" Directing The User Interface:

How People Use Command-Based Computer Systems

Saul Greenberg and Tan H. Witten

Human/Machine Systems Laboratory
Department of Computer Science
The University of Calgary
Calgary, Alberta
Canada T2N 1N4 . ‘
telephone: (403) 220-7140 i
uucp: ... liknpdlalbertalcalgary!greenberg

Abstract — Several striking and surprising characteristics of how people use interactive systems are
abstracted from a large body of recorded usage data. In particular, we examine frequencies of invocation
of commands and complete command lines {(including modifiers and arguments), as well as vocabulary
growth. Individual differences are of particular interest, and the results are analyzed by user and by
identifying groups of like users. The study underlines the remarkable diversity that exists even within

groups having apparently similar needs. .

Keywords — Command-based systems; computer interfaces; design principles; human-computer inter-

action; human factors; man-machine systems.

1 Introduction

Flexible interfaces create an environment in which users can
pursue goals not addressed specifically by any one application
package. They accomplish this by providing a rich set of primi-
tive and high level actions and objects. Actions are traditionally
invoked by users typing simple commands, although some mod-
ern systems augment or replace this primitive dialogue style with
‘menus, forms, natural language, graphics, and so on [Witt85].
Typically, such interfaces either provide uniform access to all
system actions or group these actions in some pre-defined way.

But when people use these top-level interfaces, they exhibit char-
acteristic patterns of activity that are ill-supported by contem-
‘porary designs. Command-based interfaces, for example, pro-
lvide uniform access to all system actions, whereas the actual us-
age of these commands is far from uniform. Although menus ex-
plicitly reveal pre-grouped system actions, they may not reflect
the user’s actual task organization. Similarly, “integrated” prod-
ucts may stress product rather than task integration [Niel36].

‘This work investigates how people direct command-based sys-
‘tems. It is based upon an analysis of long-term records of user-
computer interaction with the UNIX csh command interpreter
— a fairly popular and sophisticated system within the genre
[Ritc74,Kern81] — collected as described in the following sec-
‘tion. The subsequent sections provide statistical details of how
people direct such systems in terms of how individual commands
are used; the dependencies between them; and how complete
command lines — commands, modifiers and arguments — are
invoked. We are particularly sensitive to the fact that pooled
statistics may conceal important differences between individuals,
‘and the results are analyzed by user and by identifying groups
of like users, as well as by pooling data for the entire popula-
tion. We presume that the trends observed are shared by most
command-based interactions, and are not just artifacts of a par-
ticular implementation.

2 Data collection

ZComma.nd-line data was collected continuously for four months
from users of the Berkeley 4.2 UNIX ceh command interpreter
[Joy80]. The start of every login session was noted, and all com-

mands and arguments passed to csh were recorded sequentially
exactly as typed. Each command entry was annotated with the
current working directory, history and alias usage, and system
errors (if any). From the user’s point of view, the monitoring
facility was unobtrusive — the modified command interpreter
was identical in all visible respects to the standard version.

Four target groups were identified, representing a total of 168
users with a wide cross-section of computer experience and ne-
eds. Salient features of each group are described below, while
the sample size (the number of people observed per group) is
indicated at the bottom of Table 1.

Novice Programmers. Conscripted from an introductory Pas-
cal course, these have little or no previous exposure to
programming, operating systems, or UNIX-like command-
based interfaces. Subjects spend most of their computer
time learning how to program and use the basic system
facilities.

Experienced Programmers. Members were senior Comput-:
er Science undergraduates, expected to have a fair knowl-
edge of programming languages and the UNIX environ-
ment. As well as coding, word processing, and employ-
ing more advanced UNIX facilities to fulfill course require-
ments, subjects also use the system for social and ex-
ploratory purposes.

Computer Scientists. This group, comprised of faculty, grad-
uates and researchers from the Department of Computer
Science, is very familiar with UNIX. Tasks performed are
less predictable and more varied than other groups, span-
ning advanced program development, research investiga-
tions, social communication, maintaining databases, word-
processing, satisfying personal requirements, and so on.

