the final expanded line along with the command line as issued.

Method 4: Recording processes spawned by user’s commands. A popular
method of analyzing UNIX usage exploits data collected by the standard system
accounting packages, which records the processes spawned from a user’s command
rather than the command itself. The advantages lie in the ease of collecting data,
and in having a record of the system’s response to the user’s activity. Unlike some

previous methods, no program generation or modification is necessary.

8Four months were required to produce an acceptable tested version of csh that included a robust
monitoring facility, even though the final number of modifications required was relatively small.
This time includes the bureaucratic red tape involved with obtaining c¢sh source.
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But recording processes spawned is severely limited. First, many commands
spawn multiple processes not mentioned explicitly by the user. Recording of pro-
cesses only reflects the user’s command selection when the generated process matches
the submitted command, which is often not the case. A command may create mul-
tiple processes, and inferring what was actually typed by the user can be difficult.
Researchers using this method have to develop strategies for eliminating the extra
processes from the record. These include sifting the data by hand (Bannon and
O’Malley, 1984), by a filter (Draper, 1984), or by supplementing the process data
with command-line data (Kraut et al, 1983).

Another major problem with recording processes only is the impoverished in-
formation produced. All options and arguments qualifying the command are lost,
since the record only indicates the processes executed. Yet these are critical for
understanding how a command is used. Also, commands handled directly by esh
cannot be detected, as they do not spawn new processes (eg Draper, 1984). Further,
the use of aliases and history use is not noticed, since processes are created only

after the line has been expanded.

A final problem stems from the difficulty of handling processes generated from
user-written programs or scripts that are not part of the standard UNIX library.
These are surely important, for UNIX encourages users to supplement system soft-
ware with personal software. Yet some previous studies simply ignored those pro-
cesses that were not within the system domain, usually by filtering out the unknown
ones from the process list (Draper, 1984). Still, noting processes gives a reasonable

approximation of the commands entered and executed by users.

2.2.2 Protocol analysis

Although some analysis of user activities is possible by studying traces, inferring

a user’s high-level intentions from a low-level record is always difficult. A better
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method of discovering intentions is to have users describe their activities as they are
performed, a technique called protocol analysts. Some ways that protocol analysis

has been used within UNIX are noted below.

Method 5: Annotation of traces. Users are asked to annotate periodically
a history list of commands with their intentions during a login session, perhaps
by thinking aloud or by textual inline comments. For example, Jorgensen (1987)
instructed subjects to talk aloud while performing an artificial task involving UNIX
mail. Their comments were recorded on audio tape and the important ones were
later merged with transcript logs collected by the second method. Similarly, talking
aloud into a tape recorder has been used for UNIX studies by Jennifer Jerrams-

Smith®.

The example below gives a portion of a textually annotated trace, as recorded

by Bannon et al (1983).

< Write Info Retrieval report. Its going to take a long time and be
snterrupted by other activities>

15 vi IRreport

< Interrupted to prepare a memo. Send note to gm about outcome>

16 snd gm

<back to IRreport>

17 fg

18 If HMI ...

Alternatively, the researcher may take a more active role and discuss the trace with

the user either during or after the session (see method 7).

An objection to this form of protocol analysis is its obtrusiveness. Because
of this, annotations are sometimes deferred until the end of an interactive session.

Perhaps more serious is that annotations may not reflect actual intentions. When

9J.Jerrams-Smith, AI Group, Philips Research Laboratories, Redhill Surrey, UK.
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comments are noted after a set of activities are performed, they may reflect post

hoc rationalizations of actions rather than real situations (Suchman, 1985).

Method 6: Constructive interaction. One way of removing the disruptive
effect of annotations is through constructive interaction, where natural discussion
between interacting participants of a study are used to reveal underlying processes
(Miyake, 1982). When applied to studies of human/computer interaction, cooperat-
ing users are videotaped solving a problem on a computer, although other resources
may be made available to facilitate discussion. This is a good way of revealing the
users’ mental model of particular concepts, especially when one or both participants
are discussing a topic they do not fully understand (O’Malley, Draper and Riley,
1984; Suchman, 1985).

In contrast to regular thinking aloud (fifth method), Jorgensen (1987) noted
that sessions involving constructive interaction were “more lively, and that far more
points were elicited spontaneously.” He also suggested that subjects were encour-
aged to continue their tasks by the presence of their colleagues. On the down side,
he reported that the mixing of two individual lines of thought into one sometimes

produced a confusing picture of events.

Method 7: Interviews and questionnaires. A simple method of eliciting
knowledge about the high-level intentions of a user is through questions asked be-
fore or after he performs his task!®. A group of users may be queried on paper
(questionnaires) or verbally (interviews) for their views on the system. For exam-
ple, Sutcliffe and Old (1987) used a questionnaire to elicit preliminary information
on user experiences, attitudes and knowledge with UNIX, and the typical tasks

performed. Command traces were then logged through the fourth method above.

10Since they are not performed during the task, interviews and questionnaires are not, strictly
speaking, methods of protocol analysis.
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Name Sample | Total number | Number of command
size of command | lines excluding errors

lines total | mean | std dev

Novice Programmers 55 77423 | 73288 | 1333 819.8
Experienced Programmers 36 74906 | 70234 | 1950 1276.0
Computer Scientists 52 125691 | 119557 | 2299 2022.9
Non-Programmers 25 25608 | 24657 986 1155.6

[ Total [ 168 ] 303628 | 287736 | 1712 | 1498.8 |

Table 2.1: Sample group sizes and statistics of the command lines recorded

These were annotated in a set of follow-up interviews where users were asked to

verbalise their recorded task sequences. Sutcliffe and Old mention that system logs

proved the most valuable of the three methods.

2.3 Data collection for the current study

In this study, command-line data was collected from users of the UNIX ¢sh com-

mand interpreter The selection and grouping of subjects, and the method of data

collection, are described below.

Subjects. The subjects were 168 unpaid volunteers. All were either students or

employees of the University of Calgary.

Subject use. Four target groups were identified, representing a total of 168 male

and female users with a wide cross-section of computer experience and needs. Salient

features of each group are described below, while the sample sizes (the number of

people observed) are indicated in Table 2.1.
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Novice Programmers. Conscripted from an introductory Pascal course, these had
little or no previous exposure to programming, operating systems, or UNIX-
like command-based interfaces. Such subjects spent most of their computer

time learning how to program and use the basic system facilities.

Ezperienced Programmers. Members were senior Computer Science undergradu-
ates, expected to have a fair knowledge of programming languages and the
UNIX environment. As well as coding, word processing, and employing more
advanced UNIX facilities to fulfill course requirements, such subjects also used

the system for social and exploratory purposes.

Computer Scientists. This group, comprised of faculty, graduates and researchers
from the Department of Computer Science, had varying experience with UNIX,
although all were experts with computers in general. Tasks performed were
less predictable and more varied than other groups, spanning advanced pro-
gram development, research investigations, social communication, maintain-
ing databases, word-processing, satisfying personal requirements, and so on.

Non-programmers. Word-processing and document preparation was the dominant
activity of this group, made up of office staff and members of the Faculty of
Environmental Design. Little program development occurred — tasks were
usually performed with existing application packages. Knowledge of UNIX

was the minimum necessary to get the job done.

Since users were assigned to subject groups only through their membership in
identifiable user groups (eg Computer Science graduate students), their placement in
the categories above cannot be considered strictly rigorous. Although it is assumed

that they generally follow their group stereotype, uniform behaviour is not expected.

Instructions to subjects. As part of the solicitation process, subjects were in-

formed verbally or by letter that:
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e data on their normal UNIX use would be monitored and collected at the
command line level only;

e the data collected would be kept confidential;

e any public reference or dissemination of the data and derived results would
guarantee anonymity, unless explicit permission was given by the subject to
do otherwise;

e at any time during the study period the subject could request that data col-
lection stop immediately;

e there would be no noticeable degrading of system pierforma.nce;

e if requested, data collected from a subject would be made available to him or

her.

Appendix A includes a typical information sheet provided to subjects. Subjects
did not require nor did they receive any additional instructions during the actual
study period. No subject asked to be withdrawn from the experiment, and no-one

asked to see their personal data.

Apparatus. A modified ¢sh was installed on three VAX 11/780’s located in the
Department of Computer Science and one VAX 11/750 in the Faculty of Environ-
mental Design, both within the University of Calgary. Many different terminals
were available to participants, most which were traditional character-based VDU’s.
In addition, Corvus Concept workstations running the Jade Window Manager were
available to members of the Experienced and Computer Scientist groups (Green-
berg et al, 1986). This workstation allowed users to create many “virtual terminal”

windows, each running esh, on a single screen.

Method. Command-line data was collected continuously for the four months be-
tween February 1987 through June 1987 from users of a modified Berkeley 4.2 UNIX

csh command interpreter (Joy, 1980). From the user’s point of view, monitoring
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Code | Description Example
Login session record
S Start time of the login session S Fri Feb 6 15:54:25 1987
E End time of the login session E Fri Feb 6 17:25:01 1987
Command line record
C The line entered by the user Cls-a
D The current working directory D /user/greenberg/bin

A The alias expansion of the previous | A lIs —a
command (if any)
H The line entered had a history ex- | H True
pansion in it (True or Nil)
X The error detected in the line by | X N 10
csh(if any). A following letter and
number code indicates the cate-
gory and actual error type.

Table 2.2: Trace information annotated by the modified esh

was unobtrusive — the modified command interpreter was identical in all visible
respects to the standard version. The total number of command lines recorded per

group are listed in Table 2.1.

Data was collected by the third method of Section 2.2.1 — recording lines
expanded by csh. Table 2.2 lists the trace information annotated by the modified
csh. Login sessions are distinguished by a record that notes the start and end
time of each session (the ‘S’ and ‘E’ fields in the Table). Command lines entered
during this period are then listed in following records, each annotated with the
current working directory, alias substitution (if any), history use and error status.
The final command line accepted by ¢sh, including history expansions and ignoring
editing operations that form the line, is recorded in the ‘C’ field. The ‘D’ field
notes the directory the user was in when the command line was entered. The alias
expansion of the line is found in the ‘A’ field, while the ‘H’ field indicates whether or

not csh history helped form the line. System errors generated by csh are registered
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in the ‘X’ field. Although eleven categories and many sub-categories of errors are
annotated, the distinctions between them are not used in the current study. The
total and average number of command lines collected excluding these errors are

listed in Table 2.1

An example trace is given in Appendix B. Appendix C provides summary statis-
tics for each subject, which includes the number of login sessions, the command lines
entered, the different commands used, the csh errors noted, the times history was

used, and the different directories accessed.

Data Selection. If subjects did not log in at least ten times and execute at least
100 commands during the study period, their data was not considered. By these
criteria, 12 of the 180 original participants were rejected. Particular manipulations
of the data, the analyses performed, and the results obtained are described in later

chapters.

Motivation. Participants used UNIX as usual. Users were neither encouraged nor
expected to alter their everyday use of the system. As subjects had few reminders
that their command-line interactions were being traced, they were largely oblivious

to the monitoring process.

Availability of data. All data collected is available to — and has been used by
— other researchers. A research report describes its format, and includes a cartridge
tape of the data (Greenberg, 1988). The report and data is available from either
the Department of Computer Science, University of Calgary, or from the author.
To ensure the confidentiality promised above, data was massaged to remove the

identity of subjects.
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Problems. Due to implementation difficulties, the details of history directives are
not recorded. The altered csh indicates only that history has been used, and notes
the command line retrieved through history. It does not record the actual history

directive used to produce the modification.

Concluding remarks

This chapter argued that it is worthwhile to study data collected from everyday
use of UNIX. Previous methodologies used for capturing UNIX interactions were
examined, and the particulars of the method employed by the current investigation

were listed.

One difficulty of studying and analysing UNIX comes not from considerations
of methodology, but from personal biases of the scientific and user community. Be-
cause UNIX is so popular, and because reports of its deficiencies (and corresponding
remedies) are so numerous, it is perceived by some to be a “straw man” that is eas-
ily picked upon. A reaction to yet another UNIX study could be apathy. Yet all
UNIX investigations are not alike. The main purpose of this study, like a hand-
ful of others, is not to improve UNIX — it is too late for that. Rather, I assume
that UNIX investigations are best harnessed to illuminate fundamental properties
of human behaviour when using similar general purpose environments. If doubts
exists about generalization, the methodology may be applied to other systems for

empirical comparisons.

This study could have been performed on almost any other system with a rich
set of constructs. UNIX ¢sh was chosen for pragmatic considerations, and because

I believe its usage reflects that of other systems.



Chapter 3

Using Commands in Unix

This chapter examines how people use commands in command-based systems!.
Like previous work, it is based on an analysis of long-term records of user-computer
interaction with the UNIX ¢sh command interpreter, collected as described in the
previous chapter. The results of the major studies are re-evaluated, particularly
those of Hanson et al (1984) and Draper (1984), and some of the work is replicated.
Although the statistical results of the studies are supported, some of the conclusions

made by the original researchers are misleading.

The sections provide details of how people direct command-based systems in
terms of how individual commands are selected and the dependencies between these
commands. It is essential to take into account the fact that pooled statistics may
conceal important differences between individuals. As a consequence, the results
are analyzed by user and by identifying groups of similar users, as well as by pooling

data for the entire population.

For the current study, a command is the first word found in the command

line entered. Those lines that produced system errors were not considered. The

1Some of the findings in this chapter were first presented at the 3rd IFAC Conference on Man-
Machine Systems, Ouly, Finland (Greenberg and Witten, 1988b).
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first word is parsed by removing all white space at the beginning of the line and
counting all characters up to but not including the next white space or end of line.
The parsed word is almost always a true UNIX command or alias that invokes a
program or shell script. This method does not record all the UNIX commands used,
for an input line may contain more than one command (eg by redirecting input and
output with pipes, or by cascading separate command sequences). Still, it seems a

reasonable approximation.

3.1 Frequency distributions of commands for large

groups

Several investigators have examined the frequency of command usage by a user
population (Peachey et al, 1982; Kraut et al, 1983; Hanson et al, 1984; Ellis and
Hitchcock, 1986). All studies report results approximated by a Zipf distribution,
which has the property that a relatively small number of items have high usage
frequencies, and a very large number of items have low usage frequencies (Zipf,

1949; Witten et al, 1984).

A looser characteristic of this kind of rank distribution is the well-known 80-20
rule of thumb that has been commonly observed in commercial transaction systems
— 20% of the items in question are used 80% of the time (Knuth, 1973; Peachey
et al, 1982)%. In measurements recorded from a UNIX site, Hanson et al (1984)
report a similar trend — 10% of the 400-500 commands available account for 90%
of the usage. These models also hold for the frequency distribution of all help
requests made for particular commands through the UNIX on-line manual®— §5.3.1

(Greenberg, 1984).

?This rule is recursive, as the 80 — 20 also applies to the most active 20% (Knuth, 1973).

SEvery command in the UNIX system has a corresponding manual entry, invoked by typing man
<command>.
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Figure 3.1: The normalized command frequency, compared with Zipf

The current study supports these observations. Figure 3.1 illustrates the com-
mand frequency distribution for each of the four different user groups described in
the previous chapter. The frequency distribution is not a probability distribution.
It gives the relative frequency between commands, rather than the actual frequency
of use. The vertical axis shows the number of command invocations, normalized to
one for the most frequent, while the horizontal axis shows the rank ordering of com-
mands, with the most frequent first. Only the twenty highest ranking commands
for each group are shown. For exa.inple, the most frequently selected command by
the experienced programmer group is positioned first in the rank or;ier, and is used
at a relative frequency of 1. The second most selected (rank order of two) is used
at a relative frequency of 0.94, the third at 0.49, the fourth at 0.35, and so on down

the list. The Zipf curve, normalized in the same way and calculated as y = z~1,
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is illustrated by the smooth line in the Figure, and seems to provide a plausible
model for the observed frequencies. For each of the four user groups, 10% of the
commands used accounted for 84-91% of all usage (cf Hanson’s 10%/90%)*%. This
ratio seems independent of both the actual number of different commands used by

a group and the size of the sample group.

3.2 Usage frequency of particular commands be-

tween groups

Even though frequency statistics of different groups are modeled by the Zipf distri-
bution, it is worth asking whether commands retain their same rank order between
different user groups. If they do, then a command used frequently by one group
will have the same relative usage in another. As will be seen, this is not necessarily

the case.

Table 3.1 gives the data from which Figure 3.1 is drawn. Each column shows
the 20 most frequently used commands by each group (including data reported
by Hanson et al, 1980) and also gives the total number of commands executed, the
number of different commands executed, and the number of users sampled. The few
common high-frequency commands across the five user groups are mostly concerned
with navigating, manipulating and finding information about the file store (such as
Is, rm and cd). Comparison of other commands capture the differences between
the groups. The emphasis on programming by both our novice and experienced
subjects is reflected by the various compilers used (piz and pi for Pascal, make for
“C”, and ada). The non-programmers, on the other hand, seem concerned with

word processing (as indicated by the relatively heavy use of nroff and spell). The

4 Although similar results seem to apply to the top 10% of the command set, the recursive property
of the rule cannot be checked reliably. Limits are quickly reached over the relatively small number
of remaining commands.
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type of editor also indicates group differences — v1 and ed are chosen by Hanson’s
group, while emacs, e, umacs, fred, and ed have varying degrees of use within the

others.

Grouping all subjects into one category also illustrates the danger of using a
population stereotype to approximate the activity in each group. As shown by
column 1 of Table 3.1, which pools all subjects of this study into one large sample,
some high-frequency commands are not used frequently (if at all) by all groups (eg

piz, umacs).

Even though the Zipf form of the frequency distribution remains intact between
different groups of a population (Figure 3.1), the rank order of commands is not,

in general, maintained.

3.3 Frequency distributions and command over-

lap between individuals

The extent to which the usage statistics of an individual resembles those of a group
of like people is considered next. Does the Zipf distribution characterize each user’s
command interactions, or is it just an artifact of data grouping? Do individuals
within a group invoke the same set of commands? One might expect the variation

between users to be even greater than that between groups.

In the previously-mentioned study of the UNIX on-line manual, the frequency
distribution of help requests was analysed between individuals (Greenberg, 1984).
In general, users constrained themselves to relatively small subsets of the requests
possible — they never accessed a great many potential entries. Moreover, when
users’ subsets were compared, the intersection between their elements was small and
the frequency of access of the common elements varied considerably across users.

Greenberg (1984) suggested that although individual help requests seem to follow
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the Zipf distribution in broad outline (but not in detail), it is not possible to make
any but the grossest generalization from a population perspective of how individual
users will access particular items within a system. This study is summarized further

in Section 5.3.1.

The same is true for command line interactions. While studying the nature of
expertise in UNIX, Draper (1984) estimated the times a command was invoked by
noting the UNIX processes spawned during each user’s interaction with the system
(method 4 — §2.2.1)%. He suggested that the overall trends observed are representa-
tive of real command use. First, out of a vocabulary of the 570 commands available
to the population, only 394 (70%) were used at least once. Individuals knew the
system to varying degrees — there was a fairly smooth distribution of vocabulary
size up to the maximum of 236 commands known to one user. Characteristics of the
overlap between individuals’ vocabularies were similar to those found by Greenberg
(1984). Generally, very few of each individual’s commands were used by all the
population, a few more shared to some degree by other users, and the rest used by
him or her alone. Draper concluded that vocabulary is a poor measure of expertise,

and that each user is actually a specialist in a particular corner of the system.

Sutcliffe and Old (1987) pursued the matter further in a similar study by rank-
ing commands by popularity. They established that the top twenty commands
accounted for 73% of the overall number recorded. The remaining 27% accounted
for 236 further commands. However, these results may be misleading, for heavy use

of a command by an individual will skew the distribution.

Even though Draper’s method of data collection differed, this study corrob-
orates his conclusions. The first ten rows of Table 3.2 show the proportion of
commands shared by the users comprising a particular group. The following rows

show the proportion of commands that are not shared, the total number of different

5Sutcliffe and Old (1987) employed the same method to replicate portions of Draper’s work. Their
findings are similar throughout.
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commands entered by each group, and the average number of different commands
per user. Table 3.3 lists the twenty most shared commands for each user group.
For example, only 0.2% (se 3) of the 1307 different commands used by all subjects
were shared by more than 90% of them (these were basic file manipulation com-
mands for listing, removing and copying files, as shown in column 1 of Table 3.3).
More surprisingly, fully 92% of all commands were shared by fewer than 10% of the
users, and 68.8% of all commands are not shared at all. These differences are much
stronger than those suggested by Draper’s group (the last column of Table 3.2),

probably due to inaccuracies in his estimate of command use.

Tables 3.2 and 3.3 also reveal that categorizing like subjects into groups changes
the figures less than one might expect. For example, even though individuals in the
novice group used the system for solving the same programming assignments and
were taught UNIX together, there was relatively little intersection of their vocab-
ularies. Except for a handful of commands, users — even those with apparently
similar task requirements and expertise — have surprisingly little vocabulary over-

lap.

3.4 Growth of the command vocabulary

In the previous discussion, a user’s vocabulary was taken to be the set of commands
he invoked over a fixed period of time. But how dynamic is the command vocabulary
of a user? Do users learn new commands sporadically or uniformly over tithe? Are
new commands acquired continually, or do users stop acquiring new vocabulary

after some initial period?

Sutcliffe and Old (1987) suggest that the size of user’s command set grows
with their system usage. They found a significant correlation between the over-
all command use by the user and the number of unique commands he employed.

This evidence is suggestive but does not actually observe vocabulary acquisition
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% of users Proportional Number of Commands Shared (%)
sharing a All Novice Exper’d | Computer Non Draper’s
command || Subjects | Program- | Program- | Scientists | Program- Group
mers mers mers
100-91 0.2 2.7 2.2 0.9 1.5 0.5
90-81 0.3 0.8 0.7 0.8 0 2.0
80-71 0.3 0.4 1.0 0.8 2.0 3.1
70-61 04 0.8 1.0 0.6 0.5 3.3
60-51 0.5 1.5 2.2 1.9 4.6 3.1
50-41 0.5 2.7 1.9 1.1 3.1 6.1
40-31 1.2 0 1.2 14 4.6 6.1
30-21 1.5 9.1 41 4.4 6.6 8.6
20-11 3.0 12.1 8.9 6.5 34.7 17.8
10-0 92.0 70.1 76.9 81.7 42.4 49.5
not shared 68.8 55.3 58.5 63.1 42.3 | unknown
Total number of unique commands
I 1307 | 264 | 588 | 851 | 196 || 394
Mean number of unique commands per subject and standard deviation
mean 50.3 27.8 66.4 72.1 29.6 || unknown
std dev 32,5 18.0 | 24.9 | 32.7 20.1 || unknown

Table 3.2: Number of users per command
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The 20 Most Shared Commands

All Novice Experienced Computer Non-

Subjects Programmers | Programmers Scientists | Programmers
com- # of | com- # of | com- # of | com- # of | com- # of
mand  users | mand users | mand users | mand  users | mand users
ls 168 | lpr 55 | cd 36 | 1s 52 | Is 25
rm 164 | ls 55 | Is 36 | rm 51 | rm 24
cp 154 | pix 55 | more 36 | cat 50 | emacs 23
lpq 149 | rm 55 | Ipq 35 | cd 50 | cd 19
lpr 144 | script 55 | man 35 | mv 49 | cp 19
cd 141 | cp 53 | cat 34 | cp 48 | nroff 18
cat 140 | lIpq 53 | cp 34 | mail 48 | Ipq 17
mail 131 | umacs 47 | lpr 34 | man 48 | ps - 16
more 130 | cat 46 | mail 34 | mkdir 46 | Ipr 14
man 124 | more 42 | mkdir 34 | ftp 44 | more 14
who 117 | cd 36 | rm 34 | Ipq 44 | logout 13
mv 114 | mail 36 | ftp 33 | ps 44 | mail 13
emacs 112 | limits 32 | ps 32 | pwd 44 | man 13
mkdir 104 | who 30 | mv 31 | who 44 | hpq 12
ps 103 | man 28 | who 31 | 1g 42 | mv 12
fg 95 | pi 28 | ruptime 30 |e 41 | spell .12
script 95 | logout 26 | fg 29 | emacs 41 | who 12
pwd 92 | help 24 | kill 28 | lpr 41 | kill 11
ftp 91 | lquota 23 | limits 28 | rlogin 40 | pwd 11
logout 88 | emacs 23 | rwho 28 | kill 38 | cat 10
sample sample sample sample sample
size 168 | size 55 | size 36 | size 52 | size 25

Table 3.3: The 20 most shared commands for each user group
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Figure 3.2: Command vocabulary size versus the number of command lines entered
for four individuals

by particular users. Figure 3.2, on the other hand, illustrates the acquisition of
vocabulary over time for four typical users from the current study, one from each
group. The vertical axis is vocabulary size, while the horizontal axis represents the
number of command lines entered so far. At first, the vocabulary growth rate seems
to be around 5% — each user shown here has a repertoire of 43 — 64 commands
after 1000 full command lines had been entered. But the growth rate drops quickly
afterwards to 1% or less. The later part of the curve is probably a better reflection
of vocabulary acquisition, for the first part does not necessarily reflect a learning

curve. Since users already knew a command subset before monitoring began, un-
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usually high initial activity is expected as known commands are being noticed for
the first time. Another explanation is that the curve just represents the arrival

probability of infrequent commands whose distribution patterns follow Zipf.

Although Figure 3.2 suggests that the selected subjects have a vocabulary
growth rate which is proportional to the relative sophistication of the group, analy-
sis of variance shows no statistically significant differences between the mean rate of
each group. However, these rates were determined by counting the new commands
acquired between 1000 and 2000 command entries, which meant excluding those

subjects who did not have at least 2000 entries.

Figure 3.2 also reveals how users acquire new commands. Although there are
short periods where vocabulary growth is relatively uniform, there are also long
periods of quiescence followed by a flurry of activity. As might be expected, these
flurries were sometimes associated with new tasks. For example, the sharp increase
in new activity for the Scientist subject after she had entered 6000 command lines all
involved high-quality typesetting (Figure 3.2). However, there are other instances

where no such task association is evident.

In general, individuals have small command vocabularies and acquire new ones
slowly and irregularly. Given the patterns observed, the Zipf distribution becomes
a questionable model of individual command use. Perhaps all that can be said is

that the distribution of command use is very uneven.

3.5 Relations in command sequences

The previous discussion says nothing about possible relations and dependencies be-
tween commands. Through a multivariate analysis of UNIX commands invoked by
the site population, Hanson et al (1984) examined the interaction effects between

commands. Their results show statistically significant relationships between certain
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command chains; the relations between the 50 most frequently used commands are
_shown in Figure 3.3. Each ball in the network represents a command, its size in-
dicates the usage frequency, and the arrow indicates the significant dependencies.
One dimension of these relationships is modularity. Some commands, such as Is, are
core commands — they are used frequently and are surrounded by many other com-
mands (ie highly modular and independent). Others are not; they are surrounded
by specific command sequences. An example of the latter is ¢p which is generally

preceded by itself and followed by chmod.

Commands are also related by functional clusters, such as editing, process man-
agement, orientation, social communication, and so on (Hanson et al, 1984), which
may not be revealed by statistics. Consider a user who prints files in several ways: a
short draft may go to the screen; a long listing to a lineprinter; and a final version to
a laser printer. Although these non-sequential and possibly rarely invoked actions
are related by function in the user’s mind, it is unlikely that such a relationship
would appear from a multivariate analysis of commands like Hanson’s. Addition-
ally, it is a mistake to assume that all dependencies revealed by analyzing a group of
users will hold for an individual, since each person uses their own particular subset

of commands — §3.3.

3.6 Discussion

The previous sections reviewed statistics from studies of how people use commands
in command-based systems. The purpose behind most of the original works was to
derive implications for the interface design. Yet it is clear that statistics produced
by pooling users into one large sample are not necessarily indicative of an individ-
ual’s statistics. As a consequence, some of the conclusions made by the original

researchers are misleading.

First, the rank frequency distribution of a population should not be applied to
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UNiIX COMMAND SEQUENCES

—— —= < 005> .0001

Ball diameters are proportional to stationary probability. Lines indicate significant
dependencies, solid ones being more probable (p < .0001) and dashed ones less
probable (.005 < p < .0001).

Figure 3.3: Sequential structure of Unix command usage, from Figure 4 in Hanson
et al (1984)
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an individual. Careful interpretation must be used before following the advice of
one researcher, who says “the Zipf distribution may prove to be a useful model of
user behaviour in studying command usage” (Peachey et al, 1982). It is all to easy
to read into such a statement two implications. First, the Zipf model is a reasonable
estimate for a single person’s frequency of command use. Second, the rank order
derived ffom a population applies to an individual. These are certainly not the
case. Next, and more specifically, Hanson et al recommend that commands used

frequently by the population should be treated differently:

...the uneven distribution of command use suggests that computer sys-
tems should find ways to increase the prominence and ease of access to

frequently used commands.

— Hanson et al, 1984

Given the results of the previous sections, this should more correctly read “...to
increase the prominence and ease of access to an sndividual’s frequently used com-
mands”. The slight wording difference is crucial. Whereas the original conclusion
implies that command prominence may be judged and treated generically, the cor-

rected version would require a personalized approach.

Second, it is a mistake to assume that users have similar vocabularies. Hanson
et al (1984) went on to say that computer systems should be organized with sets of
frequently used core commands, implying that these sets are reasonably large and
that core commands are shared. But the findings detailed in Section 3.3 refutes
this prescription in two ways. First, individuals have very few common commands.
Second, people may use different resources for implementing those few actions they
have in common, eg different editors and compilers for text processing and program-

ming respectively. Sutcliffe and Old explain these phenomena.

Considering UNIX is a system rich in functionality but relatively un-

structured, it is not surprising [that] users have created a variety of tasks
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with the tools available ... great creativity is exercised in implementing

a rich diversity of tasks.

— Sutcliffe and Old, 1987

Perhaps the few shared and frequently used commands could best be handled as
exceptions, possibly by bundling them into a finely-tuned application. For example,
the extremely heavy use by all users of the basic file manipulation commands, as
noted in Tables 3.1 and 3.3, suggests that users require not only constant feedback
on the contents of the current directory, but some simple tools for manipulating
them as well. Feedback can be provided by keeping a permanent display of the
current files on view, a simple task given a window-based environment. If screen
real-estate is a concern, transient windows popped up by a mouse press may be
used instead (Greenberg et al, 1986). These findings also support the inclusion of
the more sophisticated file browsers that are found in many modern programming

environments.

Third, the relations between commands seen by Hanson’s pooled statistics do
not necessarily apply to individuals— §3.5. The dependencies and clustering ob-
served may result from a small handful of people using a set of related commands
frequently, and not from common use of the same commands by every person. Con-
sider the recent findings of Sutcliffe and Old (1987). They replicated and extended
Hanson’s work by eliminating all dependencies but those that were significant for
at least five or more individual users (¢f Figure 3.3). The resulting network was
a fragmented subset of the population network. Sutcliffe and Old concluded that
only a small number of commands were used in common tasks by a majority of

individuals. Hanson, then, has insufficient evidence for suggesting that

...it would be practical to organize the commands around task-related
menus. Commands that are likely to be used in one context may also

be needed in others.
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— Hanson et al, 1984

To their credit, Hanson et al also state that such menus are best viewed as default
organizations which, due to individual differences, should be customizable by the

user.

In another area, many intelligent tutoring systems and the models they employ
are motivated by possibly incorrect assumptions of command usage. Consider Heck-
ing (1987), for example, who quotes the statistic “people use only 40% of all UNIX
functions” (¢f Draper’s 70%— §3.3). He claims that this situation is a poor one
and advocates intelligent help systems as a remedy. Yet Draper (1984) contradicts
this claim by suggesting that users are best viewed as specialists in their own corner
of the system. Next, consider how expertise models are formed. One approach for
deciding what knowledge should be presented to the user employs an “expert” and
a “student” model (Sleeman and Brown, 1982). For example, the differential model
of Burton and Brown (1982) bases its instructional presentation on the differences
between a student’s and an expert’s behaviour, and has been advocated in the UNIX
domain (Chin, 1986). Desmarais and Pavel (1987) use a similar model to generate
knowledge structures of commands. These structures indicate the likelihood that
an observed command has been mastered by a person, and are used to infer what
other commands he might know. Another expertise-based strategy is employed by
the well-known UNIX Consultant, which stereotypes users into one of four levels of
expertise and tailors its advice to them accordingly (Chin, 1986). But the above
approaches are ill-founded. Experienced users of general purpose environments such
as UNIX do not share particular command sets. Excepting the very few in common,
it is not possible to decide what commands should be offered to the student. Con-
sequently, the differential model is not necessarily appropriate for teaching people

how to use general-purpose computer systems.
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Concluding Remarks

This chapter has surveyed and replicated studies in several areas involving user
interactions with command-based computer systems. The trends observed are pre-
sumed to be shared by most command-based interactions; they are not just artifacts

of the UNIX implementation. The major findings follow.

1. The rank frequency distribution of command usage by groups of like and

unlike users is approximated by a Zipf distribution.

2. With a few exceptions, the frequency of use of most commands differs between

groups — rank order is not maintained.

3. There is little overlap between the command vocabulary of different users,

even for those with apparently similar task requirements and expertise.

4. Individuals have small command vocabularies, and new commands are ac-
quired slowly and irregularly. Consequently, the Zipf model may not be an

accurate estimate of an individual’s behaviour.

5. Some commands cluster around or follow others in statistically significant

ways, although these dependencies vary from one individual to another.

These conclusions tell us more about individual differences than about similar-
ities, and they are not as useful as one might hope. Although they do refute some
previously held beliefs, the conclusions do not suggest any general new directions

in interface design.

I believe that these studies place undue attention on command usage. The
reductionist approach may have been pushed too far. Commands, after all, are
only the verbs of the command line. They also act on objects, are qualified with
options, and may redirect input and output to other commands. These other facets
are surely important and should not be ignored. For example, UNIX lines sharing

the same initial command may have completely different meanings. Consider the
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two command lines sort file and sort file | unig -c | sort -r. The first just sorts
a file, while the second produces a frequency count of the identical lines in the
file. Another problem is that the same command line may satisfy rather different
intentions. Ross et al (1985) give an example of one person invoking the UNIX
command line Is -l to distinguish between ordinary files and directories, whereas
another person could use the same sequence to discover file creation dates and sizes.
Accordingly the UNIX usage data, analyzed in this chapter in terms of commands,

is re-analyzed in Chapter 5 in terms of command lines.

How does all this fit into tool use, the theme of Chapter 1?7 If only commands
are considered to be tools, then the tool set chosen by each user does not seem
particularly rich. Few are selected, and of these only a handful are used to any
great extent. Alternatively, if commands are viewed as simple building blocks used
to manufacture more sophisticated or specialized tools — perhaps by reshaping
(setting options), combining them together (redirection, pipelines and sequencing),
or by varying the objects they deal with — then every unique command line entered
can be considered a new tool. The latter view is espoused by the remainder of this

document.

I will argue that, as with tools, the work environment should support and
enhance the way people use complete command lines. Recently used submissions
should be available for reuse, and people should be able to organize their command
lines by function and by task. The next four chapters of the dissertation consider the
first strategy — reuse. Afterwards, Chapter 8 considers the ways people organize
their activities, while Chapter 9 describes an implemented design of a user support
tool that allows people to reuse and store command lines (as they do tools) through

a workbench metaphor.



Chapter 4

Techniques For Reusing Activities

It is evident that users often repeat activitiesb they have previously submitted to
the computer. These activities include not only the commands they choose from
the many available in command-driven systems (Chapter 3), but also the complete
command line entry. Similarly, people repeat the ways they traverse paths within
menu hierarchies, select icons within graphical interfaces, and choose documents
within hypertext systems. Often, recalling the original activity is difficult or tedious.
For example, problem-solving processes must be re-created for complex activities;
command syntax or search paths in hierarchies must be remembered; input lines
retyped; icons found; and so on. Given these difficulties, potential exists for a

well-designed “reuse facility” to reduce the problems of activity reformulation.

But most system interfaces offer little support for reviewing and reusing previ-
ous activities. Typically they must be completely re-typed, or perhaps reselected
through menu navigation. Those systems that do provide assistance offer ad hoc
“history” mechanisms that employ a variety of recall strategies, most based on the
simple premise that the last n recent user inputs are a reasonable working set of
candidates for re-selection. But is this premise correct? Might other strategies

work better? Indeed, is the dialog sufficiently repetitive to warrant some type of

54
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activity reuse facility in the first place? As existing reuse facilities were designed by
intuition rather than from empirical knowledge of user interactions, it is difficult to

judge how effective they really are or what scope there is for improvement.

The next four chapters of this document explore the possibility of people reusing
(as opposed to re-entering) their previous activities. This chapter surveys and
provides examples of interactive reuse facilities that allow users to recall, modify,
and re-submit their previous entries to computers. Although the idea is simple —
anything used before can be used again — it is only effective when recalling old
activities is less work for the user (cognitively and physically) than submitting new
ones. As we shall see in this chapter, the main differences between reuse facilities
arise from their ability to offer a reasonable set of candidates for reselection, and

from the user interface available to manipulate these candidates.

For example, consider a user who has submitted n activities to the system (say
n > 100) and whose next activity is identical to a previous one. An optimal reuse fa-
cility would be an oracle that correctly predicted when an old action could be reused
and submitted it to the system in the user’s stead. In contrast, a non-predictive
system that merely presents the user with all previous n submissions would be less
effective, for the user’s overhead now includes scanning (or remembering) the com-
plete interaction history and selecting the desired action. Real systems are situated
between these extremes. A small set of reasonable predictions p is offered to the
user (p << n), sometimes ranked by probability. The intention is to make the act
of selecting a prediction less work than entering it anew; the metric for “work” is,

of course, ill-defined.

Reuse facilities have loose analogies in non-computer contexts. A cook can
explicitly mark preferred recipes by using bookmarks (n = total recipes used, p =
total bookmarks). “Adaptive” marking takes place by the book naturally opening
to highly used locations through wear of the binding and food-encrusted pages. Or

consider the audiophile who places records just listened to at the top of the pile.
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Assuming that certain records are favoured over others, popular records tend to
remain near the top of the stack and unpopular ones near the bottom. A carpenter’s
workbench has an implicit reuse facility — the work surface is large enough to leave

recently used tools on hand.

Three kinds of reuse facilities are distinguished in the following sections. The
~ first covers history mechanisms that let users manipulate a temporally-ordered list
of their interactions. The second, adaptive systems, use dynamic models of previ-
ous inputs to predict subsequent ones, which are then made available to the user.
Finally, programming by ezample is concerned with reuse and generalization of long

input sequences.

The three subsequent chapters will assume an experimental approach to reuse.
Analyses of data and discussions are focused toward seeing how people repeat their
activities on UNIX and other systems, and the results are distilled into design prin-

ciples for empirically-based reuse facilities.

4.1 History Mechanisms

History mechanisms are based upon the assumption that the last p submissions
provide a reasonable set of candidates for reuse. This notion of “temporal recency” is
cognitively attractive. Since users generally remember what they have just entered,
they can predict effectively the offerings available. Little time is wasted reviewing

the list of candidates only to discover that the desired item is missing.

History mechanisms are by far the most common reuse facility available, and
are implemented across diverse systéms in a variety of flavours. Four fundamentally
different interaction styles are described in this section: glass teletypes; graphical
selection; editing transcripts; and bookmarks. The first three provide a reuse facility

for command-line interfaces, while the last illustrates its application to hypertext
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systems.

4.1.1 History in glass teletypes

Before graphical interfaces came into vogue, dialogues were simple command-line
systems designed for the teletype — the VDU being a fixed viewport into a virtual
roll of paper. Two functionally rich history systems designed for such physically
limited “glass teletypes” are the UNIX c¢sh and the INTERLISP-D Programmer’s
Assistant. In both systems, old commands are retrieved by “history” directives,

themselves commands interpreted in a special way.

UNIX c¢sh maintains a record of user inputs, where every string entered on the
command line is placed on a numbered event list (Joy, 1980). Special syntactic
constructs allow previous events to be recalled, either by position on the event list
(relative or absolute), or by pattern-matching. Actions on recalled events include
viewing, re-execution, retrieval of specific command line words, and text substitu-
tion. Although the set of predictions is unbounded in size, it is practically small
— users forget all but the last few items, and reviewing a long list is cognitively

unattractive.

Figure 4.1 illustrates a possible event list and a few examples of ¢sh history in
use. The inputs in the left column are translated by esh to the actions shown in the
middle. The translation is described in the column on the right. As the examples
illustrate, the syntax is quite arcane, and probably deters use of the more powerful
features. Additionally, since the event list is generally invisible — snapshots of its
current state are displayed only by special request — it is difficult to refer to any

but the last few events.

Another functionally powerful history mechanism is the Programmer’s Assis-
tant, designed for the INTERLISP-D programming environment (Teitelman and

Masinter, 1985; Xerox, 1985). Although INTERLISP-D is window-based, the top-
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Example Event List
9 mail ian
10 emacs figl fig2 fig3
11 cat figl
12 diff fig*
Examples and Results of History Uses
User Input Action Description
] diff fig* Redo the last event
11 cat figl Redo event 11
1-2 cat figl Redo the second event from last
!mai mail ian Redo last event with prefix “mail”
1%ian? mail ian Redo last event containing the string “ian”
! fig3 diff fig* fig3 | Append “fig3” to the last event and redo
AdiffApage | page fig* Substitute “page” for “diff” in the last command
:p diff fig* Print without executing the last event
page !10:1-2 | page figl fig2 | Include the 1st and 2nd argument of event 10
and redo

Figure 4.1: Examples of the UNIX ¢sh History Mechanism in use

level “LISP listener” window resembles a glass teletype. The Programmer’s Assis-

tant history mechanism improves upon that of UNIX esh. More than one event

can be retrieved and manipulated at a time, iteration and conditional specification

are allowed, items can be edited, effects of previous entries may be undone, and so

on. In normal use, events are selected and processed by special command directives

entered in the LISP listener window. These tend to be verbose. For example, the

request USE cons FOR setq IN -1 will replace the string “setq” by the string “cons”

in the previous command. Figure 4.2 shows a sample dialog in the window labeled

“Interlisp-D Executive”, where events 85 and 87 make use of the Programmer’s As-

sistant. As with esh, neither duplicates nor erroneous statements are pruned from

the event list.
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4.1.2 History through graphical selection

The technology of terminals has evolved since the early glass teletypes. All but
the cheapest terminals now have positional control of text on the screen, and high-
resolution graphics terminals with locators are common. Interaction styles have
also progressed from text-oriented menus and forms to locator-oriented graphical
systems running within windows (Witten and Greenberg, 1985). Within the latter,
history mechanisms have been extended to present a (possibly transient) menu
of previous events. Items are selected and manipulated with a locator, usually a
mouse. In contrast to glass teletype history, predictions are offered by presenting

them explicitly on the screen.

One example is HISTMENU, which provides a limited yet simple way of access-
ing and modifying the INTERLISP-D Programmer’s Assistant history list (Bobrow,
1986). Figure 4.2 illustrates its use. Commands entered to the INTERLISP-D Ex-
ecutive window are recorded on the history list, part of which is displayed in the
History window (by default, the last 50 items are shown). Although the history
list itself is updated on every command, the window is only redrawn when the user
explicitly requests it. When pointed at with a mouse, items (which may not fit
completely in the narrow History window) are printed in the Prompt window. Any
entry can be re-executed by selecting it. Moreover, a pop-up menu allows limited
further action: items can be “fixed” (ie edited); undone; printed in full including
additional detail (the “??”); or deleted from view. The History window also has a

shrunken form, as shown by the icon in the Figure.

MINIT is another graphical package that combines command processing and the
history list into a single “window management window” (wmw) (Barnes and Bovey,
1986). MINIT differs from other systems in that only through this window can the
user send commands to the other ones. The wmw is divided into three regions.
The first is an editable typing line at the window’s bottom, where commands are

entered. Once entered, they are added to the second region which contains a scrol-
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betical or execution order. Although duplicate lines are eliminated, the user can
control whether a command entry which is repeated remains in its original position
on the execution-ordered list or is relocated to the end. A side effect of moving
recurrences to the end is that the most frequently used commands tend to cluster

around one another.

4.1.3 History by editing transcripts

Some systems do not have a command history mechanism per se, but provide similar

capabilities through editing the transcript of the dialog.

The glass teletypes described previously are actually more limited than pa-
per teletypes, for it is not possible to review text that has scrolled off the screen.
This limitation is exacerbated by high-speed terminal lines, for text appears and
disappears faster than it can be read. Although page-holding mechanisms that
stop scrolling after every screenful offer a palliative, the advantages of the original
paper teletype were finally realized when scrollable transcripts of the dialog were
maintained!. Unlike paper teletypes, these transcripts have potential as a history
mechanism, for text appearing previously can be pointed at and used as input to

the system.

In Apollo’s DOMAIN window system, for example, text appearing within spe-
cialized windows called “pads” can be copied and then pasted and edited in any
command input area (Apollo, 1986). Explicit history lists are not maintained except
as part of the scrollable dialog transcript. The trade-off here is evident. Although
any text in a pad is potentially executable, the mixing of previous input commands

with output probably makes useful candidates difficult to find.

1 An alternative solution to transcripts is to make every system facility responsible for formatting
its output appropriately. The tradeoff between the two approaches is discussed by Pike and
Kernighan (1984).
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A second system which encourages use of command history through editing is
emacs, an editing environment which provides multiple views of buffers through
tiled windows (Stallman, 1981). Although buffers typically allow users to view and
edit files, it is also possible to run interactive processes (or programs) within them.
In the Unipress implementation of emacs, it is a simple matter to call up a window
running UNIX esh (Unipress, 1986). All capabilities of emacs are then available —
commands may be edited, sessions scrolled, pieces of text picked up from any buffer

and used as input, and so on.

As a further variant, consider the zmacs editor running within the Symbolics
Genera LISP environment, which contains features of all history systems discussed
so far (Symbolics, 1985). Within the top-level Lisp Listener, zmacs extends the func-
tionality of emacs. Although used here primarily for entering and editing command
lines, previous inputs appearing within the transcript become mouse-sensitive. A
box appears around them as the mouse passes over them, while clicking one of
the three mouse buttons causes some action to occur. For example, pressing the
left button of the mouse over the old command line copies it into the input area,
which is then available for further editing. Other combinations of keys immediately
re-execute previous commands, copy arbitrary command words, show documenta-
tion, and so on. And zmacs explicitly remembers previous events on an event list.
Using the standard editing commands within the one-line input area, a user can
search, cycle through, and recall previous events. Alternatively, part or all of the

mouse-sensitive event list can be displayed within the Lisp Listener window.

4.1.4 Bookmarks in hypertext

While the above techniques deal only with command-line interfaces, history has also

been applied to data bases where items are retrieved through menu navigation.

There are many examples of systems and databases where users tend to retrieve
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items of information that have been accessed previously (Greenberg and Witten,
1985a). As with commands, the actual sets of items retrieved by different users
may be disjoint, overlapping or identical; while the frequency of repeated accesses
can exhibit high variation across users and across entries. History for hypertext
systems, for example, are based on the assumption that previously-read documents
are referred to many times. This assumption has been supported by a study of
man, the UNIX on-line manual — §5.3.1 (Greenberg, 1984). Each user frequently
retrieved the same small set of pages from the large set available, where sets dif-
fered substantially between users. By keeping a history list of the documentation
retrieved, users can avoid re-navigating the hypertext menu hierarchy for a previ-
ously viewed topic. Since items on the list can be viewed as place-holders in a large

document, they are known as “bookmarks”.

The Macintosh HyperCard is a hypertext facility that allows authoring and
browsing of stacks of information comprised of cards. Browsing cross links between
stacks and cards is usually accomplished by simple button or menu selections. Re-
cent is a bookmark facility within HyperCards that maintains a pictoral list of up
to the last 42 unique cards visited (Figure 4.3). Each picture is a miniature view
of the card, placed in the list by order of first appearance?. The last card visited
is distinguished by a larger border, as illustrated by the second miniature in the
first row of the Figure. A pull-down menu option pops up the recent display, and
old cards are revisited by selecting its miniature from the list (Good et al, 1987).
When more than 42 unique items have been selected, the first row of seven items is
cleared and made available for new ones (even though a card in the first row may

have recently been selected).

The Symbolics environment includes a very large on-line manual viewable with

the Document Examiner — a window-based hypertext system (Symbolics, 1985).

2Figure 4.3 is a fairly accurate representation of the screen. As these miniature pictures are of
surprisingly poor quality, the value of the current recent implementation is questionable. However,
this problem could be overcome by a higher-resolution display or by including a “magnifying glass”.
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Figure 4.3: The HyperCard Recent screen
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4.2 Adaptive systems

Adaptive systems use dynamic models of a user’s previous inputs to predict subse-
quent ones, which are then made available to the user. By this definition, history
mechanisms are also adaptive, since the model maintained and presented is just
the time-ordered record of submissions. In this section two other types of adaptive
systems are described. Both employ frequency-based, rather than recency-based,

models.

4.2.1 Dynamic menu hierarchies

It is possible to devise interactive menu-based interfaces that dynamically recon-
figure a menu hierarchy so that high-frequency items are treated preferentially, at
the expense of low-frequency ones. This provides an attractive way of reducing the
average number of choices that a user must make to select an item without adding
additional paraphernalia to the interface (Witten et al, 1984). Consider a telephone
directory where the access frequencies of names define a probability distribution on
the set of entries (Greenberg and Witten, 1985a) Instead of selecting regions at
each stage to cover approximately equal ranges of names, it is possible to divide
the probability distribution into approximately equal portions. This reflects the
“popularity” of the names selected. During use, the act of selection will alter the
distribution and thereby increase the probability of the names selected. Thus the
user will be directed more quickly to entries which have already been selected —
especially if they have been selected often and recently — than to those which have

not.

Figures 4.4a and 4.4b depict two menu hierarchies for a very small dictionary
with 20 name entries and their corresponding top-level menu. Figure 4.4c calculates
the average number of menus traversed per selection. In Figure 4.4a, the hierarchy

was obtained by subdividing the name space as equally as possible at each stage,
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with a menu size of 4. The number following each name shows how many menu
pages have to be scanned before that name can be found. Figure 4.4b shows a similar
hierarchy that now reflects a particular frequency distribution (the second number
following the name shows the item’s probability of selection). Popular names, such
as Graham and Zlotky, appear immediately on the first-level menu. Less popular
ones are accessed on the second-level menu, while the remainder are relegated to
the third level. As probabilities also decay over time, once-popular (or erroneously-
chosen) names eventually drop to a low value. Depending upon the decay value,
this does address some concerns about ignoring recency. For this particular case,
the average menus traversed by probability subdivision are reduced from uniform

subdivision, although not as much as is theoretically possible (Figure 4.4c).

Given a frequency distribution, it is a surprisingly difficult problem to construct
a menu hierarchy that minimizes the average number of selections required to find a
name. Exhaustive search over all menu trees, while possible, is infeasible for all but
the smallest problems. Witten et al (1984) have studied the problem and describe

simple splitting algorithms that achieve good performance in practice.

The novelty of dynamic menus is that previous actions are almost always easier
to resubmit. Users do not have to scan a list of candidates, and screen real estate is
preserved. To their disadvantage, users must now scan the menus for their entries
all the time, even for those accessed frequently. Since paths change dynamically,
memory cannot be used to bypass the search process. However, experimental ev-
idence suggests that this is not a problem in practice. As long as the database
of entries is very large, the benefits far outweigh the deficiencies (Greenberg and

Witten, 1985a; Trevellyan and Browne, 1987).
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4.2.2 Reuse through text prediction

History mechanisms and to a much lesser extent dynamic menus are influenced
by the assumption that the last submissions entered are likely candidates for re-
execution. They are the ones visible on the screen in graphical and editing systems,
the ones most easily remembered by the user in glass teletypes, and the ones given a

greater probability in dynamic menus (although this depends on the decay factor).

Two systems provide an alternative strategy for textual input — the “Reactive
Keyboard” (Witten et al, 1983; Darragh, 1988) and its precursor predict (Witten,
1982). Although implementation details differ, both use a dynamic adaptive model
of the text entered so far to predict further submissions. At each point during text
entry, the system estimates for each character the probability that it will be the next
one typed. This is based upon a Markov model which conditions the probability
that a particular symbol is seen on the fixed-length sequence of characters that
precede it. The order of the model is the number of characters in the context
used for prediction. For example, suppose an order-3 model is selected, and the
user’s last two characters are denoted by ‘zy’. The next character, denoted by ¢,
is predicted based upon occurrences of ‘zyé’ in previous text (Witten, Cleary and

Darragh, 1983).

Predsct filters any glass-teletype package, although limited character graphics
capabilities are required for its own interface. It selects a single prediction (or none
at all) as the most likely and displays it in reverse video in front of the current
cursor position. The user has the option of accepting correct predictions as though
he had typed them himself, or rejecting them by simply continuing to type. Because
only a single prediction is displayed, much of the power of the predictive method
is lost; for at any point the model will have a range of predictions with associated

probabilities, and it is hard to choose a single “best” one (Witten, 1982).

The Reactive Keyboard, on the other hand, has two versions of a more so-
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Figure 4.5: RK-pointer menu and feedback, from Figure 4.5 in Darragh (1988).

ticated interface that allows one to choose from multiple predictiéns. The first,
called RK-pointer, displays a menu containing the best p predictions, which change
dynamically with the immediate context of the text being entered (Darragh, 1988).
Figure 4.5 shows the user composing some free text in the window on the left, and
the menu of predictions on the upper right. The underlined “context” string is
derived from the last few characters entered, and is followed by the highlighted best
prediction. These are shown in both windows. The menu items represent alterna-
tive pieces of text from which the user can choose the next characters. Interaction
is through a pointing device, such as a mouse. Selection is two-dimensional, in
that the user can point anywhere within a prediction to accept only the previous
characters (Figure 4.5). Less likely predictions are available through page-turning.
The second version of the Reactive Keyboard is called RK-button, and it minimizes

the screen area used by showing only one prediction next to the cursor (Darragh,
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1988). Unlike predict, other (less probable) predictions are available through a

special keystroke sequence (similar to the zmacs one-line history editor— §4.1.3).

Text prediction based upon adaptive modeling appears promising. Keystroke
reductions of 50% and 90% have been achieved with predict and the Reactive Key-
board respectively. However, these figures depend heavily on the type of text entered
and how the system has been primed. Considerable variation is likely in practice.
Theoretical benefits are also tempered by practical considerations. If the cognitive
and mechanical task of reviewing and (perhaps) accepting predictions takes more
time than simple text re-entry, then keystroke reduction becomes a misleading mea-
sure of the system’s overall performance. Furthermore, as users may not be able to
predict themselves the system’s offerings, they must scan the list to see if a desired
item is present. It is certain that a skilled typist will be capable of entering free text
faster than someone using the Reactive Keyboard, for the time needed to review
the predictions offered after every keystroke is far longer than the time required
to just type it in. However, these are powerful systems for physically handicapped

people. As Darragh notes:

Of all potential users, those with severe physical limitations and commu-
nication disabilities stand to gain the most from the Reactive Keyboard.
Certain individuals within this group will find the Reactive Keyboard
a valuable time and energy saving enhancement (or replacement) for
their standard communication aid when writing or accessing computer

systems. (Darragh, 1988 p133)

Systems that predict character sequences are appealing because they deal with
any free text. They are not limited, as history mechanisms are, to repeating lines.
Yet this generality is also their weakness when used as a front end to the command-
based systems addressed previously. There is no guarantee that predictions will form
valid command lines, since the underlying Markov model has no knowledge about

(say) UNIX. There is nothing to stop predictions from being either syntactically
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malformed or nonsensical.

On the other hand predictive systems have, for at least one person, proven
effective for csh interaction. Darragh, who is partially paralysed, mentioned that
RK-button was (and is) indispensable for his day-to-day computer use. It provided
assistance on over thirty thousand command lines over a two year period, and
averaged 10 character predictions per line (Darragh, 1988 p136). He also notes an
interesting side effect — long descriptive file names are now used instead of short

ones.