Non-programmers. Word-processing and document prepara-
tion is the dominant activity of this group, made up of
office staff and members of the Faculty of Environmen-
tal Design. Little program development occurs — tasks
are usually performed with existing application packages.
Knowledge of UNIX is the minimum required to get the
job done.

Considerable variation was present in the number of commands;
entered by individual subjects (mean = 1712, std dev = 1499).|
As highly-active users can dominate the study [Hans84}, we are
careful to check for such bias when processing the data.

Greenberg, S. and Witten, |. H. (1988). Directing the user interface: How people use command-based systems. In
Proceedings of the IFAC 3rd Man Machine Systems Conference, Oulou, Finland, June 14-16.

Saul
Greenberg, S. and Witten, I. H. (1988). Directing the user interface: How people use command-based systems. In Proceedings of the IFAC 3rd Man Machine Systems Conference, Oulou, Finland, June 14-16.

3 Distribution of command usage

8.1 Frequency distributions of commands for large
groups

Several investigators have examined the frequency of command
usage by a user population {Hans84] [Krau83] [Peac82]. All stud-
ies report results approximated by a Zipf distribution [Zipf49)}
[Witt84], which has the property that:

e a relatively small number of items have a high usage fre-
quency; and

e a very large number of items have a low usage frequency.

A looser characteristic of this kind of rank distribution is the
well-known 80-20 rule — 20% of the items in question are used
80% of the time [Knut73,Peac82]. In measurements recorded
from a UNIX site, [Hans84 report a similar result — 10% of
‘the 400-500 commands available account for 90% of the usage.
‘These models also holds for the frequency distribution of all
help requests made for particular commands through the UNIX
on-line manual [Gree84]'.

The current study supports these observations. Figure 1 illus-
trates the command frequency distribution for the four different
user groups. The vertical axis shows the number of command
invocations, normalized to one for the most frequent, while the
horizontal axis shows the rank ordering of commands, with the
.most frequent first. The normalized Zipf distribution, calculated
as y = z~! and illustrated by the smooth curve in the Figure,
seems to provide a plausible model for the observed frequencies.
For each of the four user groups, 10% of the commands used ac-
.counted for 84-91% of all usage (cf [Hans84s’ 10%/90%). This
ratio seems independent of the actual number of unique com-
mands selected or the size of the sample group.

8. 2 Usage frequency of particular commands be-
tween groups

Even though frequency statistics of different groups are modelled
by the Zipf distribution, we do not know whether commands
retain their same rank order between different user groups. If
they do, then a command used frequently by one group will have
the same relative usage in another. As we shall see, this is not
necessarily the case.

Table 1 shows the data from which Figure 1 is drawn. Each col-
umn shows the 20 most frequently used commands by each group
(including data reported by [Hans84]) and also gives the total
commands executed, the number of those which are unique, and
the number of users sampled. The few common high frequency
commands acroes the five user groups are mostly concerned with
navigating, manipulating and finding information about the file
store (such as Is, rm and cd). Comparison of other commands
capture the differegces between the groups. The emphasis on
programming by both our novice and experienced subjects is
reflected by the various compilers used (piz and pi for Pascal,
make for “C”, and ada). The non-programmers, on the other
hand, seem concerned with word processing (as indicated by the
relatively heavy use of nroff and spell). The type of editor also
indicates group differences — vi and ed are chosen by [Hans84]s’
group, while emacs, ¢, umacs, fred, and ed have varying degrees
of use within the others.

Grouping all subjects into one category also illustrates the dan-
ger of using a population stereotype to approximate the activity
m each group. As shown by column 1 of Table 1, which pools all

- 1Every command in the Unix system has a corresponding manual entry,
invoked by typing man <command>

1.0

0.8

e
-
L

1~
e
2

' quuenéy (normalized)

0.2
00 T - T T t
0 5 10 15 20
Command Rank
Figure 1. The nommalized command frequency, compared
with Zipf

subjects of this study into one large sample, some high-frequency;
commands are not used frequently (if at all) by all groups (eg:
ptz, umaa)

Even though the Zipf form of the frequency distribution remains
intact between different groups of a population, the rank order
of commands is not, in general, maintained.