4.3 Reuse through programming by example

A difficult problem with some reuse facilities is deciding how to demarcate an activ-
ity. Ideally, an activity has a one-to-one correspondence with the task the user may
wish to repeat at a later time. If activities and tasks do not correspond, then the
reuse facility is not as effective as it could be. One correspondence problem is that
a user’s closure on a task may comprise more than one primitive activity. Closure
for some of the interfaces discussed in this chapter was assumed from simple as-
pects of the user’s input (lines, menu paths, and document selection). Yet the task
one wishes to redo may be a sequence of such activities. If all were independently
available through a reuse facility, the user would have to mentally decompose his
task into its primitives and choose them from the event list. For example, viewing a
specific UNIX file can comprise two activities — changing into the correct directory,
and printing the desired file onto the screen. It would clearly be easier for the user
to think about and recall these items as a single chunk rather than as two separate

activities.

A second correspondence problem arises from the impracticality of recording all
system primitives. A reuse facility may record only “high-level” activities, ignoring

those deemed too mundane for effective reuse. But if a user’s closure on a task
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includes some of these unrecorded sequences, the task cannot be reconstructed
effectively. (Thimbleby, 1980, describes closure as the subjective sense of reaching

a goal, of completion or of understanding.)

As some simple tasks are fixed sequences of activities it would be useful to save
them explicitly as a procedure. A promising method for communicating this to the
system is programming “by example” (Witten et al, 1987).> At its simplest, the user
performs an example of the required procedure and the system remembers it for
later repetition. For example, the use of “start-remembering” “stop-remembering”,
and “do-it” commands enable a text editor to store macros of editing sequences
(Gosling, 1981). Except for these special commands, the macro sequence is com-
pletely specified by normal editing operations. With a little more effort, such se-
quences can be named and filed for later use. A practical difficulty with having
a special mode — remembering mode — for recording a sequence is that one has
frequently already started the sequence before deciding to record it, and so must

retrace one’s steps and begin again.

The ability to generalize these simple macros could extend their power enor-
mously. Some programming by example strategies allow inclusion of standard pro-
gramming concepts — variables, conditionals, iteration, and so on — either by
inferences from a number of sample sequences, or through explicit elaboration of an
example by the user. To illustrate the latter, an experimental system has been con-
structed for the Xerox Star office workstation which operates according to the direct
manipulation paradigm (Halbert, 1981 and 1984). In earlier versions of this system,
a pop-up menu allowed one to indicate explicitly the generalization required. For
example, icons selected at specification time are disambiguated by name, position,
or by asking for a similar object. But because people found it hard to elaborate
programming constructs when tracing through an example, later versions have users

specifying constructs after macro composition through an editor (Halbert, 1984).
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Concluding Remarks

Three classes of reuse facility were distinguished in this chapter: history mecha-
nisms; adaptive systems; and programming by example. A large number of ad hoc
implemented designs were surveyed within this framework, illustrating the diversity
of techniques available. Some methods are less than promising because the cognitive
and mechanical effort required to reuse most old submissions is obviously greater

than entering them anew.

The taxonomy of reuse facilities presented in this chapter is oriented toward
a survey of designs, and is certainly not the only structure possible. Distinctions
of reuse facilities could follow user-centered system design, an approach generally
advocated by Norman and Draper (1986). For example, Lee (1988b) gives the
following eight ways that people could make use of a history facility®.

e History for reuse allows a person to reuse an old item.

o Relating input and output is a more specialized form of reuse, for it further
describes and disambiguates the objects and actions of reference in the context

of the dialog.

e History through navigation allows users to reflect on where they have been

and where they are now, and use it to guide their progress.
o History through user recovery includes undo capabilities.

o History for functional grouping lets users group a set of history items into a

functional unit.
¢ Recording and playback covers verbatim replay of action sequences.

e History for consultations and reminders allows the user to consult past actions

and provides him with reminders.

o History for prediction helps anticipate and predict what the next user com-

8Lee’s distinctions incorporate and cite the ones made in this chapter.
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mand would be.

A key deficiency in both surveys (and in this general area) is the dearth of em-
pirical evidence justifying chosen designs for reuse facilities, either a priors through
knowledge of how people repeat activities, or post hoc by evaluating their actual
use. Nor is there any feeling of how intuitive and empirical knowledge gleaned from
one application would generalize to others. The next three chapters address these

deficiencies.



Chapter 5

Recurrent Systems

Schemes for activity reuse are based upon the assumption that the human-computer
dialog has many recurring activities. Yet there is almost no empirical evidence
confirming the existence of these recurrences or suggestions of how observed patterns
of recurrences in one dialog would generalize to other dialogs. The next few chapters
address this dearth. They provide empirical evidence that people not only repeat
their activities, but that they do so in quite regular ways!. This chapter starts with
the general notion of recurrent systems, where most users predominantly repeat
their previous activities. Such systems suggest potential for activity reuse because
there is opportunity to give preferential treatment to the large number of repeated
actions. A few suspected recurrent systems from both non-computer and computer
domains are examined in this context to help pinpoint salient features. Particular
attention is paid to repetition of activities in telephone use, information retrieval
in technical manuals, and command lines in UNIX. The following chapters further
examine UNIX as a recurrent system, and then generalize the results obtained into

a set of design properties.

!Some of the findings in this chapter were first presented at the 1988 ACM CHI Conference on
Human Factors in Computing Systems held at Washington D.C. (Greenberg and Witten, 1988a).
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5.1 A definition of recurrent systems

An activity is loosely defined as the formulation and execution of one or more actions
whose result is expected to gratify the user’s immediate intention. It is the unit
entered to incremental interaction systems (as defined in Section 1.2.1) (Thimbleby,
in press). Entering command lines, querying databases, and locating and selecting
items in a menu hierarchy are some examples. Copy typing is not. It is continuous
rather than incremental, and it is not a cognitive activity (at least, not for the

skilled typist).

A recurrent system is defined as an open-ended system in which users predom-
inantly repeat activities they have invoked previously?. In other words, although
many activities are possible, most (but not all) are repetitions of previous ones

rather than being freshly generated.

The fundamental notion behind recurrent systems is that activities are repeated.
The frequency of repeats is called the recurrence rate, and it identifies the probability
that any activity is a repeat of a previous one. The total activities is a count of
all submissions the user has entered, while different activities count only those that

are different. The recurrence rate R over a set of user activities is calculated as:

total activities — di fferent activities
R = ff — x 100%
total activities

For a system to be classed as “recurrent”, the recurrence rate may exhibit a mod-

erate variation across users, provided that the average rate is fairly high.

Although many old activities are repeated, new ones are constantly added to

the repertory. The rate at which new activities are composed and introduced to the

2] first conceived the idea of recurrent systems in an earlier work (Greenberg, 1984). Originally
called repetitively accessed data bases, it concerned information retrieval of items from a data base.
The current term and definition subsumes the previous one.
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dialog is the composstion rate C:

__different activities

— x 100% = 100 — R
total activities

Activity formation within recurrent systems is open-ended, as there are a very
large number of possible activities available. A dynamie recurrent system is one that
incorporates new activities regularly. They are static when C is close to zero (eg
using commands, Chapter 3). Even when new activities are constantly generated,

only a small subset of the possibilities could be selected by any one user.

One purpose of this chapter is to clarify further what a recurrent system is. A
few systems that fit the definition above are studied and their common properties
extracted. To start with, command use is obviously a recurrent system. It seems
reasonable to suggest that the findings reported in Chapter 3 are also properties of
recurrent systems. First, the set of activities invoked by any particular user is typ-
ically a small subset of the activities usually available. Second, the set of activities
invoked may be disjoint or overlapping for different users of the system. Finally,
different people may repeat common activities at different rates, and particular ac-
tivities may be repeated by the same user at very different rates. The frequency

distribution of activity selection is not expected to be uniform.

This definition and list of properties is not a strong one, for the boundary be-
tween recurrent and non-recurrent systems is not distinguished. Such a boundary
specification, even a “fuzzy” one, would be subjective and would also depend upon
other aspects of the system being investigated. For example, time between recur-
rences might be a consideration, where only short-term recurrences are counted but
those repeated only after long intervals are considered different. Still, the properties
provide a reasonable checklist for judging whether particular systems have potential

for reuse.

It would seem that, at least on the surface, recurrent systems are just a weaker

way of denoting patterns of behaviour already well described by Zipf’s law. How-
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ever, major differences exist. First, many human-oriented observations charac-
terised by Zipf’s law are based upon cumulative results of the population. One
study, for example, examined the statistics of all terms used to retrieve items over
all users of two separate bibliographic data bases, and describes how they conform to
Zipf’s law (Bennett, 1975). Similar large-scale statistics have been applied to many
facets of library science (a list is given by Peachey, Bunt and Colbourn, 1982). Yet
there is no evidence that the same distribution applies to individuals. Recurrent
systems, on the other hand, are centered around the statistics of activities of in-
dividuals, rather than large groups. Second, Zipf’s law typically deals with very
large numbers, and tends to break down with few observations (see Bennett, 1975
for one example). Recurrent systems are quite comfortable with small numbers. As
will be seen, patterns within some recurrent system may be identified by observing

a sequence of less than 100 actions performed by one individual— §5.2.1.

5.2 Recurrent systems in the non-computer world

Are recurrent systems just artifacts peculiar to computer use, or are they every
day phenomena in the natural world? This section suggests the latter. Without

belaboring the point, a few natural and reasonable possibilities follow.

e A cookbook has a subset of recipes referred to repeatedly by a single home-
maker. However, usage patterns differ as not all people favor the same recipes.
Some cooks prefer tried and true recipes, and will thus use a small set of recipes
many times. Others desire variety and select from a larger recipe set with less
repetition. A similar analogy may be made to selections from a book of verse,

readings in the bible, or sections and columnists read in a newspaper.

¢ An audiophile listens to different records repeatedly. Some are heard more

than others, and new styles come into favor while old ones fall out.
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e Within tool-oriented contexts, tradespeople and artisans use some tools more
often than others.

e Procedures carried out by most office workers are routine. Still, special pro-
cedures are sometimes followed for rarer conditions and exceptions, while new

ones are created to handle unexpected situations.

Empirical evidence supports the existence of recurrent systems in a variety of
task domains. Telephone use is one example, and our investigation is described
in this section. Subsequent sections will illustrate two other examples: retrieving

topics from technical manuals, and entering command lines in UNIX.

5.2.1 Telephone usage — a limited study

Telephone usage is examined as a first example of a recurrent system, where an
activity is simply a number being dialed. This seems a natural choice, for we know

from experience that:

¢ many calls are to people/firms that have been called before;

some calls are new ones not made before;

e numbers are called with differing frequencies;

usage patterns evolve slowly over time.

This section will describe a few simple analyses that determine empirically some

characteristics of telephone usage as a recurrent system.

A small-scale study was conducted previously on individual telephone usage, as
reported in an earlier work (Greenberg, 1984). The intent was to inspect telephone
usage for patterns of recurrences in the numbers dialed. Fourteen telephone users

known to the researcher were asked to keep a list of all calls originating from their
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Results per subject
Measures 1 2 3 4 5
Total Calls 313 129 119 106 | 106
Different Calls 104 55 60 53 39
Recurrence Rate 66.8% | 57.4% | 49.6% | 50% | 63.2%
Average Recurrence Rate 57.4% (std dev = 17.7)

Table 5.1: Telephone usage statistics

office and/or home telephones. Instructions were to record consistently all com-
pleted calls they had made, including busy or wrong numbers and repeated calls.
The time frame varied from one to three months. Although the original report
summarized results for all subjects, the present analysis removes artifacts due to
subjects who had made relatively few calls. Only those five users who had made
over one hundred calls are described here. Data is also re-analyzed to see how new
calls are generated over time, to review the equilibrium of the apparently stable re-
currence rate, and to see if the frequency distribution of recurring numbers exhibits

temporal recency.

Telephone use by the top five single users was surveyed and compiled, with the
results summarized in Table 5.1. The collected data was surprisingly consistent in
many respects. First, new telephone numbers were dialed regularly, as indicated by
the relatively smooth and seemingly linear lines in Figure 5.1. The horizontal axis
represents the number of calls made, while‘ the vertical axis indicates the number
of different calls. This result suggests that telephone use is not restricted to a few

numbers dialed repeatedly, but is, in fact, open-ended.

How many calls are recurrences of previous ones? The recurrence rate R calcu-
lated over all calls made by each subject is noted in Table 5.1. The average observed

value over all users is about 57%.

But how stable is the recurrence rate (or, for that matter, the seemingly linear
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Figure 5.1: The number of different calls made versus the number of calls dialed so
far
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Figure 5.2: Relation between recurrence rate and the number of calls made

composition rate)? What is the relationship between the rate and the number of
phone calls dialed by a single user? The recurrence rate over the number of calls
made was re-analyzed, and the result for the most prolific caller (subject 1) is plotted
in Figure 5.2%. The graph indicates that the rate of recurrences rises quickly over
the first twenty calls and less quickly up to one hundred calls. The original report
noted that R then seems to approach an equilibrium. However, a regression analysis
made on the recurrence rate for 150 calls and over indicates a positive correlation
between the rate and the number of calls dialed (r = .661,df = 162,p << .01),
although the rate of increase is small (slope = .012). As the recurrence rate R

should equal the slope of Figure 5.1 (the composition rate C), the trends seen there

SWhile the original graph in Greenberg (1984) averaged the data points over slices of ten calls,
Figure 5.2 gives a true mapping of the recurrence rate up to each call. Also, only one subject is
drawn here for clarity. Plots of the other subjects showed similar trends.
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are, in fact, non-linear.

Note that the study observed people who already had established patterns of
telephone use. The initial recurrence values (and their corresponding inflated com-
position rate) are low only because some established and highly repeated numbers
are being encountered for the first time. One interpretation of the graph is that
users repeat phone numbers almost immediately, as shown by the rapid initial rise.
Secondly, some calls are probably repeated over a slightly longer period of time,
as revealed by the slow but steady increase in the middle of the curve. Finally,
there is a near cessation of increase in the rate of recurrences after eighty calls.
This indicates that although some calls are repeated over a long time period, a high
number of new and rarely repeated calls are made. For example, the composition
rate C was estimated at 33% for this subject (as shown in Figure 5.1). There seems
to be four general categories of calls: highly popular numbers which are called quite
often; moderately popular ones called infrequently; once-only calls which are never
or very rarely repeated, and new ones never seen before that are incorporated in

the repertory. This view agrees well with introspective expectations.

The original report also examined the frequency distribution of all calls made,
by ranking each subject’s calls by frequency. Of particular importance in the find-
ings is the decreasing trend in frequency of use over the calls, indicating a diverse
spectrum between highly and rarely repeated numbers. It was suggested that the
same decreasing trend can be loosely modeled by the Zipf distribution, although
the Zipf decrease is significantly more pronounced than in the telephone usage dis-

tribution.

Finally, telephone numbers that have just been dialed are more likely to be
repeated than those dialed long ago. This notion of “temporal recency” is illustrated
by the five frequency distributions, one for each subject, drawn in Figure 5.3. The
method of analysis is described in Section 5.4.2. The horizontal axis represents the

distance of the number about to be submitted from the position of a matching old
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Figure 5.4: Cumulative recurrences of phone numbers as a measure of distance

one maintained in a temporally-ordered list. The vertical axis shows the recurrence
rate for particular distances. For example, 10% of Subject 1’s calls are a repeat of
the last call made, 8% repeat the second from last, 5% the third from last, and so on
down the list. Figure 5.4 draws the same results for Subject 1 in a slightly different
way — the vertical axis is now the running sum of recurrences over distance. For
example, around 41% of all calls are repeats of one of the previous 10 dialed. The
horizontal line at the top is R (67%) which, since new calls are also composed
regularly, is the limit of the running sum. The striking feature of both figures is

that the last few calls are more likely to be repeated than any others*.

In summary, the review of this study indicates that telephone usage is a dynamic

4Even if this distribution were uniform, the last few calls would still exhibit a higher frequency
of recurrence, and could be misconstrued as temporal recency. Still, the recency effect is more
pronounced in these figures and the artifacts of uniform probability are ignored. Appendix 4
describes the uniform probability distribution, explains why this distortion occurs, and details
why the effects were ignored.
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recurrent system, and adds the property that the probability of an item recurring is
related to its recency of selection. However, the limited number of subjects polled
over a relatively short time period does not supply enough data to support anything

but general statements about usage patterns.

5.3 Recurrent systems in information retrieval

A second potential area of high recurrences is in information retrieval. Intuitions
about the recurrence rate of such systems are perhaps not so immediate as with
telephone access. Still, a few arguments for suspecting recurrences follow. First, it is
usually difficult to remember particular details of information retrieved, especially if
it is obscure, technical or numerical in nature. Retrieval recurrences over short time
periods is therefore likely, since details of a document require constant reviewing.
Second, different information fragments are not sought equally. People may recall
“important” information fragments repeatedly over long time periods. Finally, pre-
viously acquired information may become stale. As information is rarely static,
the same question may be posed repeatedly and the answer checked for changes.
Airline arrival and departure information available through teletext environments
is one example of dynamic information. Another example is the slowly changing

standards described in technical manuals, which become obsolete over time.

This section reviews how people retrieve topics in one type of information sys-

tem — technical manuals.

5.3.1 Retrieving topics in manuals

Embpirical evidence supports the existence of manuals as recurrent systems. M.E.
Lesk, in an analysis of work logs of Boeing engineers, noted that up to 70% of all

lookups of hardcopy manuals (egstandards, product manuals) were to specific things
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the engineers had seen before but had forgotten (reported in Dumais and Landauer,
1982). The high figure is perhaps not surprising in retrospect, for technical details

found in engineering manuals do not lend themselves to easy recall.

A previous study shows that topic retrieval in computer-based technical manu-
als is also characterised by high recurrences. All usages of the UNIX on-line manual
by students and employees in a Computer Science department were collected for
one month (Bramwell, 1983) and analyzed for recurrences (Greenberg, 1984). A
total of 4978 correct retrievals was made by 443 users. The salient findings are

summarized here.

1. The recurrence rate of retrievals was generally high, approaching an average

of 50% for each user after relatively few retrievals.

2. Moderate variation in the recurrence rate was noted between individuals. For
example, users who had made between 17 — 19 retrievals had a standard

deviation of 17.1% over the average rate of 45.2%. Extremes were 12% and

71%.
3. Each user retrieved only a small subset of the topics available.

4. Few common retrievals were noted between users, even when user tasks were

similar.

5. The frequency distribution of the topics retrieved by an individual varied
substantially from user to user. Although no uniform distribution was noted,
the general trend was to access most topics between one and three times, with

a smaller set being called on more often.

In general, one can conclude that retrieving topics in technical manuals is highly
repetitive. The properties of recurrent systems listed so far are also supported. It
is hypothesised that these results generalize to most structured documents, such

as those found in hypertext systems, and to general information retrieval facilities
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provided by standard data bases. Further work is required to substantiate this

hypothesis.

5.4 Unix csh as a recurrent system

As mentioned previously, command use is certainly a recurrent system, although it is
a “static” one since C is so low. A separate question is whether complete command
lines submitted to general-purpose command-based environments also follow the
properties of recurrent systems. If they do, what patterns do these recurrences
exhibit? This section investigates statistics of command line recurrences by subjects

using the UNIX ecsh.

As commands often act on objects and are qualified with options, it is important
to look at the command line as a whole (see the concluding remarks of Chapter 3).
After introducing some terminology, two questions particularly relevant to reuse
facilities are addressed in this section. They both concern the statistics of complete
command lines entered by the user to UNIX. This is particularly important, for
lines are the incremental unit of esh. Also, reuse facilities usually simplify redoing
the complete activity, rather than its isolated components. The section first exam-
ines how often a user actually repeats command lines over the course of a dialog.
Particular attention is paid to the variation in this rate between groups and between
individuals, and its stability over the number of command lines entered. Second,
the probability that the next command line will match a user’s previous input is
described. This is measured as a function of the number of entries that have elapsed

since that input.

In the following discussion, a command line is a single complete line (up to
a terminating carriage return) entered by the user. This is a natural unit because
commands are only interpreted by the system when the return key is typed, and the

complete line is a more detailed reflection of one’s activity than just the command
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itself. Command lines typically comprise an action (the command), an object (eg
files, strings) and modifiers (options). A sequential record of command lines entered
by a user over time, ignoring boundaries between login sessions, is known as a
history list. Erroneous submissions noticed by csk are not included. Unless stated
otherwise, the history list is a true sequential record of every single command line
typed. Duplicate activities, for example, are included. The distance between two
lines is the difference between their positions on the list. A working set is a small
subset of items on the history list. The number of different entries in the history
list is the command line vocabulary. Although white space is ignored, syntactically

different but semantically identical command lines are considered distinct®.

5.4.1 Recurrences of command lines

Although, as Section 3.3 showed, only a few commands account for all actions of a
particular user, it is not known how often new command lines are formed and old
ones recur. This is important, as it is the recurrence rate — the probability that
the next item has been previously entered — that existing reuse facilities exploit
best. One might expect that command lines would recur infrequently, given the
limitless possibilities and combinations of commands, modifiers, and arguments.

Surprisingly, this is not the case.

I investigated how often lines are repeated by counting the command line vo-
cabulary size. Let tcmd tines be the total number of command lines entered by the
user (fe the size of the history list), and v.mq tines be the vocabulary size‘, or number
of distinct items in that set. The overall recurrence rate, using this slightly different
terminology, is calculated as described in Section 5.1:

t . — v .
R — emd lines emd lines x 100%

tcmd lines

SFor example, the command lines “Is ~las” and “Is —lsa” are treated as different vocabulary items,
even though they mean the same thing. Although this strategy overestimates the vocabulary size,
a semantic analysis was deemed too expensive for the large data set covered.
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Do users extend their vocabularies continuously and uniformly over the duration
of an interaction? If not, then the recurrence rate, measured locally, will change
over time as the user’s history list grows. Furthermore, calculating group means
for R could be confounded by the large variation between the number of command
lines each user enters, which was noted in Table 2.1. As R is a function of v.ng lines
and %.md lines, it 1S necessary to investigate how the vocabulary size depends upon
the actual number of commands entered. If users never extend their vocabulary
after some short initialization period, little correlation with t.,,4 1ines is €xpected.
On the other hand, a strong correlation is likely if new command lines are composed

regularly by a user.

A simple regression analysis was performed by contrasting t.md iines 314 Vernd lines
for each subject. The regression line is plotted in Figure 5.5a, where each point in
the scattergram represents the value observed for each subject at the end of the
study period. A statistically significant and strong correlation was found (r = .918,
df = 167, p < .01). The moderate slope (C = 23%) of the regression line makes the

correlation practically significant as well.

It seems reasonable from the scattergram of Figure 5.5a that vemq tines iNCreases
linearly with tma 1ines, indicating that the recurrence rate is independent of the
actual number of lines entered. This was checked in two ways. The first was
a simple regression analysis of ¢.4 1in.s With R. The regression line is shown in
Figure 5.5b. Here, each point represents the recurrence rate observed for each
subject at the end of the study. A statistically significant correlation was found
(r = .253, df = 167, p < .01), indicating that the recurrence rate increases with the
number of commands entered. However, the high variance of data points around
the line (r? = .064), and its low slope (0.002), makes this finding insignificant for

practical purposes. Consequently, R is considered independent of t..q 1ines-

The second and perhaps more convincing way of observing the independence of

the recurrence rate is by examining in detail the vocabulary growth of individuals.
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Sample Name Recurrence Rate Range

i mean | std dev | minimum | maximum
Novice Programmers 80.4% 7.2 64.7% 91.7%
Experienced Programmers | 74.4% 9.7 51.4% 90.0%
Computer Scientists 67.7% 8.2 46.4% 82.0%
Non-Programmers 69.4% 8.1 50% 84.3%

[ Total [ 73.8% | 9.6 | 46.4% | 91.7% |

Table 5.2: The average recurrence rate of the four sample Unix user groups

The formation of new command lines is surprisingly linear and regular, as illustrated
by Figure 5.6. Similar to Figure 3.2, and using the same typical users, the horizontal
axis still represents the number of lines entered so far, but now the vertical axis
indicates the size of the command line vocabulary. For example, the scientist subject
has composed close to 1400 new command lines after 6000 lines were entered. The
long periods of quiescence and the flurries of new activity seen in Figure 3.2 are

notably absent from Figure 5.6.

Table 5.2 lists the mean recurrence rate, standard deviation, and ranges of
R for each subject group. An analysis of variance of raw scores rejects the null
hypothesis that these means are equal (F(3,164) = 21.42,p < .01). The Fisher
PLSD multiple comparison tests suggests that all differences between group means
are significant (p < .01), excepting the Non-programmers versus Scientists. As the
Table indicates, the mean recurrence rate for groups ranges between 68% and 80%,

with Novice Programmers exhibiting the highest scores.

Although recurrence rate depends upon user category, and very slightly on
the number of command lines entered, it is reasonable to simplify this descriptive
statistic by assuming the mean R over all users to be 75% and C of 25%, independent
of t.md tines. In other words, an average of three out of every four command lines
entered by the user already exist on the history list. Conversely, an average of one

out of every four command lines appears for the first time.



93

1500, Scientist.

o Experience

N

n

Non

510004 Programmer
=]

e

(g

8]

S

@ Novice

£ 500

ke

-

©

=

=

Q
@)

0 i L ¥
0 2000 4000 6000

Number of command lines entered

Figure 5.6: Command line vocabulary size versus the number of commands entered
for four typical individuals



94

5.4.2 Command-line frequency as a function of distance

For any command line entered by a user, the probability that it has been entered
previously is quite high. But how do previous items contribute to this probability?
Do all items on the history list have a uniform probability of recurring, or do the
most recently entered submissions skew the distribution? If a graphical history
mechanism displayed the previous p entries as a list (eg HISTMENU, Bobrow 1986),
what is the probability that this includes the next entry?

The recurrence distribution as a measure of distance was calculated for each
user. First, let R, 4 be the recurrence rate at a given distance for a single person,
obtained by processing each subject’s data. Figure 5.7 shows the algorithm used
to obtain all values of R, 4 from a subject’s trace. The mean recurrence rate for a

given distance d over all S subjects in a particular group is then calculated as:

1 S
Ra= Eg Rs,d

These group means are plotted in Figure 5.8a. The vertical axis represents Rg4,
the rate of command line recurrences, while the horizontal axis shows the position
of the repeated command line on the history list relative to the current one. The
slight distortional effects of the uniform probability distribution are ignored (see
Appendix 4). Taking Novice Programmers, for example, there is a Rq; = 11%
probability that the current command line is a repeat of the previous entry (distance
= 1), R4, = 28% for a distance of two, Ry3 = 9% for three, and so on. The most

striking feature of the Figure is the extreme recency of the distribution.

The previous seven or so inputs contribute the majority of recurrences. Sur-
prisingly, it is not the last but the second to last command line that dominates the
distribution. The first and third are roughly the same, while the fourth through
seventh give small but significant contributions. Although the probability values
of R4 continually decrease after the second item, the rate of decrease and the low

values make all distances beyond the previous ten items equivalent for practical pur-



Given:
¢ a trace numbered from 1 through n, where n is the last line entered;
e an array of counters used to accumulate the number of recurrences
at a particular distance.

Algorithm:
/¥ For each item, find its nearest match on the history list */
/¥ and record it */
for (i := 1 to n)
for (j := i-1 downto 1)
if (submission; = submission;) then begin
distance := i—j; ‘
counter[distance| := counter[distance| + 1;
break; /* jump out of inner loop */
end
/¥ The averaged value found in each counter is R, 4 */
for (distance := 1 to n)
counter[distance] := (counter|[distance]/n) * 100;

Figure 5.7: Processing a subject’s trace for all values of R, 4
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poses. This is illustrated further in Figure 5.8b, which plots the same data for the
grouped total as a running sum of the probability over a wider range of distances.
The running sum of the recurrence rate up to a given distance D for a single person
is called Rp. Its mean value over a group of subjects is calculated as

1 5D
Rp = §ZZ Rsd
a=1d=1

The most recently entered command lines on the history list are responsible for
most of the cumulative probabilities. For example, there is a Rp,, = 47% chance
that the next submission will match a member of a working set containing the ten
previous submissions. In comparison, all further contributions are slight (although
their sum total is not). The horizontal line at the top represents a ceiling to the

recurrence rate, as C = 26% of all command lines entered are first occurrences.

Figure 5.8a also shows that the differing recurrence rate between user groups,
noted previously in Table 5.2, are mostly attributed to the three previous command
lines. Recurrence rates are practically identical elsewhere in the distribution. This
difference is strongest on the second to last input, the probability ranging from a

low of 10% for Scientists to a high of 28% for Novice Programmers.

Concluding Remarks

This chapter introduced the notion of recurrent systems and provided empirical ev-
idence of their existence in both natural and computer domains. The three diverse
examples studied — telephone usage, information retrieval, and command-line in-
terfaces — show remarkable similarity in the way activities are repeated. All satisfy
the (admittedly vague) definition of recurrent systems set out in Section 5.1. A few

common properties of recurrent systems were also stated.

The statistics of UNIX esh use, and to lesser extent telephone dialing, indicate

that the most recently submitted activities are the most likely to be repeated.
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These statistics confirm the potential of reuse facilities in general, and verify the

assumptions of recency made by history mechanisms.

Four major weaknesses and criticisms of the idea of recurrent systems and the
empirical studies reported in this chapter are noted below. First, the definition
of recurrent systems is not precise, as no benchmark values are indicated. This is
intentional, as any values provided would be ad hoc (although observed values for

R seem to range from 40 — 80%).

Second, the study of telephone usage is very limited. More subjects are neces-
sary and a longer observation period is required, especially considering the initial
instability of R over the first 100 calls. A more rigorous method for recording calls
is required as well. Although subjects say they were diligent in recording all calls,
there was no way to ascertain that they actually did. Also, other factors should be
included in the analysis. For example, what is the effect on the patterns of calls

made by teenagers versus adults? What about business versus personal calls?

Third, the study of manual usage is very limited. Although many subjects were
available, the relatively small values and the high variance in topic retrievals by

subjects makes it difficult to determine statistically significant patterns.

Fourth, undue attention may be paid to recency. Are there better methods for

predicting a user’s next activity? The next chapter tackles this question.

Finally, traces of subject’s activities in all three studies were not annotated.
Why do people actually repeat activities? Although this chapter observed that

they do, we can only make educated guesses as to the reasons behind their actions.



Chapter 6

Reuse Opportunities in Unix Csh
— Potential and Actual

In this chapter, I consider the potential and actual reuse opportunities within UNIX.
First, several methods are suggested that could increase the likelihood that the next
submission matches an item in a small set of predictions offered to the user for
review and reuse. Each method is applied to the UNIX traces, and their predictive
“quality” is measured and contrasted against each other. In the second part of the
chapter, I investigate how well the reuse facilities supplied by the UNIX shell are

used in practice.

6.1 Conditioning the distribution

In the last chapter, particular attention was paid to the recurrence of command
lines during csh use, and to the probability distribution of the next line given a
sequential history list of previous ones. We saw that the most striking feature of
the collected statistics is the tremendous potential for a historical reuse facility: the

recurrence rate is high and the last few submissions are the likeliest to be repeated.

99



100

One may predict what the user will do next by looking at those recent sub-
missions. But there is still room for improvement, since a significant portion of
recurrences are not recent submissions. Can better predictions of the user’s next
step be offered? This section proposes and evaluates alternative models of arranging

a user’s command line history that will condition the distribution in different ways.

The recurrence distributions of Section 5.4.2 were derived by considering all
input for a user as one long sequential stream, with no barriers placed between
sessions. We have seen that although a small set of recently-entered command
lines accounts for a high portion of repetitions, many others lie outside. Consider
a working set of the ten previous items on the history list. From Figure 5.8b,
there is a C = 26% chance that the next command line has not appeared before,
a Rp,, = 47% chance that it has occurred within the working set, and a 27%
chance that it last appeared further back. This section explores the possibility that
the distribution can be conditioned, firstly to increase the recurrence probabilities
over a working set of a given size, and secondly to improve the overall “quality”
of predictions offered. The following subsections explain how quality is assessed;
describe a variety of conditioning techniques; and apply these conditions to the

traces that have been collected.

6.1.1 The quality of predictions

Predictions of activities for reuse are only effective when the search for and selection
of an offering is less work for the user than submitting it afresh. Work is therefore
used to measure prediction quality. The smaller the amount of work required for
reuse as opposed to resubmission, the higher the quality of the set of predictions
offered. The selection of a high-quality prediction either reduces the cognitive effort
of reconstructing the original activity or minimizes the physical work required to

enter that activity to the system.
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The metric for work introduced here is called Mp, and comprises two compo-
nents that estimate a prediction’s quality. The first is R p, the probability that the
desired item appears on a displayed list of length p = D. Its calculation was given
in Section 5.4.2. The second, called ¢, is the average number of characters saved
by reusing the matching activities at exactly a particular distance d. Incorporating
string length as a partial indicator of work assumes, of course, that longer strings
are harder to recall and re-enter than short ones. Mp indicates the average number
of characters saved over all submissions when repeated activities are selected from a
list of candidates of length D. By using Mp, predictive methods can be numerically

compared and ranked accordingly.

The calculation of Mp and its components proceeds as follows. First, let ¢, 4
be the average number of characters saved by a subject s per recurrence at distance
d, calculated as:

= _ ©Csd
C,,d — .
Ts,d

The term ¢, 4 is the total number of characters saved by the subject reusing all
matching recurrences at a particular distance, and r, 4 is the number of matching
recurrences at that distance. When ¢, 4 is averaged over all subjects S, we get &,
calculated as:

Ci=

S
Z Co d-
a=1

But ¢; just gives the average characters saved by using a correct prediction at a

D

particular distance. An alternative approach calculates M, which includes the
-probability that the prediction is correct. More specifically, M, is the mean number

of characters saved at a particular distance over all subjects:

1 S
Md = §Zaa,dka,d7
s=1

where R, 4 is a particular subject’s probability of a recurrence at the given distance,
defined in Section 5.4.2 . Note that M, differs from ¢, as it is the average savings
per submission rather than per recurrence. The final step in calculating Mp shows

the cumulative average savings in characters per submission when one through D
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predictions are available for selection:

D
MD=ZMd=Ml+M2+---+Md=D-
d=1

Both Rp and Mp will be used in this chapter as metrics for evaluating working
sets of particular sizes, although values of R4 (— §5.4.2) and ¢, are included for

reference.

6.1.2 Different conditioning methods

A variety of conditioning methods are described here. As well as conditions that are
expected to perform quite well, weak ones that have been implemented in existing
reuse facilities are also included. For each method I indicate how the recorded data
will be analyzed to assess its effectiveness. The algorithms used to find R, 4 for each
case are not elaborated (they are minor variations of the one shown in Figure 5.7).
Results are presented in the next section and show how effective — or ineffective

— these conditioning methods really are.

Sequential ordering by recency. This conditioning method was described in
the previous chapter, and is simply a time—ordered list of all submissions entered by
the user. The first column of Table 6.1 illustrates the sequentially-ordered history
list numbered by order of entry. The most recent submission appears on the top,
and the history list — as with all other examples on the Table — is intended to be

reviewed top-down.

There are two virtues of recency. First, the items presented would be the ones
a user has just entered and still remembers. He knows they are on the list without
having to scan through it. Second, unlike some adaptive methods, there is no initial

startup instability of deciding what to present when only a few items are available.
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13 print draft

with duplicates removed,
events saved in latest position

1 Is

4 edit draft
13 print draft
14  cd ~/figs

8 edit fig2
9 graph figl
10 Is
11  edit figl
12 cd ~/text

[ Sequential Duplicates Removed Frequency Order
starting in original latest secondary key secondary key
~ [tezt position posstion 1s recency 18 reverse-recency

14 cd~/figs [[12 cod ~/text |14 cd ~/figs 10 Is 3/10 Is 3
13 print draft || 9 graph figl |13 printdraft || 14 cd~/figs 2| 4 edit draft 2
12 cd ~/text 8 edit fig2 12 cd ~/text | 13 printdraft 2 |11 edit figl 2
11 edit figl 7 edit figl 11  edit figl 11  edit figl 2 | 13 print draft 2
10 Is 5 cd ~/figs 10 Is 4 editdraft 214 cd~/figs 2

9 graph figl 3 print draft 9 graph figl 12 cd~/text 1| 8 edit fig2 1

8 edit fig2 2  edit draft 8 edit fig2 9 graphfigl 1| 9 graphfigl 1

7 edit figl 1 Is 4 edit draft 8 edit fig2 112 cd~/text 1

6 Is

5 cd ~/figs

4 edit draft

3  print draft

2 edit draft

1 B

Alphabetic Directory Sensitive Commands

duplicates directory contezt | dsrectory contezt recency,
removed 18 ~ ftezt 18 ~ /figs no duplicates

14 cd ~/figs || 14 cd ~/figs 12 cd ~/text 14 «cd
12 cd ~/text 3  print draft 8 edit figl 13  print

4 edit draft 5 c¢d ~/figs 10 Is 11 edit
11  edit figl 4 edit draft 9 graph figl 10 Is

8 edit fig2 13  print draft | 11 edit fig2 9 graph

9 graph figl 2 edit draft 7  edit figl '
10 Is 1 Is 6 L

In Uniz, users change directories through the cd command. The “~? 15
shorthand for the home directory. Following “/*’s indicate sub-directories.

Table 6.1: Examples of history lists conditioned by different methods
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Pruning duplicates from the history list. The sequentially-ordered history
lists mentioned so far maintain a record of every single command line typed. Dupli-
cate lines are not pruned off the list. On a history list of limited length, duplicates

occupy space which could more fruitfully be used by other command lines.

There are two obvious strategies for pruning redundancies, as described by
Barnes and Bovey (1986). The first saves the activity in its original location on
the history list (as in HyperCard’s recent facility— §4.1.4) while the second saves it
in its latest position (as in wmw— §4.1.2). It is expected that the latter approach
would give better performance, as not only is local context maintained, but unique

and low-probability command entries will migrate to the back of the list over time!.

Consider, for example, the two pruned event lists in the second major column
of Table 6.1. Both are the same length, which is considerably shorter than the
plain sequential one in the first column. But the order of entries are quite different.
Even in this short list, the disadvantage of saving items in their original position is
evident. Local context is weak (indicated by the scattered event numbers), and the

frequently used Is command line is poorly positioned at the bottom of the list.

Data sets are re-analyzed using both strategies of pruning duplicates off sequen-
tial history lists, where recurring items are either kept in their original position or

moved to their latest position.

Frequency ordering. Perhaps the most obvious way of ranking activities is by
frequency, where the most often-used command line appears at the front of the
history list and the rarest one at the end. This approach is conservative. Old and
frequently used items tend to stay around — unless there is a built-in decay factor

— while newer submissions will not appear near the head of the list until they are

1Saving recurrencing activities in their latest position only is equivalent to “self-organized files”,
where successfully located records are moved to the beginning of the sequentially accessed file.
As briefly discussed by Knuth (1973), oft-used items tend to be located near the beginning of the
file, and the average number of comparisons is always less than twice the optimal value possible.
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repeated as often as the old ones. Still, it may do as well as or perhaps even better

than recency.

Although ordering items by frequency is straightforward, it is not clear how to
sort items of identical frequencies. One possibility uses recency as the secondary
sorting key. For example, if the current submission is a recurrence, its frequency
count is increased by 1 and it is relocated before all other recurrences with the
same count. Another approach uses a secondary sort by reverse-recency, where the
recurring item is placed at the tail of the list of items with identical frequencies.
Contrasting these two methods gives a bound to the range of recency effects. Ex-
amples of each are shown in Table 6.1, where the number to each item’s right counts

how often that line has been submitted.

It is expected that frequency ordering may do quite well, given that UNIX
command lines often consist of a frequently-executed command without arguments.
But probably fewer characters are predicted, since short lines would tend to domi-
nate the higher frequencies. Another disadvantage of frequency order is that counts
must now be associated with every submission. At best, this just takes up some
space and a little cpu time, which matters little in these days of cheap memory and
fast machines. At worst, the derived probabilities associated with a young history
list are quite unstable and may lead to very poor initial predictions, which could

discourage a new user from placing their faith in it (cf recency).

The data sets are analyzed by ordering history lists by frequency and using two
cases of secondary sorting: recency and reverse-recency. Since there is no advantage

in keeping multiple copies of command lines, they are pruned from the list.

Alphabetic ordering. Sorting activities alphabetically is another possibility. Al-
though items on alphabetic ordered lists are best found by binary search or pattern
matching, surprisingly many systems provide only scrolling capabilities for sequen-

tial searching. One example is the wmw, described in Section 4.1.2, which provides
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it as a display option (Barnes and Bovey, 1986). We would expect poor perfor-
mance of a distribution derived from alphabetic ordering. Letter frequencies aside,
it should do no better than a random ordering of events. Performance is easily
evaluated by seeing how many pages of previous activities would have to be scrolled

on average before the desired item is found.

User’s traces were re-analyzed by placing their command lines on a history list
in ASCII order. If a new submission is identical to one already on the list, it is

ignored. An example of an ASCII-ordered list is included in Table 6.1.

Context-sensitive history lists by directory. Users of computer systems per-
form much task switching (Bannon et al, 1983), where each task represents an
independent or interacting context. (See Section 8.1 for further discussion.) Since
many command line submissions are specific to the task at hand, it is reasonable

to hypothesise that context-sensitive history lists will give better local predictions.

Ideally, the reuse facility would infer the context of every submission entered
and place it on an appropriate history list, creating a new one if needed. Events
common to multiple contexts could perhaps be shared between lists. The system
would then infer the likely context of the next submission and offer its predictions

for reuse only from the appropriate list.

Associating a user’s activities with their tasks or goals is not easy, and such
inferences cannot be made reliably. Instead, a simple heuristic provides a reasonable
guess of one’s true context. UNIX furnishes a hierarchical directory system for
maintaining files. As inany user actions reference these files, I hypothesize that the
current working directory defines a context for command lines. This grouping of
command lines by the current directory (or perhaps by the obvious alternative of

windows) is just an estimate — possibly a poor one — of actual task contexts.

When data was collected, each user submission was annotated with the directory
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it was run in. The traces are re-analysed by creating a new history list for each
new directory visited and placing the command line on that list. The recurrence
distance for each submission is then calculated by retrieving the history list for the

current directory of the next submission and searching it for the most recent match.

The second main column in the lower half of Table 6.1 illustrates the directory-
sensitive condition applied to the sequential input, where each sub-column is sen-
sitive to a particular directory. Most command lines refer to files in that directory,
and would rarely be used in other directories. Some command lines, however, are

common to more than one directory (for example, Is for listing files).

Ordering commands by recency. Chapter 3 showed that most individuals use
few commands, and that the frequency distribution of command selection is very
uneven. It would be interesting to see how a history list comprised of recency-
ordered commands (not command lines) would perform. Although we expect the
probability of a matching prediction Rp to be quite high, the characters predicted
per recurrence would be lower, since the rest of the command line is ignored (see

the example in Table 6.1).

User traces are re-analyzed over history lists of commands. Duplicate com-
mands are pruned, with a single copy of the command kept in its position of latest

occurrence.

Partial matches. Instead of the next command line matching a previous one
exactly, partial matching may be allowed. This is helpful when people make simple
spelling mistakes, the same command and options are invoked on different argu-

ments, command lines are extended, and so on.

However, the potential benefit is highly user and situation dependent, for the
user must alter the selected sequence before it is invoked. Consider the next sub-

mission s and its partial match to a previous event e on the history list. If selecting
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and modifying e is easier and more reliable than entering s, then it is an attractive
strategy. If s is long, for example, and differs from e by a single character, selecting

and fixing e is probably faster. If s is short, it is unlikely that the user would bother.

The possibility of the given pattern retrieving an undesired interposed event
must be considered too. Consider, for example, a user who wishes to to invoke the
document formatter roff on the file file.n after submitting the following ¢sh input
lines.

roff file.n

rm *.n

edit file.n
The user enters the csh reuse directive /r which recalls the last event beginning with
the letter r, and mistakenly executes rm *.n instead of roff file.n. All files ending

with *.n are removed, and the work is lost.

Partial matches by prefix were investigated. Command lines are matched when-
ever it is a prefix of the next submission. If s = “edst fig2”, for example, some partial

matches on prefix for e could be “ed”, “edit”, “edit fig”, and “edit fig2”.

In partial matching, history lists are not altered. Rather, it is the definition of
recurrence that has changed. Any increase in predictive probability comes at the
expense of fewer useful characters predicted. Effects of partial matching are shown
for a recency ordered history list both with duplicates retained and with duplicates

pruned.

A hierarchy of command lines and command-sensitive sublists. One way
of increasing the effectiveness of a history list is by using existing items on the
display as a hierarchical entry point to related items. More specifically, consider
a history list of command lines where each item can further raise a secondary list
of all lines that share the same initial command (called a command-sensitive list).

One first scans down ¢ entries in the normal list for either an exact match which
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terminates the search, or for a line that starts with the desired command. In the
later case, the command-sensitive list is displayed (perhaps as a pop-up menu) and
the search continues until an exact match is found j entries later. The distance of
a matching recurrence is simply ¢ + 7. Given the sequential list in Table 6.1, for
example, the command sensitive sublist on item 11 would be edit fig1, edit fig2, and

edit draft.

Such a scheme could do no worse than the original method of displaying the
history list, and has potential to do much better. This method was tested by
using recency-ordering of both the primary and command-sensitive history lists

with duplicates saved in their latest position only.

Combinations. The strategies above are not mutually exclusive, and can be com-
bined in a variety of ways. The bottom half of column 2 of Table 6.1 shows one such
possibility, where the event list is conditioned by directory sensitivity and pruning.

Data sets were re-analyzed using combinations of a few conditions mentioned above.

6.1.3 Evaluating the conditioning methods

Data Selection. Conditioning by directory context is no different from standard
sequential history if subjects only work within a single directory. As not all subjects
used multiple directories, this portion of the analysis was restricted to the experi-
enced programmers, each of whom used several directories?. All other groups had
subjects who used one directory exclusively (17 of the 55 novice programmers, 6 of

the 25 non-programmers, and 2 of the 52 computer scientists).

Each subject is re-analyzed using the afore-mentioned conditioning methods

and some of their combinations for redefining both the history list and the method

2Another reason for limiting the number of subjects analysed is more pragmatic — about 4 to 8
hours of machine time were required to process a single condition for each group.
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of determining recurrences.

Length of command lines and Mp. Before delving into details of how each
method performs according to the quality metric, we need to determine the best
performance possible. To start, the average length of command lines is 7.58 charac-
ters, where terminating line feeds are not counted and duplicate lines are included.
This was calculated by finding the average line length for each subject, and aver-
aging those results over all subjects. These numbers will under-estimate the actual

characters typed, for editing sequences are not included.

Since reuse facilities can only predict lines that have been entered previously,
it is important to know if recurring lines have a different average length than those
appearing only once. Further analysis shows that the average length of submissions
that already exist on the history list is 5.97 characters, while those that appear for
the first time are 12.29 characters long. This is not as surprising as it might seem
at first, for short lines with few arguments are usually more general-purpose (and
therefore reusable) than complex lines. We would expect frequently-appearing lines

to be shorter than lines that are rarely or never repeated.

The maximum possible value for Mp, is therefore R * 5.97/100, for Mp, is cal-
culated over all submissions. As R is 74.4% for experienced programmers, Mp for

an optimal conditioning method is 4.43 characters predicted per submission.

Results. Results for all conditions are summarized in four tables, each presenting
various distributions over the last fifty items of the history list. Table 6.2 presents
the percent frequency of submissions recurring at a particular distance (Ra), while
Table 6.3 provides the same information as a running sum over distance (Rp).

The latter includes the total recurrence rate over the complete history list, which
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differs with certain conditions®. Figure 6.1 graphs the results of Table 6.3. As with
Figure 5.8b, the horizontal axis shows the position of the repeated command line
on the history list relative to the current one, while the vertical axis represents R p,

the rate of accumulated command line recurrences, as a percentage.

The next two tables involve the length in characters of recurrences. Table 6.4
shows the average number of characters saved for a recurrence at a given distance
(the value of ;). Table 6.5 displays the metric Mp, which shows how many char-
acters are saved for an average submission. This value accounts for recurring and
non-recurring submissions, and assumes that the user can select from D predictions.
Figure 6.2 graphs the performance of each conditioning method over distance using

this metric.

Standard sequential. The last chapter saw an Rp,, of 44.4% for the experienced
programmer group (also in Table 6.3). The metric Mp,, for the same group is 2.48
characters per submission (Table 6.5), which is 55% of the maximum value it could
have. These figures will be used as a benchmark for comparing other conditioning

methods.

Pruning duplicates. Although pruning duplicates off the history list does not
alter the recurrence rate, it does shorten the total distance covered by the distribu-
tion (se the history list is smaller). First, how does saving single copies of recurring
activities in their original position on the history list compare with saving items in
their latest position? A quick glance at the tables and graphs shows that the former
gives exceedingly poor predictive performance. Curiously, saving activities in their
original position gave a much higher average length of predicted strings than any

other conditioning method for lines recurring over small distances (Table 6.4). But

3The recurrence rate differs when the way of determining matching submissions changes (partial
matching, commands only) and when the history list is split into multiple lists (directory sensi-
tivity).
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distance



118

it is the low-frequency lines that must contribute most to this average, as high-
frequency ones do not remain near the front of the list. This larger than expected
line length supports the hypothesis that oft-repeated lines are shorter on average
than rarely repeated ones. The low probability values associated with those recur-
rences reduce any benefit accrued by predicting longer lines. Consider a 10-item
working set. The probabilities Rp,, of a recurrence falling in that set are 11% and
49% for the original and the latest position respectively, and the corresponding val-
ues of Mp,, are 1.10 and 2.78 characters per submission. Saving activities in their
original position is clearly ineffective. The remainder of this dissertation assumes
that history lists with duplicates pruned will save the single copy in its position of

latest occurrence.

As the working set size increases, so does the value of Rp associated with a
duplicates-pruned list when compared to the standard sequential list (Table 6.3
and Figure 6.3). Pruning duplicates increases the overall probability of a ten-
item working set by 4.8% (Rp,, = 49.1% vs 44.4%), and Mp,, is increased by 0.3

characters per submission.

Frequency order. Using recency as a secondary sort in a frequency-ordered list is
marginally better than sorting by reverse-recency. The overall probability of a ten-
item working set is 1.1% higher, and 0.1 character more is predicted per submission.
Since these reflect the bounds of these two conditions, it is hardly worth worrying
about how to do the secondary sort. Still, whenever frequency-ordered lists are

discussed in the dissertation, the better secondary sort of recency is assumed.

Frequency-ordered history lists do not do as well as strict sequential ones, even
though duplicates are not included in the former. Although the probability of a hit
in a ten-item working set is about the same (Rp,, = 44.4%), lines predicted are

shorter (as expected). The metric Mp,, is 0.6 characters less per submisson.
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Alphabetic order. As anticipated, alphabetic ordering of history lists gives the
poorest performance of any conditioning technique (this assumes sequential search-
ing through the list). With a ten-item display, Rp,, = 10.1%, and only 0.65 char-
acters are predicted per submission. If a user were scrolling through this display,
fully 100 items (or ten pages) must be reviewed on average to match Mp,, for the

strict sequential list!

Context-sensitive history lists by directory. Creating context-sensitive di-
rectory lists with duplicates retained decreases the overall recurrence rate for ex-
perienced programmers from 74.4% in the strict sequential case to 65.5%, because
command lines entered in one directory are no longer available in others. Although
this reduction means that plain sequential lists out-perform directory-sensitive ones
over all previous entries, benefits were observed over small working sets. As Ta-
ble 6.2 illustrates, the first three directory-sensitive items are more probable than
their sequential counterparts, approximately equal for the fourth, and slightly less
likely thereafter. The accumulated probabilities Rp cross over with a working set
of twenty-seven items (Figure 6.1). With a working set of ten items, directory-
sensitivity increases the overall probability that the next item will be in that set
by 2.5% (Rp,, = 46.9%). The length of lines predicted in the directory sensitive
condition are also longer than those predicted by a strict sequential list, and Mp,,

is 0.35 characters per submission higher.

Ordering commands by recency. When all aspects of a command line are
ignored except for the initial command word, the recurrence rate jumps to 95.2%.
The accumulated probabilities of recurrences are also very high when compared to
the strict sequential list — Rp,, = 72.7% vs 44.4%. But the high predictability is
offset by the low number of characters predicted. Mp,, actually drops 0.3 characters

per prediction.



120

Partial matches. Pattern matching by prefix increases the recurrence rate to
84.4%, where the recurrence rate is now defined as the probability that any previous
event is a prefix of the current one. As partial matches are found before more
distant (and perhaps non-existent) exact matches, an increase is expected in the
rate of growth of the cumulative probability distribution. This increase is illustrated
in Table 6.3 and Figure 6.1. Conditioning by partial matching increases Rp,, of a
ten-item working set by 6.4% when compared to a strict sequential list (Table 6.3),
although lines predicted are shorter (Table 6.4). Still, Mp,, is increased slightly by

0.16 characters per submission.

A hierarchy of command lines and command-sensitive sublists. The his-
tory list comprised of recency-ordered non-duplicated lines and command-sensitive
sublists shows the best performance of all conditions evaluated. The accumulated
probability of a ten-item display is Rp,, = 55.5% out of the 74.4% possible. Mp,,
is 3.3 characters per submission, compared to the 4.4 character maximum for an

optimal system.

Combinations. When conditioning methods are combined, the effects are slightly
less than additive. A few possible combinations are included by removing dupli-
cates from both the directory-sensitive and partial matching conditions. Each im-
proves as expected, as illustrated by Tables 6.2 through 6.5 and Figures 6.1 and 6.2.
Where feasible, conditioning methods can be combined even further. For example,
a partially-matched, pruned and directory sensitive history mechanism increases
R p,, over a strict sequential one by 12.7% with a working set of ten items (reported

in Greenberg and Witten, 1988a).
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6.1.4 Discussion

The recurrence rate R provides a theoretical ceiling on the performance of a reuse
facility using literal matches. It is reached only if one reuses old submissions at
every opportunity. However, finding and selecting items for reuse could well be
more work than entering it afresh, especially if it is necessary to search the complete
history list. Pragmatic considerations mean that most reuse facilities choose a small
set of previous submissions as predictions, and offer only those for reuse. While
the last chapter demonstrated that temporal recency is a reasonable predictor,
the conditioning methods described and evaluated here proved that a few simple

strategies can increase predictive power even further.

We saw that up to 55% of all user activity can be successfully predicted with
working sets of ten predictions for literal matches, depending upon the conditioning
method chosen. Given that R = 75% on average, which is the best a perfect literal
reuse facility could do, this means that the best predictive method described here
is about 75% effective, at least potentially.

When the quality metric is incorporated, we observe that the best method
correctly predicts 3.3 characters per submission (with a working set of 10 items),

compared to the 4.4 optimum calculated previously. Again, the method is about

75% effective.

In marked contrast, a few conditioning methods perform poorly. Saving du-
plicates in their original position has no benefit, and alphabetic ordering of the
history list is questionable. Although frequency ordering does not fare badly, other

methods give better results.

There is no guarantee that any of the conditioning methods describe here will
be effective in practice, for the cognitive and mechanical work required for finding
and selecting items for reuse from even a small list may still be too costly. Research

is required in three areas. First, other conditioning methods should be explored



122

that further increase the probability of a set of predictions (up to the value of R).
One candidate could use a model similar to that used by the Reactive Keyboard
(Darragh, 1988) — §4.2.2. Second, the size of the working set should be reduced.
Ideally, only one correct \prediction will be suggested. Third, the cognitive effort
required for reviewing a particular conditioned set of predictions must be evaluated.
One factor is whether the user knows beforehand if the item being sought appears
in the set, otherwise he may face an exhaustive and ultimately fruitless search.
Another factor is whether the item can be found rapidly. Given these factors, it
is possible that one conditioning technique may give better practical performance

than another, theoretically superior, one.

6.2 Actual use of Unix history

We have seen that user dialogues are highly repetitive and the last few command
lines have a high chance of recurring — the premise behind most history systems.
There are certainly plenty of opportunities for reuse, especially when appropriate
conditioning methods are engineered into the presentation of items. But are current
history mechanisms used well in practice? And how are they used? This was
investigated by analyzing each user’s ¢sh history use. During data collection, all
csh history uses were noted, although the actual form of use was not. Results should
be interpreted carefully, for they may be artifacts arising from idiosyncrasies of the

csh facilities, rather than from fundamental characteristics of reuse.

The recurrence rate and its probability distribution, studied previously, give
a theoretical value against which to assess how effectively history mechanisms are
used in practice. The average rate of re-selecting items through a true sequential
history list (as used by ¢sh) cannot exceed the average value of R, which was found
to be 74%. By comparing the user’s actual re-selection rate with this maximum,

the practical effectiveness of a particular history mechanism can be Jjudged.
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Sample Name Users of History Mean rate of
actual | (%) history uses (%)
Novice Programmers 11/55 20% 2.03
Experienced Programmers || 33/36 92% 4.23
Computer Scientists 37/52 1% 4.04
Non-Programmers 9/25 36% 4.35
[Total [90/168 |  54% | 3.89 |

Table 6.6: History uses by sample groups

6.2.1 Results

Table 6.6 shows how many users of UNIX ¢sh in each sample group actually used
history. Although 54% of all users recalled at least one previous action, this figure
is dominated by the computer sophisticates. Only 20% of Novice Programmers and
36% of Non-Programmers used history, compared to 71% for Computer Scientists

and 92% for Experienced Programmers.

Those who made use of history did so rarely. On average, 3.9% of command lines
referred to an item through history, although there was great variation (std dev =
3.8; range = 0.05% — 17.5%). This average rate varied slightly across groups, as
illustrated in Table 6.6, but an analysis of variance indicated that differences are

not statistically significant (F(3,86) = 1.02).

In practice, users did not normally refer very far back into history. With the
exception of novices, an average of 79 — 86% of all history uses referred to the last
five command lines. Novice Programmers achieved this range within the last two
submissions. Figure 6.3a illustrates the nearsighted view into the past. Each line is
the running sum of the percent of history use accounted for (the vertical axis) when
matched against the distance back in the command line sequence (the horizontal

axis). The differences between groups for the last few actions (left-hand side of the
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graph) reflect how far back each prefers to see®.

Since most activities revolve around the last few submissions, the distribution
bears closer examination. The data points in Figure 6.3b now represent the percent
of history use accounted for by each reference back. High variation between groups
is evident. Although most uses of history recall the last or second last entry, it is

unclear which is referred to more.

It was also noticed that history was generally used to access or slightly modify
the same small set of command lines repeatedly within a login session. If history
was used to recall a command line, it was highly probable that subsequent history

recalls will be to the same command.

A few csh users were queried about history use. They indicated that they are
discouraged from using esh history by its difficult syntax and the fact that previous
events are not normally kept on display. (The latter point is important, for it
enforces the belief that candidates for reuse should be kept on a display.) Users also
stated that most of their knowledge of UNIX history was initially learnt from other
people — the manual was incomprehensible. Also, the typing overhead necessary
to specify all but the simplest retrievals makes them feel that it is not worth the

bother.

6.2.2 Corroboration and extensions

Another researcher, Alison Lee, also examined history usage within various com-
mand interpreters available to the UNIX environment. Some of her qualitative

findings corroborate and add to the observations noted in this section (Lee, 1988a).

4Actual figures are probably higher than those indicated here, due to inaccuracies in distance
estimates. As the csh monitor only noted that history was used and not how it was used, the
actual event retrieved was determined by searching backwards for the first event exactly matching
the current submission. If the submission was a modified form of the actual recalled event, the
search would terminate on the wrong entry. I assume that these are a small percent of the total
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1. There were very few uses of ¢sh history.

“” (re-

2. Those uses made were of the simpler features, the most popular being
trieve the last event) and “!pattern” (retrieve the most recent event beginning

with the given pattern).
3. People rarely retrieved items by absolute or relative event number.

4. Although the history list is available for viewing by special request, users

rarely asked to see it.

5. Modifiers for editing were rarely used. When used, they tended to be of the
form Apatternl A pattern2A, which does simple substring replacement on the

previous submission.

6. Other observed ways of modifying events were by using recalled events as
prefixes or suffixes. This technique allows one to add more parameters to

previous events or to add a new command sequence in a pipeline.

7. Occasional uses were noted of recalling the last word in the previous event (ie

!$) and of printing events without executing them.

Lee also looked at tcsh, another history mechanism available to UNIX users that
uses a very simple and familiar emacs-like editing paradigm to retrieve, review and
edit previous events. Although better use of history is expected due to the improved
editing power and visualization of the history list, only a marginal increase was
noted (although the still-available csh history was used less). The visual scrolling

and editing capabilities available in tcsh were used to some extent.

6.2.3 Discussion

Many people never use UNIX csh history. Those who do tend to be sophisticated

UNIX users. Yet even they do not use it much. On average, less than 4% of all
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submissions were retrieved through history out of the 74% potentially possible. The

history facility supplied by ¢sh is obviously poor.

Some reasons for the failure of csh history follow. First, the complex and
arcane syntax discourages its use. Those who did use history indicated that only
the simplest features of UNIX history were selected. As one subject noted, “it takes
more time to think up the complex syntactic form than it does to simply retype the
command.” Also, it takes at least two or more characters to recall an event in esh.
As most simple UNIX recurrences are short (6 characters on average), users feel
that it is not worth the bother. Second, it is hard to find out about it. Csh details
are buried in a single on-line manual entry that runs to thirty-one pages(!), the text
is quite technical, and examples are sparse. Third, the event list is usually invisible.
As previous events are not normally kept on the display, frailty of human memory
usually limits recall to the last few items. These deficiencies of c¢sh hit Novice
Programmers especially hard. Even though they have the highest recurrence rate
of all groups and could benefit the most from history, they are effectively excluded

from using it.

It is too soon to condemn the ideas provided by csh, because some of the
observations are likely artifacts of using a poorly designed facility, rather than a
human difficulty with the idea itself. Still, it is worthwhile reviewing some of the

common history methods used for their benefits and detractions.

Retrieval through absolute or relative position. It is fairly difficult to asso-
ciate and remember the number of a previous event, as it is an indirect ref-
erence. Visibly tagging events with numbers offers benefit only for those
interfaces without direct selection and only when no better strategy is avail-
able. Perhaps its only viable use is as a redundant way of retrieving events

when other selection methods are available.

Scrolling and hidden views. If events are not on display, they will not be asked

for. Hidden history lists were rarely recalled, and little use was made of the
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scrolling facilities in tcsh.

Pattern matching. Simple pattern matching, especially by prefix specification,
seems promising as a textual way of retrieving events. But matching is poten-
tially dangerous, as users may accidentally retrieve and execute an interposed
but undesired event which fits the specification.

Simple methods for recall/selection of very recent events. The syntactical-
ly simplest methods are used most to recall very recent events. For example,
the “!1” directive was heavily used, even though it does not recall the most
probable event. This likely reflects the shortness of short-term memory —
users only use “!!” because the last item is the only thing they can both
remember reliably and retrieve quickly. Overloading a reuse facility with
complex functionality would not make it better.

Editing events. Although people do edit command lines as they compose them,
they may not be willing to modify previous events much. Often the cognitive
and physical overhead of recall and editing previous events makes simple re-
entry more effective. Still, some editing does occur and probably has some

value.

Concluding remarks

The first part of this chapter explored further the potential opportunities for reuse
in the UNIX ¢sh. In particular, a variety of conditioning methods were described
and evaluated. Each method used differing strategies for choosing a small set of
previous submissions as predictions of the next one. We saw that up to 55% of all
user activity and 3.3 characters per submission can be predicted successfully with
working sets of just ten predictions. The best any literal predictive method could
dois R = 75% on average, or 4.4 characters per submission. Although conditioning

methods are about 75% effective, there is still considerable room for improvement.
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The number of characters saved per submission may seem quite small. The
skeptic would conclude that reuse facilities are perhaps not worth the fuss. But a
few points should be considered. First, the number of characters saved in practice
would be considerably higher, for the string is already formed and editing is not
necessary. Actual savings are likely double the theoretical ones (Whiteside, Archer,
Wixon and Good, 1982). Second, recognizing and selecting an activity is generally
considered easier than recalling or regenerating it. Third, it may all depend upon
the user’s focus of attention. If he is selecting items from a history list with (say) a
mouse, he may continue to do so rather than switch to the keyboard. The reverse

is also true.

In marked contrast, the second part of this chapter discovered that csh history
is used poorly in practice. Most people, particularly those who are not computer
sophisticates, do not use it. Those who do, use it rarely. Only 4% of all activity
was reused, compared to the 75% possible! And in spite of the esoteric features
available in ¢sh history, only the simpler features were used with any regularity. It
was suggested that the results observed are likely artifacts of using a poorly designed

facility, rather than a human difficulty with the idea of reuse.



Chapter 7

Principles, Corroboration and

Justification

The two preceding chapters analyzed command line recurrences with dialogs with
the UNIX csh. Based on the empirical results, the first section of this chapter
formulates general principles which characterize how users repeat their activities on
computers. Some guidelines are also tabulated for designing a reuse facility that
allows users to take advantage of their previous transaction history. The second
section corroborates these principles by a post hoc study of user traces obtained
from another quite different command-line system. The final section steps back

from the empirical findings and presents a broader view of reuse.

7.1 Principles and guidelines

This sections abstracts empirical principles governing how people repeat their activ-
ities from the UNIX study described earlier. They are summarized and reformulated
in Table 7.1 as empirically-based general guidelines for the design of reuse facilities.

Although there is no guarantee that these guidelines generalize to all recurrent sys-

130
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Design Guidelines

® Users should be able to recall previous entries.

® It should be cheaper, in terms of mechanical and cognitive activity, to recall
items than to re-enter them.
® Simple reselection of the previous five to ten submissions provides a reason-

able working set of possibilities.

® Conditioning of the history list, particularly by pruning duplicates and by
further hierarchical structuring, could increase its effectiveness.

® History is not effective for all possible recalls, since it only lists a few previous
events. Alternative strategies must be supported.

® Events already recalled through history by the user should be easily rese-
lected.

Table 7.1: Design Guidelines for reuse facilities

tems, they do provide a more principled design approach than uninformed intuition.

7.1.1 Principles: How users repeat their activities

A substantial portion of each user’s previous activities are repeated. In
spite of the large number of options and arguments that could qualify a command,
command lines in UNIX csh are repeated surprisingly often by all classes of users.
On average, three out of every four command lines entered by the user have already
appeared previously. UNIX is classified as a recurrent system by the definition in

Section 5.1.

This high degree of repetition justifies the intent of reuse facilities. Recurring
inputs should be re-entered more easily than the user’s original entry, with the aim
of reducing both physical tedium and the cognitive overhead of remembering past
inputs. Reuse facilities should not be targetted only to experts, as they can help

everyone.
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New activities are composed regularly. Although many activites are re-
peated, a substantial proportion are new. One out of every four command lines
entered to UNIX c¢sh are new submissions. Composing command lines is an open-

ended activity.

Many modern interfaces provide transient menus as a way of structuring and
packaging common activities. Though useful for appliance-oriented systems— §1.2.2,
this package of favoured submissions will not suffice as a front end to the general-
purpose environments addressed by this dissertation. Although the few facilities
shared by users should be somehow enhanced, user composition of new command

lines must be supported as well.

Users exhibit considerable temporal recency in activity reuse. The major
contributions to the recurrence distribution are provided by the last few command

lines entered.

As shown in Chapter 4, most reuse facilities are history mechanisms designed
to facilitate re-entry of the last few inputs. Systems that do not have explicit
and separate displays of the event list rely on a user remembering his own recent
submissions, or on the visibility of the dialog transcript on the (usually small) screen.
Given the high recency effect, we do expect limited success by memory alone. Yet

the principle does pinpoint design weaknesses of existing systems.

First, the second to last command line recurs more often than any other single
input. But many reuse facilities favour access to the last entry instead. For example,
typing the shortcuts “redo” and “!!” in the Programmer’s Assistant and UNIX csh
respectively defaults to the previous submission, and it is slightly harder to retrieve
other items. In history through editing, a user would have to search through two

previous mixings of input and output before finding the second to last entry.

Second, the major contributions to the recurrence distribution are provided by
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the previous 7 & 3 inputs. Yet most graphical history mechanisms display consid-
erably more than ten events. HISTMENU, for example, defaults to 51 items, and
wmw is illustrated with 18 slots— §4.1.2. Considering the high cost of real estate on
even large screens, and the user’s cognitive overhead of scanning the possibilities, a
lengthy list is unlikely to be worthwhile. For example, a menu of the previous ten
UNIX events covers, on average, 45% of all inputs. Doubling this to twenty items

increases the probability by only 5%.

The cost/benefit tradeoff of encompassing more distant submissions could also
be used to tune other predictive systems that build more complex models of all
inputs— §4.2. The high recency effect associated with recurrences suggests that a
reasonable number of successful predictions can be formed on the basis of a short
memory. Perhaps a recency-based short-term memory combined with a frequency-

based long-term memory could generate better predictions.

Some user activities remain outside a small local working set of recent
submissions. A significant number of recurrences are not covered by the last few
items (about 40% of the recurring total with a working set of ten events). Doubling
or even tripling the size of the set does not increase this coverage much, as all but

the few recent items are, for practical purposes, equiprobable.

Unfortunately it is just these items that could help the user most. Since their
previous invocation happened long ago, they are probably more difficult to remem-
ber and reconstruct than more recent activities. If the command line is complex, file
names would be reviewed, details of command options looked up in a manual, and
so on. Excepting systems with pattern-matching capabilities and scrolling — both
questionable methods of recall — no implemented reuse facility provides reasonable

ways of accessing distant events. Chapter 8 will explore a few alternative strategies.
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Working sets can be improved by suitable conditioning. A perfect “history
oracle” would always predict the next command line correctly, if it was a repeat
of a previous one. As no such oracle exists, we can only contemplate and evaluate
methods that offer the user reasonable candidates for re-selection. Although simply
looking at the last few activities is reasonably effective — 60% of all recurrences
are covered by the previous ten activities — pruning duplicates, context sensitivity,
partial matches, and hierarchies of command-sensitive sublists all increase coverage
to some degree. Combining these methods is also fruitful. But they have drawbacks

too.

Pruning duplicates increases the coverage of a fixed-size list. However, if se-
quences of several events can be selected (as in the Programmer’s Assistant—
§4.1.1), pruning may destroy useful sequences. And events no longer follow the
true execution order, confounding attempts to recall them by position. Pruning
problems also arise when the history list serves other purposes. Consider, for ex-
ample, the undo facility in the Programmer’s Assistant. As side effects of activities
are stored along with the text of the activity, undoing two textually equivalent
items may have different results. In this case, items cannot be pruned without

compromising the integrity of the undo operation (Thimbleby, in press).

Conditioning the working set on the current working directory may eliminate
useful context-independent items from the history list with only a slight gain in
predictive power. But the usefulness of references may improve, since viewing the
history list may help remind the user of the specialized and perhaps more complex

directives submitted in that context.

Retrieval by partial matching allows a user to select any event and edit it
for spelling corrections or minor changes. There is no guarantee that the editing
overhead will be less than simple re-entry. The possibility of erroneously retrieving

an undesired event must be considered too.

When command-sensitive sublists are included but ignored, the potential for
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reuse is still as least as high as the primary list. Using the attached sublists can
only increase the chance of finding a correct match. Still, these sublists involve
considerably more mechanical overhead for reuse unless they are on permanent

display, and even then there is a cognitive overhead.

Some seemingly obvious or previously implemented ways of presenting
predictions do poorly. Scrolling through alphabetically-sorted submissions is
ill-suited to activity reuse. Yet this scheme pervades many modern, popular sys-
tems. The Apple Macintosh, for example, presents a scrollable alphabetic display
of files for selection within its applications. If file use is a recurrent system (which
it probably is), then structuring file lists by temporal recency could give quicker

selection, especially with large file stores.

The previous chapter has shown that saving duplicates in their original position
is an extremely poor predictive strategy for maintaining lists. Yet it is used by sev-
eral history systems. It is the only method of reviewing cards visited in Hypercard,
and is a presentation option in wmw (Section 4.1). Different strategies should be

encouraged.

Ordering lists by frequency of use may or may not give any benefit over recency.
Although used fruitfully by the dynamic menu system (Greenberg and Witten,
1985), the usability and predictive power of that system could perhaps increase
if recent selections were treated preferentially, perhaps by giving them their own

display space on the top-level menu screen.

Predicting commands without their arguments has little value. Although pre-
dictability is increased, the overall quality of prediction drops because mostly short
sequences are offered. Perhaps inclusion of command-sensitive sublists could im-

prove this fault.

When using history, users continually recall the same activities. UNIX
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csh users generally employ history for recalling the same events within a login

session. Once an event has been recalled, it should somehow be given precedence.

Functionally powerful history mechanisms in glass teletypes do poorly.
UNIX csh history fails on two points, even though it is functionally powerful. First,
most people (especially novices and non-programmers) never use it. Second, those

who do, use it seldom. Only a fraction of all recurrences are recalled through history.

7.2 Corroboration

The general principles of the previous section are based on the UNIX findings. There
is no guarantee that they generalize to all recurrent systems and applications. It is

useful to see if studies of other systems would produce the same results.

Data on a functional programming language called GLIDE was made available
to the researcher after completion of the UNIX study. Since the principles of the
previous section had already been elucidated, the GLIDE analysis is a post hoc
study. The first part of the section briefly introduces GLIDE and describes the data
collection method and the subjects. The second part lists the analysis performed

and gives the results.

7.2.1 The Glide Study

A brief description of Glide. GLIDE is an exploratory functional program-
ming environment, supporting a lazy functional language, also called GLIDE (Toyn
and Runciman, 1988). GLIDE programs consist of a collection of definitions and
an expression to be evaluated. Deﬁnitions'are partitioned into sets called flocks.
GLIDE is built upon UNIX and exploits the UNIX file system, definitions being files,

flocks directories. UNIX commands are accessible from the GLIDE environment, by
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glide> Edit member The function definition (not shown) is created
and edited 1n a UNIX file called member.g. Mem-
ber checks if an element (its first argument) is
contained in a list (its second argument). The
appropriate boolean value is returned.

glide> Define t1 « [1.2.3.5.6] A definition called t1 comprising a list is created

glide> !cat member.g The user reviews the definition of member
glideS member 8 t1 Is 8 a member of t1?

False

glide> member 2 t1 Is 2 a member of t1?

True

Table 7.2: A simple Glide dialog

using the Shell command or ‘!, consistent with other UNIX-based tools. Although
definitions can be composed directly in the GLIDE environment, they are usually
created, maintained and imported through a standard UNIX editor. The command
set in GLIDE is relatively small: 23 commands in total at the time of data collection

(Finlay, in preparation).

Table 7.2 gives a mythical and self-explanatory extract of an example GLIDE

transcript. GLIDE prompts are bold-face, and comments are distinguished by italics.

Subjects and subject use. GLIDE is used to teach functional programming to
Computer Science undergraduates at the University of York, and is also used by
staff and graduate students in the course of their research. GLIDE usage by 80 such
real users was logged unobtrusively over a three-month period for the purpose of
studying the nature of expertise (Finlay, in preparation). For the present study, 20

students and staff members having large logs were selected from the 80 participants.
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Data collection. The original data consisted of the complete transcripts of GLIDE
sessions, including commands issued by the user, the system’s response, the func-
tion definitions imported from the editors, and a time stamp of the activity (second
method— §2.2.1). The data was reduced for our analysis by stripping all informa-
tion except for user input lines. These lines were further manipulated by removing
the ones containing obvious errors, in particular mis-spellings of commands, incor-
rect recall of definitions, and syntactical misuse of commands. The final form of a
single subject’s data is a data file containing his input lines in time-sequence order.
The average data file contained 615 input lines, although there is much variation

(std dev = 492.2).

Analysis. The analysis was similar to the UNIX one described in Chapters 5
and 6, although not nearly as extensive. The recurrence rate R is found and the
probability distribution of recurrences for several conditioning techniques are de-
tailed. These are sequential ordering by recency with duplicates in place and dupli-
cates pruned, frequency ordering, and a hierarchy of command lines with command-
sensitive sublists. The metrics R4, Rp, M, and Mp are calculated over each distri-

bution.

7.2.2 Results and discussion

The average recurrence rate R is 50.2% with a standard deviation of 11.1%. Ex-
tremes range from 34% to 71.1%. The average length of a GLIDE input line is
12.6 characters, where terminating line feeds are not counted and duplicate lines
are included. The average length of submissions that already exist on the history
list is 9.7 characters, while those that appear for the first time are 15.5 characters
long. The maximum possible value for Mp is therefore R x 9.7/100, which is 4.87

characters.
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Table 7.3 summarizes the results for selected conditioning methods, where each
row presents the values of the various metrics over the last fifty items on the history
list. Figure 7.1 graphs the metric Rp on the vertical axis; the horizontal axis shows
the position of the repeated GLIDE command line on the history list relative to the
current one. Figure 7.2 is similar, except that the vertical axis now represents Mp

(cf Figures 6.1 and 6.2).

The results are quite similar to the ones found in the UNIX study. The most
glaring difference is the lower recurrence rate (50% versus 75%). Part of this differ-
ence could arise from the fact that arguments in GLIDE functions are lists. Since
lists are generally not as persistent as filenames, arguments (and their lines) would
not recur as often. Another part of this difference could be an artifact in data
collection, for white space and errors are handled differently. First, although all
unimportant white space was removed by ¢sh in the UNIX study, this was not done
for GLIDE. Recurrences arising from two semantically identical lines with syntac-
tically different white spaces are not counted as a repeating submission. Second,
errors in the UNIX study were marked when a c¢sh error message was produced.
GLIDE had no such capability, and most semantic errors were not tagged, although
quite a few syntactic ones were removed manually. Since errors are generally not
repeated, the number of unique lines is overestimated. Still, these artifacts are not

expected to change the value of R greatly!.

When conditioning methods are contrasted for GLIDE, they follow the same
rank ordering as that produced by esh use. Although there are fewer recurrences
with GLIDE, the predictive power of the conditioning methods is relatively greater.
For example, up to 43% of all user activity can be successfully predicted with work-
ing sets of ten predictions. Given that R = 50%, which is the best a perfect reuse

facility could do, the best predictive method is 85% effective for GLIDE recurrences

1The recurrence rate calculated over GLIDE logs including errors is 48.6%, just a few points lower
than the logs with errors removed manually.
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(c¢f 75% for UNIX). When the quality metric is incorporated, up to 4.43 characters
are submitted per submission when 10 predictions are available. Since the maxi-
mum value of Mp is 4.87 characters, the best method is about 90% effective (cf

75% for UNIX).

In summary, despite the numeric differences in the analyses, the principles de-
veloped from the UNIX study are corroborated by subjecting GLIDE to the same
analysis. Although new activities are composed regularly by users (around 50%), a
substantial portion of their activities are repeated (50%). Users exhibit considerable
recency in activity reuse in the same way as UNIX. The major contributions are
provided by the previous 7+ 3 submissions, and the second to last command line re-
curs more often than any other input (Table 7.3). Although some user activities still
remain outside a small working set containing the recent submissions, the predictive
power of these sets can be improved by suitable conditioning. Command-sensitive

sublists are particularly effective.

7.3 Stepping back

The analysis made of the computer systems studied so far views an activity as a
single independent command line. From a purely statistical standpoint, interfaces
that simplify reuse of particular lines have potential to reduce certain tedious aspects
of everyday human-computer interaction. But are activities really independent?
Could sets of activities, for example, be grouped as reusable and perhaps more
effective goal-specific scripts or plans? This section steps back from the empirical

findings gleaned through observations to a broader view of reuse.
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7.3.1 Plans and situated actions

A major design premise of some user support tools, particularly in the office en-
vironment, is the belief that a worker’s activity follows preconceived plans and

procedures?. This views

...the organization and significance of actions as derived from plans,
which are prerequisite to and prescribe action at whatever level of de-
tail one might imagine. Intentions are realized as plans-for-actions that
directly guide behaviour, and plans are actually prescriptions or instruc-
tions for actions. These plans reduce to a detailed set of instructions
(which may also be sub-plans) that actually serve as the program that

controls the action.

— paraphrased from Suchman, 1980

If the premise of pre-conceived plans is indeed true, then reuse facilities could
be replaced by planning tools. One example of such a tool is OSL, a high-level
office specification language (Kunin, 1980). It allows one to describe algorithms
that capture rationalized goal-related office procedures. Programming by example
is another possibility. These systems allow people to encapsulate activities as a

structured well-defined procedure— §4.3.

The procedure could be designed and used immediately, and would be available
for reuse any time thereafter. Reuse facilities, on the other hand, would be useful

only after the user starts executing the details of a plan.

But recent work by anthropologist Lucy Suchman disputes the notion of pre-

conceived plans. Her thesis treats plans as derived from sstuated action — the

2An argument parallel to the one in this section was developed independently by Lee (1988a).
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necessarily ad hoc responses to the actions of others and to the contingencies of

particular situations.

The course of action depends in essential ways upon the action’s circum-
stances. Even casual observation of purposeful action indicates that, as
common sense formulations of intent, plans are inherently vague as they
are designed to accommodate the unforeseeable contingencies of actual
situations of action. For situated action, the vagueness of plans is not
a fault but, on the contrary, ideally suited to the fact that the detail of
intent and action must be contingent on the circumstantial and interac-

tional particulars of actual situations.

— paraphrased from Suchman, 1980

Suchman suggests that: 1) plans are post hoc rationalizations of actions sn situ; and
2) in the course of situated action, deliberation arises when otherwise transparent

activity becomes in some way problematic.

But where does our belief in plans come from? According to Suchman, our
descriptions of actions as purposeful come always before or after the fact, in the

form of envisioned projections and recollected reconstructions.

We can always perform a post hoc analysis of situated action that will
make it appear to have followed a rational plan, for rationality antici-
pates action before the fact, and reconstructs it afterwards. Only after
we encounter some state of affairs that we find to be desirable do we
identify that state as the goal toward which our previous actions, in

retrospect, were directed all along.

— paraphrased from Suchman, 1980

Assuming that user activity on computers does follow situated actions, then

reuse facilities are more viable than planning systems. Since reuse facilities allow
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one to select, possibly modify, and redo single actions, they respond well to the
circumstances of a situation. When previous actions are collected as goal-related

scripts of events, this flexibility is lost.

7.3.2 Recurrences: natural fact or artifact?

Where do recurrences come from? Are they naturally part of a human-computer
dialog or are they artifacts imposed by poorly-designed interfaces? If the former,
then reuse facilities are an essential component of a good interface. If the latter,
they are merely add-on patches; the interface itself should be reconsidered. We will

see that, depending upon the situation, recurrences can be either.

The recency effect seen in recurrent systems is probably due to repetitive actions
responding to interactional particulars of a situation that is changing only slightly.
In a development task, for example, the situation may be debugging, where the
usual responses to particular circumstances comprise a debug cycle. When the
development is complete, the cycle terminates. Debug cycles are seen throughout
the UNIX traces, and seem responsible for the recurrence probability peaking on
the second to last submission. Consider this typical trace excerpt from a non-

programmer developing a document.

nroff Heading2 Chapterl | more
emacs Chapter 1

nroff Heading2 Chapterl | more
emacs Chapter 1

nroff Heading2 Chapterl | more
emacs Chapter 1

nroff Heading2 Chapterl | more
emacs Chapter 1

nroff Heading2 Chapterl | lpr -Plq &

The sequence shows the user developing a document by iteratively editing the source

text and evaluating the formatted result on the screen, using the emacs editor and
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the nroff typesetter. The user’s evaluation of the situation determines how often
the cycle is repeated. When she was satisfied with the document, she terminated

the cycle by producing a final hardcopy.

Another extracted and slightly simplified sequence from a different user illus-

trates program development using the fred editor and the ada compiler.

fred

ada -M concur -0 q5.0 q5.a | repeats 11 times
g5.0 | repeats 8 times
fred

ada -M concur -0 g5.0 q5.a | repeats 6 times
q5.0

This shows three debug cycles all related to the same development process. In the
first, the user edits some source code until it successfully compiles (11 cycles), and
then evaluates the executable program. Final tuning of the program is done by

expanding the initial debug cycle to include editing, compilation, and execution.

The actual development cycles seen supports Suchman’s thesis of situated ac-
tions. The user’s plan for the development process is necessarily vague, since bugs
and difficulties cannot be predicted beforehand. The developer must, of necessity,
respond to the particulars of each individual situation. These responses appear

repetitious because the situation is altered only slightly after each action3.

In the case of debug cycles, it is certain that some recurrences are artifacts that
can be eliminated through different interfaces. Interpreted or incrementally com-
piled programming environments, for example, remove the necessity for repeated
recompilation of the source (see Reiss, 1984, for an example). In other domains,
what-you-see-is-what-you-get text processors and spreadsheets not only remove the

“compile” step from the cycle, but also show the current state of execution. No

8 Although repetitions in the UNIX dialog shown appears identical, the changes made within the
editor application are not repetitious.
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distinction is made between the source and developing product, and any changes

update the display immediately.

But other recurrences are not so easily eliminated. Repetitions are often a
natural part of the task being pursued. Design work, for example, is fundamen-
tally an iterative process. A second example is telephone dialing. The caller may
dial the same number repeatedly when a connection is not made, or he may be a
middleman arbitrating information between two or more other people. Retrieval of
information in manuals is another example of recurrences that arise from repetition
of our intentions rather than from interface artifacts. Or consider navigation on
computers where people must locate and traverse the many structures necessary
for their current context (eg navigating file hierarchies and menu-based command
sets, and manipulating windows to find pertinent views). Since context switching

is common, these traversals would recur regularly.

Other recurrences come from long-term context switching. In the UNIX traces,
it is usual to see work on a particular task (say document development) occurring in
bursts. In a single login session, these bursts may be just a single task interrupted
by other dependent or independent diversions. Over multiple login sessions, tasks

are constantly released and resumed.

In summary, some recurrences are artifacts arising from particular aspects of
a system design and implementation. Others are not, for they arise directly from
the user’s intention, independent of the computer system. Perhaps future systems
will minimize the need for reuse facilities by eliminating the artifacts. For the
present, reuse facilities remain a potentially viable and very general way of handling

repetition.
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Concluding Remarks

A set of empirically-based principles of how people repeat their activities on com-
puters was listed in this chapter. These principles were reformulated as general
design guidelines for the design of reuse facilities. Although there is no guaran-
tee that the principles apply to all recurrent systems and applications, they were
supported by a post hoc analysis of usage transcripts of the GLIDE functional pro-
gramming language. The chapter also discussed whether it is appropriate to treat
activities as single, independent entities. It was argued that the course of action is
a response to the current situation. As a consequence, single activities could more
readily respond to changing situations than a preconceived plan. Finally, it was
argued that recurrences are both natural fact arising from cognitive behaviour and

task requirements, and artifact arising from poor interface design.

The appeal of a reuse facility is its potential benefit for any application dialog
classified as a recurrent system. A reuse facility only requires that submissions
entered to the application can be collected, presented, and selected for reuse. Since

no semantic knowledge of the domain is needed, it is a general turnkey approach.



Chapter 8

Organizing Activities Through
Workspaces

In every trade a specific way of organizing tools and objects for the
craftsman has been established. Every workshop is equipped with ap-
propriate tools and organized with respect to the specific working situ-
ation. In this way strategies for the solution of typical problems are at

hand for the workers.

— Dzida, Hoffmann and Valder, 1986

This thesis opened by advocating the common metaphor of tools for thinking
about command-based systems, where command lines are the tools that manipulate
the materials in one’s environment. The four preceding chapters pursued the notion .
that recently used lines, like tools, should be available for reuse. But reuse is not
the only strategy for supporting user activities. It is evident that people impose
some organization on their computer tools and materials, just as craftsmen do with
their physical counterparts. Real workshops support these organizations through
toolboxes for arranging and locating tools, workbenches for performing specific

tasks, shelving and drawers for keeping relevant tools and materials readily available,

150
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and so on. Computing environments, on the other hand, do little to promote
personal organization. A command-based interface is comparable to an unhelpful
clerk who waits for you to name the tool you want, retrieves the tool (if available)
from a separate room, and demands that you return it immediately after use. At
the other extreme, arranging facilities into fixed taxonomic menus is reminiscent of

a totalitarian chaining of tools to a single location.

One theme of this dissertation is that people mentally structure their activities
on computers, and that a software tool can be embedded into the interface to
support these implicit organizations. Section 8.1 reviews evidence that people’s
activities are loosely related by tasks and by functionality, and can be grouped
accordingly. In particular, a user’s normal computer interaction can be partitioned
into interleaved sets of goal-related tasks. The next section follows with several
relevant implications leading to design suggestions for a workspace — an interactive
software tool that collects together and makes available a user’s related materials
in one convenient location. Finally, a few existing implementations that profess to
support user organization are described to give the reader a feel for what is currently

available.

8.1 Relating activities

Activities are not necessarily independent of each other, but may be related in
many ways. In particular, users partition their actions and the objects they ma-
nipulate (such as files) into sets of goal-related tasks, called a task set. This was
first articulated by Bannon et al (1983), who analysed command line activity on a
UNIX system by asking users to annotate their command histories periodically with
their intentions. Their method and a short sample annotated trace were detailed

previously in Section 2.2.2.

To illustrate the idea of a task set, consider the case of one non-programmer
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A user’s task set for preparing a specific document

Command line Meaning
cd ~/Thesis go to the directory containing the desired
file
emacs Chapterl edit the file
spell Chapterl | more list the spelling mistakes tn the file
nroff Heading Chapterl | more view the formatted file on the screen
nroff Heading Chapterl | lpr & produce a hardcopy of the document on the

standard printer

nroff Heading Chapterl | Ipr —Pci & produce a hardcopy of the document on the
printer named “ct”

rm *.BAK remove the backup files ereated by the ed-
stor

Table 8.1: A user’s task set for preparing a specific document

from the current study preparing a document (a thesis chapter). A review of her
trace revealed that several command lines, listed in Table 8.1, were used consistently
for this purpose. These lines did not always follow in the same order. The activity
selected at any moment from the task set seemed to depend on the particular

circumstances (see Section 7.3).

Tasks are not invoked sequentially, but are interleaved because the user switches,
suspends and resumes his goals. This is graphically illustrated by Cypher’s analysis
(1986) of the activity flow during one person’s computer use for a single morning,
reproduced in Figure 8.1. His analysis was based on the annotated history records
collected by Bannon et al (1983). The boxes and sub-boxes in the Figure repre-
sent the duration of the 19 main activities obseﬁred and their further sub-activities.
The user’s progression through and between tasks is followed by the arrows, while
activity performance is illustrated by the shaded areas. Annotations at the bottom
describe the task. For example, the session starts with read masil, switches to repo-
sition window, switches to msg conversation, and so on (Cypher, 1986). Each task

shown may, of course, be made up of one or more activities.
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Read mail
Reposition window
Msg conversation
Check reminders
Arrange a meeting

Check calendar
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Delete old messages

7 Respond to P’s message
Send a reply
Set up a new account

Log in to remote computer

11

12
13

Help A
Find note about “fmt”
Try it out
Delete outdated message
Mail from Y
Find history programs
Fix the clock
Read documentation
Ask for help
Read over printouts
Look at a note

14
15
16
17

18
19

Play with windows
Read new mail
Make a note
Save it as a good example
File it
Find the sub-bin
Describe the example
Locate the text
Retitle a note
Make a main bin

Figure 8.1: A user’s flow of activities for one morning’s computer use, from Fig-
ure 12.1 in Cypher, 1986
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Further evidence that users interleave task sets is provided by studies of window
systems. Although all activity pertaining to a particular task is often confined to
a single window, this is not necessarily the case. For example, the contents of
multiple windows could be a different software representation of the same task. Or
windows could be implicitly related by the information in one being accessed (and
perhaps combined with) another (Card et al, 1984; Greenberg et al, 1986). Card
et al (1984) recorded how a user selected windows and suggested that the patterns
observed are reminiscent of the locality of reference behaviour when paging virtual
memory (Denning, 1970). Most user activity revolves around frequent references to
a small set of windows, and a window “fault” often signals a transition to another
small set of windows (Card et al, 1984). These findings of Bannon et al (1984),
Cypher (1986), and Card et al (1984) suggest that task switching occurs at many
levels: between sequences of input lines; between particular windows on a screen;

and between sets of windows.

These studies do not show how task sets differ between users. Perhaps a clue
can be gleaned from the work of Nielsen et al (1986), who investigated integrated
software usage by professionals in a work environment. The main goals, subgoals,
and methods used for satisfying the goals were identified for each professional. Data

was collected through questionnaires and interviews. Results were as follows.

o Five high-level application programs accounted for 42% of program use over

the population.

¢ It was not possible to rank the programs accounting for the other 58% at the

population level, as most were used by only a few professionals each.

e Integrated packages were not exploited fully. For example, users chose non-
integrated modules if they were judged more effective in terms of goal achieve-
ment than the integrated version. In ~other words, users were “choosing a set
of heterogeneous programs and integrating them in their own way” (Nielsen

et al, 1986).
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Nielsen et al conclude that integrated programs are not a panacea for communi-
cating with general purpose computers, for “most current analyses have not yet
developed categories of representation adequate for identifying the task require-
ments of integration” (p167). Even so, the large number of different programs used
by professionals and the different ways they were “integrated in their own way”
suggests that there are both subtle and overt differences between the task sets of

users.

Activities are also categorized according to the function they serve, rather
than the particular task they address. By way of analogy, consider a mechanic’s
functionally-arranged toolbox, where screwdrivers are located in one compartment,
wrenches and sockets in a second, electrical equipment in a third, and so on. Al-
though particular tools may be selected and placed on a workbench for a specific
job (se a task set of tools), the functional arrangement gives a good general organi-
zation. Functional organization is also possible in computers. For example, Hanson
et al (1984) classified UNIX commands into five general categories and measured
their frequency of use!. The categories are generic editing commands that shape
text and other objects (36%), orienting commands that inform users about their
working environment (21%), process management commands used to integrate in-
dividual commands into more complex units (10%), and social commands that
allow people to exchange information with each other (3%). The remaining 30%
were task-specific commands. Individuals would, of course, have their own different

classifications.

There are many other ways of organizing activities. Sub-activities can be col-
lected and treated as a single unit (eg pipelines, shell scripts). Activities may be
categorized not by function but by the object they manipulate (eg file-centered).

However, it is beyond the scope of this dissertation to discuss further possibilities.

1Since the frequency of use was determined by population statistics, it is not clear how accurately
they apply to the individual— §3.5.
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In summary, empirical evidence and intuitive insight suggest that activities are
related in several ways. First, user activity is partitioned into multiple levels of
interleaved task sets related by the user’s own particular goals. Different users have
different task sets. Second, activities can be associated either by function or by
the object being manipulated. Third, sub-activities can by combined into a single
chunk. It is self evident that users organize their activities in many (perhaps vague)
ways throughout the computer dialog. The only truly surprising thing is the dearth

of computer support for this kind of organizing activity.

8.2 Implications: suggestions for workspaces

While people organize their activities on computers, many systems either do not
make these organizations explicit, or do so in very restricted ways. Without online
support, people must recall or reconstruct through memory the previously estab-
lished set of activities, or they must use existing, perhaps inappropriate, groupings.

And users cannot easily share groupings that could be mutually beneficial.

This dissertation argues that the organization of activities should be made ex-
plicit and available for use through a software tool generically called a workspace.
Through a workspace, users are able to collect, organize and use their online mate-
rials, and switch between tasks. When combined with a reuse facility, users can not
only select items that were recently entered, but could bring in activities recorded

in the more distant past.

Although not new, the notion of a workspace is not as prevalent in the literature
as might be expected. This section starts by surveying the few existing works
of researchers who derived workspaces from empirical analyses. Suggestions for
workspaces identified in these reports are reviewed. Additional suggestions believed

to be important are described later.



157

8.2.1 A review of suggestions

The concept of a workspace has been proposed by other researchers, although the
labels given to the work sometimes differ (eg workbenches, tool bins, tool instru-
ments). Each researcher seems to have his own reasons for recommending a strong
explicit organization of user activities. The evidence is usually intuitive, rather than

experimentally supported.

For example, Norman (1984a, 1984b) identifies four stages of user activity —
intention, selection, execution, and evaluation — each requiring different interface
support strategies. He suggests that “workbenches that collect together relevant
files and software support in one convenient location” can enhance user activity
in some of the stages noted above (Norman, 1984b, p368). The visibility of these
items provides information that aids both the formation of the intention and its
selection. If items are arranged properly within the workbench, selected items can
then be easily executed. Unfortunately, Norman does not elaborate further on his

workbench idea.

Another example of a workspace recommendation comes from Nakatani and
Rohrlich (1983), who describe a three-layer system of organizing collections of “soft
machines” into a tools structure. A “soft machines” metaphor graphically realizes
special-purpose machine-like interface for certain activities. They suggest that this
scheme may fail if the collection of machines is not somehow organized. “We want
the collection organized so that we have easy access to all the machines needed for
the project with no unneeded machines cluttering our work environment” (Nakatani
and Rohrlich, 1983 p23). They propose a method of integrating links between soft
machines by using the analogy of tools in a workshop. The hierarchy used is a tool
bin (which is the entire set of tools); a workshop (which collects similar tools); and a
workbench (on which the actual work is done). Although they also suggest that this
hierarchy should have a parallel data hierarchy, they do not elaborate any further.
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The most comprehensive work to date is that of Bannon et al (1983). Building
on their work describing interleaved task sets, they propose an environment that
allows users to arrange activities so that their goals and sub-goals are easily achieved

(Bannon et al, 1983). They suggest several guidelines.

1. Reduce a user’s mental load when switching tasks.

2. Support suspension and resumption of activities.

3. Maintain records of activities.

4. Allow functional groupings of activities.

5. Provide multiple perspectives on the work environment.

6. Allow interdependencies among items in different workspaces.

As tasks are frequently suspended and resumed, users should be able to navigate
easily between activities (points 1 and 2 above). This was further elaborated by

Card and Henderson (1987), who add the following to the wish list.

7. Task switching should be fast.
8. Task resumption should be fast.

9. It should be easy to re-acquire one’s mental task context.

Workspaces can act as visible place-holders to reduce one’s mental load. They
should save and restore the task state between excursions. Also, the amount of
cognitive overhead when switching tasks should be reduced by allowing the user to

jot down notes and attach them to particular workspaces.

Users may wish to repeat an action identical or similar to one invoked recently
(point 3), a major argument of this dissertation. Bannon et al (1983) suggest
that re-usable context-sensitive records of activity should be included within the

workspace.
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The obvious function of a workspace is to group activities (point 4). These

relationships should be defined by the user, as discussed in the next section.

Workspaces are not necessarily independent of one another, and relationships
between them should be supported (points 5 and 6). Multiple instances of particu-
lar items should be allowed, as items from one workspace can be useful in another.
Information in one workspace may be important and/or related to another, and
the display should make inter-relations obvious. Items should be collectively shared
among several tasks, and their presentation should be task-specific (Card and Hen-

derson, 1987).

8.2.2 Additional workspace suggestions

The suggestions above, although important, are confined to support for task switch-
ing. The discussion below supplements the list of design suggestions that should be
fulfilled by workspaces. It emphasises the role of symbols, end-user personalization,

and building structures by collecting previous — instead of anticipated — activities.

Abstracting activities through symbols. Although primitive activities (such
as UNIX command lines) must be recorded in a workspace if they are to be reused,
they need not be presented to the user in their native form. Instead, syntactic
computer actions can be abstracted as symbols known to the user, where these
symbols remind users of the meaning behind the action?. The expected effect is
to minimize the user’s need to translate his desire into the syntactic actions of
the system by providing him with his own meaningful language (Shneiderman and

Mayer, 1979; Perlman, 1984).

2] use the term “symbol” according to its dictionary meaning: “a thing generally regarded as
typifying, representing, or recalling something® (Oxford Dictionary of Current English, 1984).
Other researchers have different definitions. Perlman, for example, describes a symbol as a letter
representing a name, which in turn represents a concept (Perlman, 1984). The symbols here are
not necessarily simple letters, but may be any textual or graphical representation of an activity.
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When symbols are both visible and selectable, they can be much more useful
than the conventional abbreviations provided by most command-based systems. For
example, a symbol might be a mouse-sensitive item selected from a menu, panel or
iconic display. When selected, the underlying action is executed. There is no need
for the user to have to recall the name of the symbol or the syntax of the action

invoked.

Symbols are, of course, not new to computer systems. What is novel is how
they can be used within a set of workspaces to bring together related activities.
A collection of symbols may represent the activities that make up a task set or
functional grouping. The collection may be further abstracted as a symbol, which
can itself be included in other collections. The desired effect is to represent a task
set as a collection, and to provide links from one task to another. This supports in-
terdependencies between workspaces. The user either executes particular activities
within one workspace or calls up related workspaces by selecting the appropriate
symbol. Multiple instances of workspaces are supported as well, since links need

not be exclusive.

Symbols can also represent other attributes associated with an activity. Each
entry can be annotated with extra information such as help text or a property sheet.
Depending on how one selects the symbol, the activity may be executed, the help

text displayed, or a property sheet raised for further clarification.

End user personalization. Who actually builds and maintains workspaces —
the overall structure, the activities included, and the symbols chosen? From the
population perspective, designers can create default workspaces that are adapted
by users to pursue common task sets. Previous chapters, however, argued that
little activity overlap exists between individuals, implying the need for some level
of personalization. Ideally, when a need arises that is not addressed well by the

pre-defined workspaces, each user may immediately: a) add, modify or delete any
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elements within a given workspace: b) create new workspaces or destroy old ones;
and c) alter the way workspaces are linked together. This capability is called “end-

user personalization”.

End-user personalization should allow individuals, including non-programmers,
to easily choose and arrange the tools and materials in their workspace. This re-
quirement is vital, for designers can rarely predict user activity. Personal groupings
exist (Sections 3.3 and 8.1). Particular users have their own unique task sets,
and no universal scheme can cater to individual idiosyncracies. Furthermore, user
needs, tasks, and preferences change over time, and so workbenches should be easily

modifiable.

Using old activities to construct workspaces. Users will not use a person-
alized workspace facility if it involves a significant overhead. The interface must
therefore minimize the mechanical overhead of managing workspaces. More im-
portant is the cognitive overhead of forming activities collected by a workspace.
If users must anticipate what they are going to do, then the burden of collecting
the appropriate materials into the workspace will be high. People may not know
precisely what activities are required for their task (— §7.3). Even when they do,
the activity desired must be composed, debugged, and tested to make sure that it
will perform correctly. A better method would have users collecting together their

previous activities.

It was argued in Chapters 4 through 7 that people repeat their activities, and
that a reuse facility has an important role in the human-computer interface. By
merging this facility with a personalized workspace, and by making old activities
also available as workspace items, considerable power can be gained. Users would
not only be able to redo old actions but they could use the history list as the primary
source of tried and tested candidates for their collections. They could select, copy

and add them directly into their workspace. I believe this novel synthesis is a major
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contribution of this thesis, since the potential benefits are so important. First,
workspace items do not have to be anticipated. Instead, users can perform their
task as normal and decide at any time to assemble the relevant previous activities
that make up the task set. Second, since these items are directly available, they are
recalled rather than composed. Third, they have already been debugged and tested
to some extent. Finally, interaction tedium is minimized, since modern techniques
used for selecting and transferring activities (the cut/copy/paste metaphor) should

take no more than a few seconds of time.

In summary, a workspace should allow a user to collect together and abstract
through symbols both new and previously entered activities into meaningful collec-

tions.

8.3 Implementations

Organizational strategies are not new to computer systems. Many top-level inter-
faces, for example, provide hierarchical directories for arranging files. Directories
in common are pre-arranged by the system designer. Individual needs are also rec-
ognized — users may arrange their particular sub-tree of the hierarchy in any way

they please.

Similarly, certain interfaces allow related actions to be grouped explicitly. Ded-
icated function keys are often arranged in clusters (eg cursor movement and editing
actions). Attributes of objects may be listed and manipulated within property
sheets (Witten and Greenberg, 1985). Hierarchical menus provide a hard-wired
grouping of actions, where each menu page is dedicated to some pre-defined task
(eg file manipulation). Products designed to address particular needs bundle se-

lected activities into a single package.

Implementations related to workspaces fall into three broad categories: menu-
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based taxonomies, object-oriented browsers, and multiple virtual workspaces. Menus
group activities — actions and perhaps their manipulated objects — into taxo-
nomic chunks. Browsers, on the other hand, provide a rich development environ-
ment strongly tied to the explicit structure inherent in objects produced by object-
oriented programs. Multiple virtual workspaces allow users to collect and navigate
between screenfuls of windows. The three categories are described in greater detail
below, and are illustrated with a few implementations. Table 8.2 summarizes how
six contemporary workspace designs fit the suggestions mentioned in the previous
section. The list includes Workbench, a design described in the next chapter. The
intent is not to survey all workspace possibilities, but to give the reader a feel for

how some important characteristics have been implemented.

Structuring activities through menus. Taxonomic menus classify a domain
hierarchically and allow the user to navigate through it. As he does so, he attempts
to focus on the desired information by refining the category that is currently dis-
played. These menus are familiar to computer users, and have been used to access
information in very large databases (eg Videotex systems, Godfrey and Chang,

1981), and to organize activities in office automation systems (eg IBM Aoss).

A command interface to an operating system can be built using the same kind of
taxonomic structure. For example, MENUNIX shows how an extensive and flexible
operating system interface can be implemented with menus (Perlman, 1984). It
allows access to the UNIX system by displaying two menus from which users can
make selections: the file menu which lists the current working directory, and the
program menu which lists the programs currently available (Figure 8.2). Command
lines composed through these menus can be modified further using a line editor at
the bottom of the screen, while previous submissions can be reselected through a

small but visible history list.

When a file menu entry is selected, MENUNIX tries to do something sensible
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Figure 8.2: A stylized MENUNIX screen

with the file. If it is a directory file, the current working directory will be changed.
If it is an executable file, it will be run (after arguments are requested). If it is a
text file, the user’s preferred editor will be called on it. Thus users are able to edit

files and change directories with just the file menu commands.

Programs are structured into “workbenches”, and the program menu displays
names (brief descriptions) of the programs in the current workbench. For example,
one programming workbench contains sub-workbenches for general programming
and specific programming languages. Other workbenches gather writing tools, deal
with mail, and so on. When a program menu entry is selected, arguments are
requested and the program is executed. To implement the hierarchy, an entry in
a workbench may point to another workbench (in the same way that an entry in
a directory may point to another directory in the file hierarchy). Selecting one
of these entries will replace the current program menu accordingly. Of course,

one consequence of having a program menu is that the vast selection of UNIX
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utilities must be structured somehow into reasonably small subsets fitting into each
workbench; otherwise the menu would become unmanageable. In MENUNIX, this

is the responsibility of the system administrator.

MENUNIX fulfills one of the workspace suggestions by using the workbench
metaphor to gather groups of activities. Yet it fails as a workspace for two reasons
(Table 8.2). First, it does not support most task switching activities. Only one
workbench is visible at a time, and traversing the hierarchical links between them
is tedious. Outputs of previous selections are not even available when the next
activity is being composed. Second, the end user is not expected to personalize his
workbench. Yet not all programs fall neatly into the workbench paradigm; some

tools may not be in the location in which the user expects to find them.

Object Browsers. Whereas command-based systems have a multitude of inde-
pendent and unstructured tools, object-oriented programming environments take
the opposite approach. Although systems differ by varying degrees (Stefik and
Bobrow, 1986), object-oriented languages generally group data into abstract data
types called objects, where “each object (or class of objects) has a set of operations
(methods) to manipulate the data stored in that object” (Hailpern, 1986). These
objects are usually arranged in a hierarchy or lattice, and every object snherits and
builds upon the characteristics of its parents. Objects cannot directly manipulate
either the data or methods attached to other objects. Instead, they send messages

to each other that communicate requests.

A few programming environments take advantage of the highly structured re-
lationships between the objects they contain by providing a workspace — called a
“browser” — for creating, viewing, and manipulating objects. Through browsers,
users can: a) view and traverse the object hierarchy; b) view particular object de-
scriptions, their methods, and related comments; c) edit the objects and the meth-

ods; and d) change the relations between objects in the hierarchy. Depending on
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the environment and language supported, browsers also have different capabilities.
The SMALLTALK browser, for example, differentiates between the object’s class and
instance methods (Goldberg, 1984). LOOPS, on the other hand, supports multiple
inheritance (Bobrow and Stefik, 1983), and the programmer can add, delete, re-
name, and split classes, and re-organize the lattice through the browser in a way

that is not allowed in SMALLTALK (Stefik and Bobrow, 1986).

Figure 8.3 shows an example of the SMALLTALK browser in action. As shown,
the browser is made up of five subviews. The top four are menus that display, from
left to right, class categories, classes, method categories, and message selectors.
The large bottom subview is used mainly for editing templates of methods and
class descriptions, although information about the object world is also displayed

there (Goldberg, 1984).

What makes browsers particularly effective is the rigid classification of objects
and actions within the environment. Unlike traditional systems (such as UNIX),
each object understands only a limited set of actions. Similarly, action selectors
(messages) are only understood by a restricted set of objects. A browser allows the
programmer to inspect and use existing sets easily. When programming, objects and
methods are easily added, deleted, and modified. Owing to the interdependencies
between objects, it is vital for the programmer to view their relationships, for he
must know how to extend existing objects, and which ones will be affected by any

major changes.

Although object browsers are elegant workspaces for programmers, it is not
clear whether this type of organization is reasonable for non-programmers. The
browser’s organizational strengths come from revealing the underlying structure of
the object-oriented language, a structure that may be beyond the grasp and interest
of a non-programming end-user. A further detraction is that although objects are
extremely good representations of tightly related structures, they may be ill-suited

for capturing the loosely related activities contained in task sets (Table 8.2).
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Multiple virtual workspaces. Window-based systems allow users to manage
a set of windows on a screen, where each screen is considered a single virtual
workspace. A multiple virtual workspace is produced when the system remembers

different screenfuls of window sets and allows transitions between them.

Perhaps the most exciting implementation to date that represents this concept
is Rooms, which divides groups of window-based applications into collections with
transitions among them (Henderson and Card, 1986; Card and Henderson, 1987).
Each screenful in Rooms is a virtual workspace containing windows running spe-
cific applications. Many virtual workspaces exist, and a user can switch tasks by
supplanting the current workspace with the desired one. Although designed mainly
to reduce “thrashing” effects occurring when one tries to keep desired windows
visible on a small screen, it effectively allows a user to organize his collections of

applications and move rapidly between them.

Rooms brings together tasks and high-level tools.

When there is some task to be done, such as reading mail, writing a
paper, or creating a program, the user gathers a number of toolé for
doing it ... The design of the Rooms system is based on the notion that,
by giving the user an interface mechanism for letting the system know he
or she is switching tasks, it can anticipate the set of tools/windows the
user will reference and thus preload them together in a tiny fraction of
the time the user would have required ... the set of windows preloaded
on the screen will cue the user and help reestablish the mental context

for the task.

— Henderson and Card, 1986

A single room looks like a standard screen containing a few special icons called
“doors,” which link the current room directly with others. Opening a door follows

the metaphor of changing rooms. Every room also has a back door leading to the
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and allows users to choose between them through a desktop overview. And an-
other UNIX-based system called room is a simpler version of the Rooms metaphor
above (Chan, 1984). Here, icons are collected into workspaces, and each icon ei-
ther invokes a UNIX process (including parameters) or leads to another room. A
special icon called a “room maker” lets a user specify new icons. The workbench
creation system (wes) is yet another virtual workspace offering that preceded Rooms
(Greenberg and Witten, 1985b). This experimental interface used windows to pro-
vide multiple independent views into workbenches that collected together a user’s
activities. What was novel about wes was that activities executed through pop-up
menus attached to the workbenches were user-defined and maintained through a
specialized direct-manipulation editor. All important aspects of the wes are con-
tained in the implemented design detailed in the next chapter. A system somewhat

similar to wes was developed later by Dzida et al (1987).

Rooms only allows users to bundle together windows running high-level appli-
cations (e appliances— §1.2.2) with high-level tasks. But as seen in UNIX, much
activity is generated at a low level, in that old lines are reused and new ones are
formed continuously. Since there is no way to save a set of equivalent low-level activ-
ities in Rooms, its value in a general-purpose environment is probably not as high as
it could be. Informally speaking, Rooms organizes workbenches within workspaces,
but not the tools contained by each workbench (Table 8.2). Chan’s room system,
on the other hand, does provide this capability, albeit at a primitive and perhaps

tedious level (Chan, 1984) (Table 8.2).

Concluding Remarks

This chapter provided evidence that computer users organize their activities in a
variety of loose ways, most notably as collections of interleaved task sets. The

findings suggest the notion of a workspace — a software tool that allows one to
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collect and arrange related materials into an explicit structure. Workspaces allow
personalized grouping of activities and rapid task-switching between these groups.
Furthermore, activities and their related attributes can be represented by symbols,
and structures can be built by collecting together one’s previous — instead of an-
ticipated — activities. Several implemented designs were summarized and their

properties contrasted in Table 8.2.

This chapter is intended to set the scene for future studies, experiments, cre-
ative design, and evaluations. The work presented here is a pioneering effort, and
is currently incomplete. Empirical efforts for eliciting and understanding user or-
ganizations have just begun. The notions behind a workspace are also weak, for
none have been evaluated and tested to any great extent. For example, no one has
directly investigated user-composed symbols®. Similarly, it is not clear how well
users can articulate their task sets. What seems reasonable in theory may fail in

practice.

3The closest study is one by Good et al (1984), who suggest that user-derived commands improve
a novice’s ability to interact with a command system.



Chapter 9

A Workspace System: Description

and Issues

Basically, this workbench is composed of a pair of storage cabinets, on
which rests a rugged work top. The exact design of the storage cabinets
depends on the kind of work you do, the kind of tools you use, the

amount of space you have.

— Homeowner’s How-to Treasury, Popular Science,

Harper and Row, 1976, p214

This chapter describes a design and implementation of a user support tool that
embodies the reuse properties suggested in Chapters 4 through 7, and the workspace
organization of Chapter 8'. Called Workbench, the system is a graphical window-
based front end to UNIX csh. The facilities and user interface are described in
the first section, along with the rationale behind its design. Workbench is not an
end in itself. Although recently made available to selected members of the local

Department of Computer Science and now used by several people, it serves here as

!Some of the ideas in this chapter were presented at the Canadian Information Processing Society
(CIPS) National Conference in Montreal (Greenberg and Witten, 1985b).

174
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an exploration of a workspace design. It is not formally evaluated; experimental
appraisal is neither credible nor necessary at this early stage. Rather, the intent
is to discover how feasible it is to build a workspace, to note initial pragmatic
considerations arising from its use, and to suggest research areas motivated by

problems encountered or envisaged. These issues are covered in the second section.

9.1 The Workbench system

Workbench is a window-based facility that allows people to reuse and structure their
on-line UNIX esh activities. It runs within the Sunview 4.0 window environment,
and uses only the standard and familiar user interface constructs provided, such as
panels, buttons, pop-up menus and so on (Sun Microsystems, 1988). For consistency
with other Sunview applications, no attempt was made to change the “look and
feel” of these constructs. Although it caused a few problems, following this standard
nicely separated secondary interface design issues of window-based applications from

primary aspects of a workspace.

The first subsection below gives a brief account of the several standard Sunview
interface constructs used. The subsequent ones provide an overview of Workbench,
describe in detail its activity reuse facility, its organizational capabilities, and finally

the underlying architecture.

9.1.1 A brief overview of Sunview

Sunview is a user-interface toolkit that supports creation of interactive text and
graphics-based applications running within a window environment available on Sun
workstations. Although the building blocks supplied are moderately flexible, their
usage in the Workbench design was limited to follow the standard user interface

conventions pursued by most other Sunview applications. The look and feel of a



176

few of the Sunview facilities selected are described here — frames, subwindows,
ttys, panels and their items, alerts, and menus. Programming details are omitted;
they are amply covered elsewhere (Sun Microsystems, 1988). A passing familiarity

with window systems is assumed.

A frame acts as a window does in most window-based systems. It can be resized,
moved around the screen, shrunk to an icon representation, selected for input, and
so on. A frame is a Sunview object that brings together one or more other objects —
frames or sub-windows — into a common framework so that they can be operated
on as a unit. It can own non-overlapping subwindows that are constrained to fit
within the frame’s borders, and other sub-frames that are usually used to implement
pop-up windows. Within a Sunview screen, a user will typically have several opened
and closed windows on display (closed forms are represented by icons). Only one

window at a time can receive textual input, chosen by moving the cursor into it?.

Four types of subwindows are available: canvas, text, panel and tty. Programs
can draw on a canvas, and text is presented and edited within tezt subwindows. The
ity is a terminal emulator, and only one is allowed per frame. Panels are subwindows
that contain a set of controls, called panel stems. Although subwindows do not

overlap, they can be moved about in the frame under program or user control.

Menus are pop-up lists that display several choices for exclusive selection. Al-
though menus can present non-executable information, a selection usually performs
some system action. By convention, menus appear only when a user depresses the
right mouse key, and disappear on its release. Pointing to a menu item highlights it,
while releasing the mouse key on the highlighted choice selects it. Special pullright
menu items, distinguished by an arrow on their right, can display further menus.

These sub-menus appear when the user moves the cursor rightwards on the item.

2 Alternatively, Sunview windows can be configured to accept the input focus by clicking a mouse
key within it.
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Although there are many types of panel items, only the few used in the design
are described here — buttons, cycle choices and text items. Buttons are items
that usually display a framed text string or a graphical image, and are selected
by depressing the left mouse key and pointing to it, which inverts its color. An
action is triggered when the mouse key is released. Moving the cursor off a button
de-selects it. Menus may be attached to buttons, and they appear when the right
mouse key is depressed. Next, a cycle choice item allows the user to cycle through
choices in a list. A descriptive text string is displayed on the left, the current choice
on the right, and two semi-circular arrows in between. A left mouse key click will
cycle through the available choices one at a time, while depressing the right mouse
key raises a menu of possible choices. Finally, text items display a label followed
by an editable string field. Pointing to the field highlights the text and moves a
text cursor into it. Editing capabilities are primitive: the cursor can appear just at
the end of the string, and only backspace, word erase, and line erase are supported.
When more characters are entered than will fit in the field, the displayed string is
scrolled to the left. The presence of hidden characters is indicated by a left-pointing

arrow.

Alerts are pop-up sub-frames that display a message and a set of buttons in a
panel. As indicated by their name, they alert the user of some event. Unlike other
sub-frames, the alert takes control of the entire screen until the user responds to it.
These frames are distinguished visually from other windows by a large arrow that

sweeps into them.

The Sunview window system, although popular, is by no means perfect. It is
painfully slow on low-end workstations (eg the Sun 3/50), especially for manipu-
lating and switching between windows and for displaying menus. Certain interface
features are annoying. For example, new windows usually appear at random screen
locations, and several standard Sunview objects are difficult to use (eg scroll bars are

functionally overloaded). From the programmer’s perspective, it is easy to create
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applications that follow standard Sunview utilities. However, altering the interface
look or behaviour is considered difficult. Greenberg et al (1986) discuss broader

issues in the design of window management systems.

9.1.2 An overview of Workbench

The rest of this section describes Workbench. Since print on paper is a poor medium
for explaining highly interactive systems, snapshots of the workstation screen are
used to help convey the nature of the interface. The text is also annotated with notes

indicating why design decisions were made and some of the problems encountered.

Workbench loosely follows the metaphor of a handyman’s real workbench. It has
three visual components on permanent display, presented as the three horizontally-
tiled sub-windows illustrated and labeled in Figure 9.1. These are the work surface,
the tool area and the tool cabinet. When the Workbench frame is closed, it shrinks to

a pictogram of a physical workbench, shown by the icon at the top left of Figure 9.1.

The work surface is the tty subwindow on the bottom running csh, and is the
main working area on workbench. When it is selected as the focus of attention, all

lines entered through typing are processed by csh in the usual way.

The middle subwindow is the tool area. It includes a reuse facility for storing,
selecting and editing lines entered to c¢sh, and a tool panel for keeping several ac-
tivities on hand independent of history. The tool area is analogous to the surfaces
surrounding a real workbench where recently-used and favoured tools are kept on
hand. It is a Sunview panel that includes three columns of text items and a button
(Figure 9.1). The first two columns are the reuse facility, and up to eleven lines
from a history list of ¢sh input are displayed there. The third column makes up the
tool panel where up to six favoured activities can be stored. Selecting any text item
with the middle mouse button inserts the text into the work surface, which results

in its execution by csh. The left mouse button enables editing, copying and pasting
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— a left key-press highlights the text and internally stores it in a copy buffer, while
a shift-left pastes the stored string into a new text item®. Through copy and paste,

the user can move text from the dynamic history list to the static tool panel.

Note 1. The use of text items by Workbench is non-standard, for Sun-
view does not consider them to be buttons. An alternative design could
place a real button next to every text item and use that for selection in-
stead. However, this adds complexity to the interface and also consumes

more screen space.

Note 2. While button actions are invoked by clicking the left key on the
mouse, text items use the middle key for an equivalent action. This is
inconsistent. Switching the text item’s left and middle key responses is
not a solution, for it would make Workbench’s treatment of text items

inconsistent with other applications. Neither design is satisfactory.

The tool cabinet is situated in the top subwindow of Figure 9.1. Through it,
the user may open and display one of the many tool drawers available. Drawers
contain both tools and drawer handles. Both are represented as labeled buttons
distinguished by different text fonts. Selecting a tool inserts a UNIX command line
into the worksurface subwindow, while choosing a drawer handle opens a new drawer
in the cabinet, replacing the current one. The cabinet icon on the right allows the
user to cycle through the drawers just visited (left mouse button), and to review
and select from a menu of the drawers opened in the current login session or of all
drawers available on the system (right mouse button). Finally, selecting the edit

button on the panel’s right pops up a frame containing an editable representation

of the current drawer.

SThis violates the Sunview copy/paste standard, which uses a facility called the selection service.
Only time constraints prevented its proper implementation here.
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Note 3. Workbench by itself is not meant to handle all task-switching
properties addressed by a workspace. Rather, it should be available
as a window within a Rooms-style environment— §8.3. While Rooms
provides ways of collecting and switching between windows and their
associated applications, Workbench provides ways of maintaining and
organizing application- and task-specific details within a window. Due
to time constraints, a Rooms-style environment was not implemented

around Workbench.

9.1.3 Designing the tool area

Eleven previous submissions are always available for selection in the reuse portion
of the tool area (Figure 9.1). The submissions presented are continuously updated
to correspond to a history list maintained internally by Workbench. The numbering
corresponds to the order of items maintained on the history list (eg item 1 has just
been entered). These items are presented in a fish-eye view, where the font size of
the text decreases with its probability of selection. If the user wishes to view more
than eleven items, he may choose the More History button, which raises a pop-up

frame containing thirty-nine further predictions (Figure 9.2, right side).

Note 4. Given the findings of previous chapters, eleven items seems a
reasonable number. They do not consume much screen space and there

is little gained from adding more. Eleven choices may be too many.

Note 5. The fisheye view is a tradeoff between legibility and screen
area. Although the more probable items are easily read, the small size
of items in the second column may preclude their use. Unfortunately,
control of font size is not as rich as it could be — only three are available

in Sunview.
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Note 6. The reuse list is numbered and read from the bottom up. Al-
though top-down presentation may seem intuitively more natural, the
current ordering and addition of new items follows the scrolling direction

of the text in the work surface.

The history list of ¢sh input lines can be presented in several ways. By de-
fault, previous submissions are presented as a recency-ordered list with duplicates
removed. Alternatively, the user may request duplicate items to be shown by tog-
gling the cycle choice item on the workbench property sheet sub-frame — raised
through a pop-up menu attached to the More History button — illustrated near
the bottom of Figure 9.2. The user can also display command-sensitive sublists by
raising a context-sensitive menu attached to all text items. Figure 9.2, for example,
shows the sublist for all the different ways the user has submitted the frequently-
used ¢d command. The menu also displays the full view of the current selection,
which is important for long strings that are not completely visible within the text
item. The expansion alone is also available through a non-standard shifted mouse-

right key press.

Note 7. Recency-ordered history lists and command sensitive sublists
follow the design recommendations set out in Chapter 7. Although an

option for showing duplicate items is provided, it seems unnecessary in

practice.

Users may change the behaviour of the middle button key on a text item through
the above-mentioned pop-up property sheet. Although the key press will always
insert the text into the work surface, the user can specify whether the line should

be executed (which adds a terminating line feed).

Note 8. Insertion without execution theoretically gives the user a way

of avoiding an erroneous selection by allowing him time to reconsider
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his choice. But error handling is not so easily solved, an issue discussed

further in Section 9.2.

Any text item in the reuse area is editable, and the edited version will be
executed upon selection. However, the original form will be maintained properly
on the history list. In Figure 9.2, for example, if item 5 (latez galley) is changed
to latez galley-test and then selected, the new version will then appear as item 1,
while the original form moves on to item 6. If the edited item is not selected, it will

revert to the original text after the next update.

Note 9. As previously mentioned, Suntool text items have poor editing
capabilities. This is frustrating, for even simple text modifications are
tedious and usually not worth the bother. The only real value of editing
is that text is easily appended to an item (which supports the partial
matching by prefix method — §6.1.2). Sunview will support proper

editing in the near future.

Workbench remembers its current state between sessions in several files. By
default, history is saved in one location only. However, the user can also save (and
optionally restore) his history in different files through the workbench property
sheet (Figure 9.2). For example, using a relative file name will make the history
list directory-sensitive on startup. Through a pop-up menu attached to the More
History button (not shown), one can save, clear, or load the history from or to a

file at any time during the session.

Note 10. Chapter 7 indicates that directory-sensitive history lists pro-
vides some predictive benefit. Although saving history in different files
lets users open workbenches primed to certain activities, this probably
will not be used. Directory-sensitivity should be properly integrated in

the next version of Workbench as an option.
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Finally, users can type or copy executable lines from the reuse area into any
one of the editable six text items in the tool panel. The text remains in place until
it is next edited by the user, fe it acts as a tool cache. Copying is fast; several items
can be transferred in a few seconds. Furthermore, items in the tool panel respond

to mouse selections in exactly the same way as do text items in the reuse area.

Note 11. An alternate design of the tool panel considered placing his-
tory selections into empty slots, taking advantage of the fact that users
continually recall the same activity when using history— §7.1.1. This
feature was not included due to the danger of overloading the tool panel’s

functionality.

9.1.4 Designing the tool cabinet

The tool cabinet displays a drawer at a time. The drawer’s name appears in the
title bar of the Workbench frame, and its contents are located in the top sub-
window. Entries in a tool cabinet drawer comprise four types, where three are
presented as text buttons and one as a pictogram. The first is a tool that invokes
a Unix command, which is inserted and executed in the work surface upon button
selection. The second is a drawer handle, whose selection will close the current
drawer and open a new one. The other two are special-purpose edit and cabinet

buttons.

A tool has three internal components; an executable string, a short label, and
some help text that describes the tool’s function. Only the executable string is
mandatory. Tool buttons display the label (if there is one), or as much of the
executable string as will fit. At any time, the user can raise a help menu that
displays the help text (if any is available) and the executable command. Figure 9.3
illustrates the help menu for the tool button labeled Edit Refs. The help string Edit

my refer file appears as the first menu item, followed by the executable string gmacs
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new. The user invokes gmacs new by either clicking on the button or selecting it

from the help menu.

A drawer handle has only two components; a short label which is also the name
of the drawer to be opened, and a help string. The label is displayed in a serifed
font to distinguish it visually from the sans-serifed tool button. The help menu
works the same way as the one described above, except that no action is displayed.
The button labeled MatnDrawer in Figures 9.2 and 9.3 is one example of a drawer
handle. If it were selected, the entries of the current Bibliography drawer would be
replaced by the ones from MainDrawer. The title bar is also updated to reflect the

drawer’s name.

The cabinet pictogram is a button that offers another navigation scheme for
drawers. Raising its menu shows a trail of all drawers visited. As with the reuse area,
open drawers are maintained as a recency-ordered history list without duplicates.
The user can choose a menu item to return to any previous drawer. Alternatively,
clicking on the cabinet button will cycle back through the history list one drawer
at a time. The user may also view and select any drawer available on the system

through a menu raised via the middle mouse key.

Central to Workbench is the method of creating and altering the drawers and
the items they contain. Without the ability to personalize it, the cabinet would
have limited novelty and would contain no fundamentally new ideas, being simply a
way of allowing users to navigate through a predetermined network of utilities. But
the inclusion of an end-user creation/maintenance system provides an interesting
medium in which to explore explicit user personalization in a rather sophisticated
interface. It is essential to success that modification be quick and easy, for if not,
novice users will be denied access to a tool which should make work much easier
for them, and expert users will not alter the support structure to reflect changing

requirements.

The user defines drawers in the first place by filling out and editing a simple
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form,r raised as a pop-up window by selecting the edit button on the tool cabinet
(Figure 9.3). The top line of the form shows the name of the drawer, while each
subsequent line represents the attributes of a single drawer button. The choice item
sets the button type as either a tool or a drawer handle. The three other fields in
the line are editable panel text items that specify the label, action (for tools only),
and help associated with each button. Figure 9.3 shows a snapshot of Workbench
with the current Bibliography drawer opened for editing. The relation between the

drawer’s items as shown in the cabinet and in the form should be self-evident.

Note 12. Users are invited to document their tools when created by
attaching a meaningful symbol to an action, and by annotating it with
help. This ameliorates one of the most severe drawbacks to explicit per-
sonalization schemes — that a user becomes confused and disoriented
when faced with another’s model (and perhaps even with his own). Al-
though there is no check that the user-supplied label and help infor-
mation is accurate, the fact that it can be provided should encourage
sensible use. However, attaching help to buttons is non-standard in

Sunview.

A user edits or expands an existing drawer by traversing the network in the
normal way and then selecting the edit button, which always displays the current
drawer. New ones are created by selecting the button labeled New Tool Drawer at
the bottom left of the form and filling in the vacant fields as desired. Drawers are
linked to each other by changing the item type to a drawer handle and filling in the
appropriate name in the label slot. The user quits the editing session through the
Done Editing button, and an alert box giires him the option of saving or discarding

any changes made.

Note 18. The user has no support for globally examining, modifying

or removing links between drawers. This lack is quite serious. Sec-
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tion 9.2 will discuss this deficiency and raise other general concerns of

user-created networks.

Note 14. If a user wishes to create an explicit link to an existing drawer,
he must recall and type it in, a highly error-prone activity. A better
method would attach a menu to the label field of the drawer handle

that lists all the drawers available and inserts the name selected.

A novel and necessary feature of the drawer editor is that activities can be
copied from the history list or tool panel to the current drawer item. The method
is the same used to transfer text within the tool area. In fact, lines can be copied

from one text item to any other throughout Workbench.

Note 15. The current system follows the simple strategy of copying
straight text from one text item to another, a clearly limited approach.
One should be able to select and group multiple fields and multiple
lines for copying as a single entity. This would reduce tedium for the
user who, for example, wishes to package all his tool panel items into a

drawer.

The drawer editor sketched above is a user interface prototyping scheme for
creating simple interfaces with control panels. With it, end users can easily and in-
teractively build a window interface for a command-based interactive program. For
example, a UNIX software tool with a plethora of switches to generate different vari-
ants of its behaviour can in a matter of minutes be given a smooth, window-based,
interface which is controlled by buttons, each having pertinent context-dependent
help. Similarly, activities surrounding a task can be pulled off the tool area and

packaged as a drawer.
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9.1.5 Underlying architecture of Workbench

Workbench is an independent UNIX process that communicates with application
programs. Upon invocation, it creates a unique UNIX socket (Sun Microsystems,
1986b), and then spawns a single new c¢sh process. While Workbench is listening for
any messages sent to it, c¢sh searches for and establishes one-way communication
through the socket. Workbench then becomes a receiver that collects historical

activities directly from csh.

As a sender, Workbench does not communicate directly with csh, but merely
inserts text into the workspace. The current application receives the text as if the

user typed it in himself.

Note 16. Multiple applications running concurrently can be supported
by this architecture, as Workbench can receive messages from any pro-
cess that sends to it (although only esh is used in this version). By
maintaining and switching between different history lists, the presenta-
tion of activities on the tool area could then be application sensitive.

This theme is expanded upon later.

History is maintained in a data structure that allows Workbench to present the
list rapidly under three conditioning methods: sequential order showing duplicates,
sequential order with duplicates shown in latest position only, and as a command
hierarchy with command-sensitive sublists. Although not particularly elegant, the
data structure serves its purpose quite well. Figure 9.4 illustrates how some of
the lines shown in Figure 9.1 are maintained. As shown, the true history order
is maintained as a linked list, where each node (called a line node) points to its
corresponding command line, maintained separately in a binary tree (far left of the
figure). Many line nodes may point to the same line, as only one copy is retained.
Displaying the n most recently entered lines is simply a matter of getting the lines

attached to the first n nodes at the head of the list.
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The method for retrieving n lines with no duplicates shown is slightly more
complex, for it avoids pattern-matching as a method to determine if something
has been seen before. It relies upon integer markers stored with every line in the
binary tree and a single global counter, all initialized with values of zero when
Workbench is first invoked. Detecting duplicates is straightforward when each is set
appropriately. When the view of the history list is to be updated, the global counter
is first incremented to make sure that its value differs from all markers. Each line
node is then visited in order. If the marker and counter differ, the item is presented
and the marker set equal to the counter. If they have the same value, then the item
has already been presented. The process terminates when the required number of
items are found or when the history list is exhausted. There is no need to update

nodes which have not been visited.

Command-sensitive sublists are maintained separately by using two additional
binary trees (Figure 9.4, right side). One stores unique copies of all the commands
(te first words in lines) seen so far, while the other contains all arguments (remainder
of lines). Every node in the binary tree of commands maintains a recency-ordered
linked list of pointers to the appropriate arguments in the other tree. This becomes
the command-sensitive sublist. Since every line node also points to its correspondifxg
command node, finding and retrieving the list of arguments is fast. Figure 9.4, for
example, shows how the last three arguments used by the e¢d command are stored
(also displayed in pop-up menu of Figure 9.2). Duplicates are processed in exactly
the same way as the duplicate-removed history list mentioned previously. Again,

no pattern-matching is required to update the list.

Note 17. Presenting and updating the history list is quite rapid, even
when the auxiliary pop-up history panel is displayed. The user does
not have to wait for the system to catch up with him. Similarly, the
command-sensitive menu appears almost instantly. But given the speed

of most window-based workstations and the relatively small values of n
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and of items maintained in history, the data structure used may seem
overly complex and unnecessary. However, an early prototype built on a
L1SP machine performed poorly when items were maintained as a simple

record of lines entered and retrieved through pattern matching.

Note 18. Another and perhaps more elegant data structure uses a single
history list that maintains all pointers internally. For example, one chain
of pointers would lead through the true sequential order; another would
by-pass all duplicates, and so on. No counters need be maintained, as
all information is provided by the links themselves. A hash table or
its equivalent would be available for rapid indexing into the structure.
While this structure is slightly more efficient than the one used, it is

slightly harder to code in the “C” language used for this implementation.

9.2 Pragmatic concerns and research questions

In the design presented here, a workbench metaphor was adapted for a user support
tool that keeps recently-used input lines available for selection and provides people
with the capability of organizing their collections of lines. Yet several significant
problems exist. First, serious engineering concerns arise from Workbench being just
a front-end to an application. Second, several aspects of the design raises open

research questions that need answering. Both themes are pursued in this section.

The lack of input redundancy. Workbench provides a way of executing an
input line by a single press and release of a mouse key. As this eliminates input

redundancy, it is quite difficult for the user to catch erroneous selections.

Consider a person who has written a document after removing an old one, where

the actions displayed in the reuse area are ls, rm document, and edit document. After
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editing, the person decides to list the files (Is), but a sloppy selection mistakenly
chooses the command that removes the newly created document. Destroying a
day’s work would certainly undermine one’s confidence in Workbench, and could
discourage its continued use. The same argument applies, of course, to menus and

buttons.

The problem of no input redundancy is not peculiar to this design, but plagues
any system that allows users to invoke an action in a single step. One sometimes
sees attempts to add artificial redundancy. The tool area, for example, can be set to
insert a line into the work surface without executing it. The user can then preview
the line and accept it by hitting the return key. Similarly, every choice could be
confirmed through an alert box. Yet neither are good approaches, for the act of
acceptance often becomes a conditioned response. A better approach would include
undo operations, of which many styles are available (Thimbleby, in press). Users
could then aggressively explore and pursue their actions, for they know that they

can backtrack to previous acceptable states at any time.

By itself, Workbench cannot hope to solve this problem, for it is just a front

end to an application that may not have an undo capability.

Collecting and presenting input from different applications. Reuse facili-
ties must somehow collect a user’s input before it can be presented. One architecture
considered uses a pseudo-tty input filter that collects every line before it is submit-
ted to the application, and passes a copy to Workbench. This method is general
purpose and requires no modification of the source code of an application. However,
it has several disadvantages. First, input to some applications may not follow the
pattern of recurrent systems (eg lines of free text). However, their entries would still
be collected and presented for reuse. Second, items from all applications would be
presented together, even though it is unlikely that the user could make use of lines

submitted to one application in another (eg csh versus lisp input). Third, applica-
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tions have no opportunity to massage input before passing it on. Errors cannot be
treated differently, lines cannot be expanded, inappropriate submissions cannot be
discarded, and so on. Effective reuse requires some applications to massage their
input, as primitive activities may not be demarcated or well represented as a sim-
ple line. In emacs, for example, an activity could be an extended command line,
which is denoted by an <escape-X> prefix. A hierarchical menu traversal may be
represented by the name of the leaf node reached rather than (say) the function

keys pressed.

For the reasons above, applications should be responsible for collecting, mas-
saging, and passing on a user’s input. Non-recurrent systems would not do this, and
the reuse facility would be made application-sensitive by maintaining and switching
between various history lists. Yet this is impossible in the current UNIX environ-
ment. Source code is rarely available, and the task of modifying even a few key
applications is daunting?. Clearly, an integrated system incorporating history col-
lection primitives would have to be designed from the bottom up. The Symbolics
LISP environment is currently the only general purpose environment that embeds

and supports a uniform reuse facility across all applications (Symbolics, 1985).

User-defined symbols. The cabinet encourages users to label and add help to all
their tools and drawer handles. Although intuitively appealing, there is no empirical
‘evidence that this is a good strategy. Do individuals remember the meaning behind
their labels over time? Are help annotations useful? Can a person use a cabinet

created by someone else? These are all open questions.

Forming and maintaining drawers in a cabinet. The cabinet has no inherent

structure of its own. Users can only list all drawers, or chase their own explicit links

4Obtaining, understanding, altering and debugging the sparsely commented and undocumented
source code of csh spanned a four month period.



196

betwéen drawers. As a drawer can link to any other drawer, the navigation space
is a network and is potentially complex. Yet it is not known whether personalized
networks are usable in practice. Experimental evidence suggests, for example, that
users of the UNIX hierarchical directory recall only half the names in their directory
areas accurately after being out of touch with it for a lengthy time (Akin et al, 1987).
Users were also seen to develop search strategies for misplaced files. However, since
the cabinet relies on recognition rather than recall, it is not clear how well the UNIX

results apply. Again, these are open questions.

The navigational problems of a cabinet are potentially as complex as the ones
found in hypertext systems, and call for an equivalent support structure. At the very
least, the network should be portrayed as a graphical map that allows users to visit
and modify the contents of drawers and connecting links between them through
direct manipulation. Methods should be incorporated to ensure consistency on
modification. For example, changing a drawer’s name should be reflected by all

links.

Generalization. Tools in a drawer (and possibly lines presented by the reuse
facility) could have greater value if their parameters could be generalized. Currently,
Workbench only inserts a line into the work surface, and no facility is available to

prompt for or to generalize its arguments®.

Generalization can be implemented by having the user explicitly mark a vari-
able. Perhaps a prompt would be specified, defaults indicated, a list of available
choices provided and displayed as a menu, the input limited to a specific type,
and so on. Information could be presented and retrieved through a pop—ﬁp prop-
erty sheet attached to the tool. Similar methods have already been implemented

to elaborate programming constructs after creating a macro by example (Halbert,

5This is not strictly true, for csh provides a way for a command line to get its input from subsequent
input lines. For example, echo “Show what file?”; cat $< will print the prompt Show what file?
and use the user’s response as the argument to the cat command.
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1984). Perhaps the system itself could infer the generalization.

But are users, especially non-programmers, capable of specifying and main-
taining these potentially complex behaviours of tools in a dynamic general purpose

environment? And is it worth their time and effort? No one knows.



Chapter 10

Conclusion

If I send a man to buy a horse for me, I expect him to tell me that

horse’s points — not how many hairs he has in his tail.

— Carl Sandburg’s Abraham Lincoln

This final chapter will be brief. First, the argument of the thesis is reviewed.
Next, the original contributions are identified. Finally, new directions for research
are sketched. The individual components of the thesis are not evaluated or criticized

because this has been done at the end of each chapter.

10.1 Argument of the thesis

We began with the observation that orders given to interactive computer systems
resemble tools used by people. Like tools, orders are employed to pursue activities
that shape one’s environment and the objects it contains. People have two general
strategies for keeping track of the diverse tools they wield in their physical work-
shops. Recently-used tools are kept available for reuse, and tools are organized

into functional and task-oriented collections. Surprisingly, these strategies have not

198



199

been transferred effectively to interactive systems.

This raises the possibility of an interactive support facility that allows people
to use, reuse, and organize their on-line activities. The chief difficulty with this
enterprise is the dearth of knowledge of how users behave when giving orders to
general-purpose computer systems. As a consequence, existing user support facili-
ties are based on ad hoc designs that do not adequately support a person’s natural

and intuitive way of working.

Admittedly, a few recent studies have analyzed people’s behaviour when select-
ing orders. However, closer examination shows that they concentrate exclusively
on commands (the verbs of the human-computer dialog), and ignore options (the
modifiers) and other arguments (the nouns or objects) of the command line. Con-
sequently, a new study was undertaken to characterize people’s behaviour when

selecting complete command lines.

Because of their potential for reuse, repetition of command lines deserved spe-
cial attention. The problem is to identify likely candidates for reuse, and several
ways of conditioning the distribution to enhance predictive power were evaluated.
Several striking characteristics of how often people repeat their activities emerged
from this study. They were abstracted from usage data gleaned from many users of
different classes over a period of months. Reformulated as empirically-based general
principles, they constitute design guidelines for a facility that predicts old submis-
sions for reuse. A case study of actual usage of a widely-available history system

provided a salutary reminder of the need for careful attention to design details.

So much for history and reuse. The next question was that of organizing activi-
ties by task and by function. An on-line facility called a “workspace” was described
that allows people to gather together their tools for related activities. The prob-
lem is to identify the properties a workspace should have. Since our knowledge in
this respect is limited, the properties were formulated as suggestions, and the list

was augmented by creative ideas from existing designs that seem to capture some
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flavour of what a workspace should be.

Based on these suggestions, a system that loosely follows the metaphor of a
handyman’s workbench was designed and implemented. It includes a tool area
made up of a reuse facility and a tool panel, where both recently-used and explicitly-
cached submissions are kept available for immediate reuse. Through a tool cabinet,
a person can organize his tools in drawers, and link drawers into a network by
drawer handles. Any submission available on the history list can be copied and
pasted into the tool panel or any drawer. Despite its principled design, the system
illustrates that serious pragmatic problems are encountered when user support tools

are bolted on to existing computer systems.

10.2 Original contributions

Absolute originality in the field of human-computer interaction is hard to come by.
A very wide spectrum of ideas has been mooted in one form or another; anyways,
human-computer dialogs are analogous to human-human and human-machine ones
that have been developing for aeons and studied for centuries. For example, the idea
of a reuse facility is clearly not new. Neither is the idea of a workbench. MENUNIX,
Rooms, and the SMALLTALK Browser, surveyed in Chapter 8, can all be considered
workbenches of one form or another. To find ideas absolutely original to this thesis,

one must move to a finer grain of analysis.

There are two. One is the idea of conditioning history by command context to
give better predictions. When combined with removing duplicates from the recency-
ordered list, fully three-quarters or more of all recurring submissions can be chosen
from a short history list (compared to two-thirds for a recency-only list). The quality
of submissions presented is also higher, as measured by the length of text predicted.
Since the order of submission entry is maintained, the user himself can predict the

system’s offerings and its location on the list, and not waste time searching for items
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that é.re not there. The second is the idea of using the history list as a primary
source of tried and tested candidates for storage within the workbench organization.
When combined with direct manipulation editing of workbenches (first mooted by
Greenberg and Witten, 1985), a person can rapidly create, annotate, and modify

his personal workspace so that it responds to his situated needs.

Aside from these two completely original contributions, there are a number of
others which, while certainly important, have the character of more routine advances

in human-computer interaction.

e In surveying studies of UNIX use:

— faults and limitations of all data collection methods have been identified;
— population statistics do not transfer well to individuals;
— command lines are just as important as commands, if not more so.

e In a new study of UNIX usage:

— growth of a user’s command vocabulary is slow and irregular;
— growth of a user’s command line vocabulary is rapid, linear, and regular;
— recurrence rates for different groups, although different, are quite high;

— the probability distribution of recurrences over a history list is strongly
skewed towards recency of entry;

— methods for conditioning the distribution can be ranked by predictive
quality;
— a case study of UNIX esh history indicate how poorly it performs.
¢ In generalizing and validating the study:

— a set of principled guidelines for reuse are offered;

— testing a different system enforced the belief that these principles can be
generalized.

e In analysis of history systems:

— reuse facilities are categorized and surveyed within a new taxonomy;

— recurrent systems are defined, and UNIX csh is described in that context.
e In the concept of workspaces:

— people organize their online activities;

— several design suggestions for a workspace are elaborated;

— a principled design can be implemented on top of existing systems;
— bolt-on user-support facilities are not the complete solution.
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10.3 Looking to the future

The scope for future research into reuse facilities and workspaces is large. The first
step, of course, is simply to get these ideas integrated into future computing systems.
I see the next decade blending the expert-oriented general-purpose environments of
the seventies and the special-purpose appliance interfaces of the eighties, perhaps
through a metaphor similar to the workbench. First time and casual users will
have a default workbench structure to begin with (created by the designer through
discussion with users and analysis of their generic needs). It is a simple learning
progression to go from modifying individual workbenches, to adding new ones, and

finally modifying or creating new support infrastructures.

The exciting possibility of workbenches modifying themselves (possibly through
consultation with the user) would go even further to ensure their effectiveness. I
foresee an intelligent interface monitor which keeps track of user activities and offers
potentially useful workbench configurations on request. When combined with a
knowledge base, the monitor may infer tasks and the collection of tools required
from just a few user actions, possibility through stereotyping with existing models
(Rich, 1983). One consequence is rapid development of workbenches suitable for
transient user actions. The next step, of course, is to use this infrastructure as a
platform for coaching and advisory systems that detect bad task models and suggest

alternatives.

There is still great scope for new research in user behaviour. Although this the-
sis has made a start, little is known about how people use, reuse and organize their
online activities. Present reuse facilities leave considerable room for improvement,
both in their user interface and in the predictive methods they incorporate. Our
current knowledge of task formation and use is inadequate, and inferring a person’s
tasks from a trace is surprisingly difficult. It is not known how best one person’s

collection of tools can be shared with others. The idea of a workspace metaphor is
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immature. Existing workspace implementations are not widely available, and not
one has been scientifically evaluated. The viability of richly-connected networks
for organizing, linking and browsing through materials is still an open question,
now being addressed by studies of hypertext systems. Finally, surprisingly little is
known about personalizable environments. This gap must be filled if people are to

create their own symbols, annotations and networks.

Tool use started when animals searched and used the debris of their natu-
ral environment to shape their physical world. It continues with people searching
and using the tools of their computers to shape and manage their own intellectual

worlds.
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Appendix A

Instructions to Subjects

This appendix notes the set of instructions given to subjects conscripted to the
UNIX esh study undertaken in this dissertation. Instructions were not the same
for all groups, for the subscription protocol depended upon the physical machine
being used and the type of user. As these differences are trivial, only one typical
set of instructions is recorded here. Several groups of subjects received essentially

the same information in verbal form.

The packet sent to all users of ¢sh in the Faculty of Environmental Design at
the University of Calgary follows. The first page is a letter that asks the reader to
take part of the study. The second gives instructions to those wishing to subscribe,

and sooths a few obvious concerns that users may have.
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Saul Greenberg

Human-Machine Systems Laboratory
Department of Computer Science
Room MA781 (220-7140)

email: saul

October 25, 1988

To: All users of the EVDS VAX computer

Dear Graduate Student, Researcher or Professor .

As part of my PhD research in the area of human/computer interaction, I am col-
lecting data on how individuals use commands in UNIX. My study groups include a
variety of user types, ranging from computer novices and experts to non-computer
scientists such as in faculties like yours. I would like you to participate in the EVDS
study group. All you need to do is login to the EVDS VAX computer and type
trace <your login name>. Detailed instructions are provided on the next page.

The users of EVDS VAX computer are important to this study. These users —
of which you are one — tend to be around for a while, making long-term data
collection poesible. Also, recording the diverse nature of tasks done by the EvDs
group is especially relevant to my research.

I would greatly appreciate your joining this study. As you will see from the attached
instruction sheet, it is quite simple for you to become a participant. Enrolling should
take no more than a minute of your time, and everything afterwards is maintained
automatically. By the way, it doesn’t matter if you use UNIX only occasionaly, or
for only a few things — your participation is still needed!

I realite that you may be concerned about personal privacy. As the instruction
sheet explains, I have gone to great lengths to ensure the confidentiality of any data
collected.

If you have any questions, feel free to see, phone, or email me. Otherwise, just follow
the instructions on the next page.

Thanks for your help,

Saul Greenberg
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Instructions

Joining the study. If you have decided to participate in the study, log in to your VAX and
typel:

trace <your login name>.
For example, if your login name is smithy, you would type:
trace smithy.

This command is only entered once ever. By the way, the name you use must be the same as the
one you logged in with?. On the unlikely chance that you did something wrong, the system will tell
you what to do. And that’s all there is to it!

Quitting the study. When the study period is over, data collection will stop automatically.
You won’t even notice a change. If for some reason you decide to quit the study early, just type the
following:

chsh <your login name> /bin/csh

Privacy. You may be concerned about privacy and confidentiality. I have gone to great lengths
to make the data collected secure from prying eyes — no-one but me has access to the data files.
Collected data that is referred to publicly (such as in a paper), will be anonymous. Also, the only
data collected is that typed on the UNIX command line (such as Is, ed, emacs ...). I will never see
the contents of your mail, text files, etc.

Performance. You will not notice any slow-down of the system. The time it takes to record
the data is negligible. If the system ever seems slow, it has nothing to do with this study.

Side effects. There is only one cosmetic side-effect which you probably won’t even notice. When
you become a subject through that one-time use of trace, your login shell (called /bin/csh) is switched
to a different one ( saul/csh). It functions as your normal login shell does, except that data collection
takes place. The side effect is that if you ever invoke a system program which lists the complete
path of the login shell, it gives the path to the new one.

Questions. If you have any questions or comments about anything related to this study, feel free
to contact me (Saul Greenberg). You can do it in person (MA 781), by phone (220-7140), or by
electronic mail (mail saul). .

The full pathname of this program is /usr/local/trace.
3Thus you cannot subscribe anyone but yourself to the study



Appendix B

A Sample Trace

A portion of a trace belonging to a randomly selected expert programmer follows in
the next few pages. The seven login sessions shown cover slightly over one month

of the user’s UNIX interactions, and include 128 command lines in total.

As mentioned in Chapter 2, all trace records have been made publicly available
through a research report and an accompanying magnetic tape (Greenberg, 1988).
This report may be obtained from either the Department of Computer Science,

University of Calgary, or from the author .

Since the raw data collected is not easily read, it was syntactically transformed
to the listing presented here. The number and starting time of each login session is
marked in italics. The first column shows the lines processed by csh after history
expansions were made. The current working directory is given in the middle col-
umn. Blank entries indicate that the directiory has not changed since the previous
command line, and the “~” is esh shorthand for the user’s home directory. The
final column lists any extra annotations recorded. These include alias expansions of
the line by csh, error messages given to the user, and whether history was used to

enter the line. Long alias expansions are shown truncated and suffixed with “...”.
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Command line

Sessson 1: Mon Feb 28 16:09

mail

Session 2: Thu Feb 26 11:05

man mklib
man -k mklib

Sesston 8: Thu Feb 26 22:06

cd 500

Is

vhide

c

Is

e assign9
spitbol assign9
e

spitbol assign9
e

vhide

lpr .hide/graph.spit
cd .hide

Ipr graph.spit
Ipr symbol

cd 500

Is

e assign9

e

spitbol assign9
Is

e

spitbol assign9
e

spitbol assign9
e

ftp vaxc

Is

more assign8.spit
e assign9
spitbol assign9
e

echo poop > file
spitbol assign9
e

spitbol assign9
e

spitbol assign9
e

Is

e

Directory

~ /500

~/ hide

~ /500

Annotations

Alias: /usr/ucb/mail

Alias: cd 500 ; set prompt = ”[$cwd:t] #!...

Alias: echo — .hide directory —; 1Is ...

Alias: /usr/ucb/clear
Alias: emacs assign9
Alias: emacs

History used
Alias: emacs

Alias: echo — .hide directory —; Is .

Alias: cd .hide ; set prompt = *[$cwd:t] ...

Alias: cd 500 ; set prompt = ”[$cwd:t] #!...

Alias: emacs assign9

Alias: emacs

Alias: emacs
History used
Alias: emacs
History used
Alias: emacs

Alias: emacs assign9
History used
Alias: emacs

History used
Alias: emacs
History used
Alias: emacs
History used
Alias: emacs

Alias: emacs
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spitbol assign9
:pitbol assign9
:pitbol assign9
;:pitbol assign9
s

rm assign8.spit *.bak *.ckp file

Is

e filel

cp filel file2

e file2

spitbol assign9
e assign9
spitbol assign9
e

spitbol assign9
e

more file3
assign9
spitbol assign9
e

Is

more file3

rm file3

more filel
spitbol assign9
more filel

e

spitbol assign9
e

spitbol assign9
e

spitbol assign9
more file3
more filel
more file2

e

spitbol assign9
e merge.error
e assign9
spitbol assign9

more merge.error

e
cat assign9
AAcat assign9

AAcat assign9

cat assign9

Is

218

History used
Alias: emacs
History used
Alias: emacs
History used
Alias: emacs
History used

Alias: mv assign8.spit *.bak *.ckp file /...
Alias: emacs filel

Alias: emacs file2
History used

Alias: emacs assign9
History used

Alias: emacs
History used

Alias: emacs

Error: system — permission denied
History used
Alias: emacs

Alias: mv file3 /.kill/
History used

Alias: emacs
History used
Alias: emacs
History used
Alias: emacs
History used

Alias: emacs

History used

Alias: emacs merge.error
Alias: emacs assign9
History used

Alias: emacs

History used
Error: execution - command not found
History used
Error: execution — command not found
History used



rm *.ckp *.bak merge.error file3 Alias: mv *.ckp *.bak merge.error file3 /... 219

ls

script

Ipr typescript

Ipr typescript History used
limits

Session 4: FPri Feb 27 18:57

cd 500 ~ Alias: cd 500 ; set prompt = *[$cwd:t] #!..
1s ~ /500

e assign9 Alias: emacs assign9

Is

rm *.bak typescript Alias: mv *.bak typescript /.kill/

Is

rm merge.error Alias: mv merge.error /.kill/

rm file3 Alias: mv file3 /.kill/

1s

cd Alias: cd ; set prompt = *[$cwd:t] #! —>...
script ~ ‘

Is

Ipr typescript

Sesston 5: Frs Feb 27 21:50

cd 510 ~ Alias: cd 510 ; set prompt = *[$cwd:t] #!..
Is ~/510

e rohl_machine.p Alias: emacs rohl_machine.p

Session 6: Tue Mar 24 10:08

prmail ~

who

Is

1 Alias: s -asl ;

morembox Error: execution — command not found

more mbox

Session 7: Fri Mar 27 15:87

cd 510 ~ Alias: cd 510 ; set prompt = ”[$cwd:t] #...
Ipr rohl_machine.p ~ /510

Ipr rohl_compiler.p

spit Error: execution — command not found

Ipq

8 Error: execution — command not found



Appendix C

Summary Statistics For Each

Subject

The following pages list a few basic statistics observed for the subjects involved in
the study. Each subject is identified by the name of his group and a number. For
example, “novice-1” is the first subject of the Novice Programmer group. These
names match the file names found in the publicly available trace data (Greenberg,

1988).

The statistics include each user’s number of login sessions, the command lines
entered, the different commands used, the ¢sh errors noted, the times history was
used, and the different directories accessed. For example, novice-1 entered 2457
command lines over 55 login sessions. Of those lines, 213 produced esh errors.
History was invoked 37 times, 18 different directories were visited, and 67 different

commands were used.
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Novice Login Total Different | Errors Times Different
subject sessions | command | commands | noted history | directories
number lines by csh | was used used

novice-1 55 2457 67 213 37 18
novice-2 118 1267 22 58 0 11
novice-3 345 2337 26 93 0 1
novice-4 61 1919 32 123 0 4
novice-5 62 593 24 67 0 5
novice-6 74 871 23 44 0 1
novice-7 94 1039 38 51 98 11
novice-8 92 1822 13 19 0 3
novice-9 44 853 26 63 0 6
novice-10 64 1464 42 40 0 3
novice-11 59 256 26 21 2 1
novice-12 438 2436 19 210 0 2
novice-13 49 652 20 49 0 2
novice-14 156 3194 67 208 0 27
novice-15 79 1139 14 48 0 1
novice-16 16 256 12 25 0 1
novice-17 135 1194 23 59 0 1
novice-18 46 1088 15 38 0 1
novice-19 103 3401 59 363 7 4
novice-20 54 418 18 19 1 2
novice-21 44 849 22 42 48 3
novice-22 122 1893 43 51 0 3
novice-23 90 2138 30 72 0 2
novice-24 86 849 26 53 0 3
novice-25 169 2066 13 217 0 1
novice-26 87 1120 19 60 0 1
novice-27 g! 1195 25 63 1 9
novice-28 123 2221 31 120 0 1
novice-29 94 1230 14 44 0 3
novice-30 78 946 20 28 0 3
novice-31 64 2073 27 102 0 7
novice-32 51 385 20 37 0 3
novice-33 199 3127 31 106 0 6
novice-34 123 1276 25 46 4 1
novice-35 90 1444 22 54 0 6
novice-36 141 3213 55 137 0 5
novice-37 88 1949 36 57 0 32
novice-38 109 839 12 17 0 2
novice-39 74 1107 34 51 0 3
novice-40 58 967 17 24 0 5
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subject sessions | command | commands | noted history | directories

number lines by csh | was used used
novice-41 86 2317 15 51 0 1
novice-42 92 1068 31 33 0 3
novice-43 33 608 18 26 0 1
novice-44 59 1277 14 40 0 2
novice-45 54 651 17 16 0 1
novice-46 276 4163 120 372 112 58
novice-47 56 1316 19 78 (o 3
novice-48 23 269 12 9 0 1
novice-49 23 723 20 31 0 1
novice-50 48 985 33 92 0 3
novice-51 42 480 20 20 0 2
novice-52 69 650 22 38 0 3
novice-53 98 1028 34 41 0 1
novice-54 38 683 19 56 0 10
novice-55 62 1662 25 40 6 2
experienced-1 137 3714 74 298 174 58
experienced-2 25 219 28 11 6 8
experienced-3 28 915 51 42 88 16
experienced-4 151 3776 59 123 2 29
experienced-5 283 4015 78 222 35 44
experienced-6 53 757 56 32 0 17
experienced-7 189 5857 139 612 67 100
experienced-8 134 2930 74 265 67 54
experienced-9 99 2351 99 136 86 25
experienced-10 26 446 45 26 1 18
experienced-11 98 1456 43 86 21 48
experienced-12 66 1763 70 92 28 17
experienced-13 49 1109 60 160 25 30
experienced-14 103 1810 60 153 23 27
experienced-15 14 225 21 12 0 32
experienced-16 41 795 33 22 24 22
experienced-17 85 2343 67 144 0 32
experienced-18 25 575 27 21 5 9
experienced-19 122 1807 84 88 163 20
experienced-20 180 4556 79 370 435 44
experienced-21 100 2394 76 83 157 54
experienced-22 149 2814 67 122 325 18
experienced-23 95 2306 70 119 189 18
experienced-24 114 3331 132 228 222 62
experienced-25 7 1465 63 89 11 19
experienced-26 30 679 33 66 0 22
experienced-27 219 1693 70 54 77 43
experienced-28 440 3893 93 60 78 24
experienced-29 71 2214 59 133 59 67
experienced-30 130 2028 64 110 82 18
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number lines by csh | was used used
experienced-31 68 683 82 38 19 40
experienced-32 65 974 72 87 47 32
experienced-33 59 1292 55 65 83 14
experienced-34 116 1869 59 218 206 15
experienced-35 165 4272 77 169 28 40
experienced-36 60 1580 70 116 56 54
scientist-1 165 1856 105 111 54 43
scientist-2 198 2954 87 149 236 37
scientist-3 133 978 38 69 1 6
scientist-4 238 4507 112 320 178 114
scientist-5 197 1563 77 78 18 13
scientiat-6 145 1103 61 49 33 46
scientist-7 13 366 49 28 0 25
scientist-8 61 842 39 51 0 5
scientiat-9 256 4067 89 65 224 42
scientist-10 129 2024 63 120 77 96
scientist-11 38 205 24 13 0 1
scientist-12 105 2499 117 52 53 63
scientist-13 108 3593 45 118 357 25
scientist-14 202 3433 109 183 23 83
scientist-15 161 1429 94 81 200 30
scientist-16 74 326 31 29 0 5
scientist-17 95 569 33 38 0] 1
scientist-18 144 2831 71 112 106 74
scientist-19 189 5584 65 240 6 62
scientist-20 225 2697 112 189 T4 52
scientist-21 81 1762 82 134 50 102
scientist-22 132 750 45 39 0 12
scientist-23 324 3360 91 135 52 48
scientist-24 72 1494 41 55 0 5
scientist-25 415 3508 112 122 7 113
scientist-26 123 983 65 70 0 24
scientist-27 111 3817 97 85 102 79
scientist-28 111 765 64 26 20 17
scientist-29 134 2683 60 243 20 61
scientist-30 180 2129 77 123 186 56
scientist-31 65 250 20 20 9 3
scientist-32 78 601 36 20 o] 9
scientist-33 24 325 16 12 0 3
scientist-34 204 2639 61 88 15 50
scientist-35 80 1049 46 29 23 22

223



Novice Login Total Different Errors Times Different

subject sessions | command | commands | noted history | directories
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scientist-36 275 12056 181 566 488 202
scientist-37 121 4187 61 83 121 64
scientist-38 131 3775 92 168 48 113
scientist-39 119 1753 76 7 173 40
scientist-40 348 4605 66 98 (0] 42
scientist-41 204 2037 49 36 0 5
scientist-42 298 6068 133 644 6 158
scientist-43 108 3106 86 101 0 37
scientist-44 72 1543 62 84 12 16
scientist-45 40 862 76 59 17 17
scientist-46 294 2551 92 110 80 89
scientist-47 75 1229 67 81 9 61
scientist-48 76 819 27 43 0 2
scientist-49 105 1448 108 97 138 46
scientist-50 138 1496 75 225 219 18
scientist-51 74 910 43 67 0 51
scientist-52 263 7705 121 299 231 93
non-progs-1 95 1622 61 §9 0] 7
non-progs-2 53 454 16 15 0 2
non-progs-3 85 1265 38 15 9 7
non-progs-4 133 5050 70 161 18 89
non-progs-5 77 244 8 11 0 1
non-progs-6 23 177 17 7 0 2
non-progs-7 80 1231 53 54 3 9
non-progs-8 23 239 32 13 28 14
non-progs-9 73 357 34 23 4 3
non-progs-10 32 495 36 20 0 21
non-progs-11 281 1848 27 61 0 17
non-progs-12 24 216 19 26 ) 4
non-progs-13 30 487 10 5 0 1
non-progs-14 17 201 9 4 1 3
non-progs-15 78 571 15 28 0 2
non-progs-16 46 821 32 26 18 11
non-progs-17 61 848 19 65 0 1
non-progs-18 97 1403 22 64 0 2
non-progs-19 77 175 15 7 0 2
non-progs-20 137 4042 81 124 165 30
non-progs-21 25 132 5 7 0 1
non-progs-22 151 1567 39 56 48 8
non-progs-23 89 1294 47 48 0 5
non-progs-24 35 542 25 34 0 1
non-progs-25 76 327 9 18 3 1
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Appendix D

The Uniform Recurrence Distance

Distribution

This appendix considers the case when the probability of a user’s submission match-
ing a previous one is equiprobable over the history list. As the length of the history
list grows with the number of submissions, the distribution is expected to be skewed
toward the smaller distances which have been around longer. More formally, the
uniform recurrence distance distribution is defined as the probability distribution of
a recurrence over distance after n submissions, when recurrences are equiprobable
over a growing history list. This appendix derives the equation describing its shape.
I will argue that although the distribution’s skewness is an artifact included in the

observed UNIX recurrence distributions, its effects are minor and can be ignored.

The probability of a particular recurrence over the history list is derived!. Con-
sider a user who is about to submit their nth submission to the system. First, the
probability is calculated that this submission is not a recurrence of a previous one,

or that it is a recurrence at a particular distance d, where d < n — 1 since the size of

1 The history list simulated here is similar to a list with duplicates saved only in their latest position
of occurrence (Section 6.1.2).
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submis- is not a does recur at a distance of
sion recurrence 1 2 3 4 n
1 1 0 0 0 0 0
2 1-R R/l 0 ] 0 0
3 1-R 12/2 ]2/2 0 0 0
4 1-R }2/3 R/B 2/3 0 0
5 1-R 2/4 2/4 2/4 R/4 0
R R R R R
n 1-R n—11 n-1] n-11 n—1 n—1

Table D.1: Calculating probabilities for the uniform distance distribution

a strict sequential history list is n — 1 submissions. When n = 1, there is no history
list, and the item cannot be a recurrence. When n > 1, the recurrence probability
R (now expressed as a fraction) must be shared equally between the n — 1 items
on the history list, since by assumption each item is equiprobable. Hence R}, the
probability of a recurrence at a given distance d for the nth submission, is R /(n—1).
Table D.1 illustrates this situation, where each row shows the number of submis-
sions, the probability that it is not a recurrence, and R for particular distances.
For example, if R = 0.75 and the fifth submission is being entered, there is a 0.25
chance that it is not a recurrence, and a 0.75/4 = 0.187 chance that it recurs at one

of the four possible distances.

The next step calculates R}, accumulated over all previous n submissions up to
and including the nth one. R} is the probability of an item recurring at particular
distances d for a growing history list, which is the averaged probability of all R%

found in the column for a particular distance d (Table D.1).

Rn _ —n-—l-&— En_ll
b= n i n )
t=d 1=d

If the values of all R})’s for every distance possible were calculated and averaged over

n, and the chance that a submission is not a recurrence is included, the following
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Figure D.1: The uniform distance distribution for different values of n
balanced equation is produced:
1 n-1
1==(1+)> (Rp+1-R))
n d=1

Informally speaking, each row of Table D.1 sums to 1 since n rows are added and

then divided by n.

The distribution of R}, with values of d ranging from 1 through 50 is illustrated
in Figure D.1. The recurrence rate R was set to 0.75, the observed population
average of our study. Each line represents different values of n between 200 through
3200. Although R? always decreases as d increases, the rate of decrease is smaller

as n gets larger.

Should the conditioned distributions described in Chapter 6 be normalized to
take into account the decreasing probabilities over distance? If they were, the
corrected observations would reflect a true estimate of the recurrence distribution

regardless of the size of n, and the differences between the actual number of activities
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recorded by each subject would not bias the results. However, this has not been done
for the following reasons. First, around 2000 activities were entered on average by
an expert subject. As seen by Figure D.1, the differences in values between R} are
quite small at this range. Second, the value of R}, for small distances is negligible
when compared to the corresponding observed recurrences. Third, it is not clear
how useful a normalized estimate would be, for people are operating on history lists
of finite length. The slight effect of normalization on the recurrence distribution

would not alter the conclusions of Chapter 6.