3.8 Frequency distributions and command over-
lap between individuals

We have not yet considered the extent to which the usage statis-
tics of an individual resembles those of a group of like people.

Does the Zipf distribution characterize each user’s command in-
teractions, or is it just an artifact of data grouping? Do indi-’
‘viduals within a group invoke the same set of commands? One
might expect the variation between users to be even greater than
that between groups.

In the same study of the UNIX on-line manual noted previously,
the frequency distribution of help requests was analysed between
individuals [Gree84]. In general, users constrained themselves
to relatively small subsets of the requests possible — a great
many potential entries were never accessed by them. Moreover,
when users’ subsets were compared, the intersection between
their elements was small. Additionally, the frequency of ac-
cess of the common elements varied considerably across users.
[Gree84] suggests that although individual help requests seem
to follow the Zipf distribution, it is not possible to make any
but the grossest generalisation from a population perspective of
how each individual user will access particular items within a
system.

The same is true for command line interactions. While studying
the nature of expertise in UNIX, [Drap84| counted the times a
command was invoked by each user. First, out of a vocabulary
of the 570 commands available to the population, only 394 were,
used at least once. Individuals knew the system to varying de-|
grees — there was a fairly smooth distribution of vocabularyi
size up to the maximum of 236 commands known to one user.,

Characteristics of the overlap between individuals’ vocabularies
were similar to those of [Gree34]'s study. Generally, very few
of each individual’s commands were used by all the population,]
a few more shared to some degree by other users, and the rest
used by him alone. [Drap84] concluded that vocabulary is a poor

Groups from the Current Study Others
All Novice Experienced Computer Non- |Hans84)’s
Subjects Programmers Programmers Scientists Programmers Group

command % used | command % used | command % used | command % used | command % used | command % used
1s 13.33 | pix 2564 | 1s 1276 | Is 1575 | Is 18.53 § od 12.30
cd 8.83 | umacs 20.89 { cd 1203 | od 10.62 | emacs 1235 f Is 10.0
pix 669 | 1s 818 | e 629 | e 558 | ed 9.58 || cat 9.6
umacs 5.3 | rm 3.55 | fg - 442 | fg 4.32 | nroff 9.55 1 | 6.2
e 447 | u 3.19 | more 349 | m 321 e 6.20 || vi 59
m 3.35 | cat 2.79 | make 2.93 | mail 3.00 | m 466 || ed 56
emacs 3.28 | more 263 |rm 293 | emacs 2,58 | ee 447 l rm 3.8
fg 3.07 | d 2.61 | emacs 2.66 | Ipq 2.36 | Ipq 225 {1 ; 2.7
more 2.51 | script 249 |1 2.02 | more 2.06 { ps 213 §f > 28
Ipq 2.02 | Ipr 2.26 | cat 196 | ps 1.97 | cp 1.66 §| Mail 2.0
mail 195 | cp 2.09 | Ipr 191 | f 1.70 | ptroff 1.65 §i nroff 15
cat 1.89 | Ipq 2.08 | ada 1.85 | cat 1.62 | more 1.59 { mail 2.0
Ipr 1.49 | emacs 1.95 | ex-vax 1.85 | who 159 | w 1.50 | mv 1.2
cp 1.48 | pi 1.54 | cp 1.58 | mv 1.20 | mail 1.37 § grep 1.2
ps 136 | p 1.21 | rwho 1.37 | man 118 | mr 1.31 | col 0.9
who 1.14 | fred 1.04 | a.out 1.33 | rlogin 1.05 | tbl 1.27 || echo 0.9
make 1.08 | mail 1.03 | mail 131 | cp 1.02 | spell 1271 & 0.9
nroff 1.06 | pdpas 0.72 | Ipq 1.31 | fred 0.99 | mv 1.20 | tail 0.7
fred 0.95 | logout 0.71 | ps 1.30 { lpr 091 | ed 1.02 || pwd 0.7
man 0.90 | pdp60 0.67 | who 1.16 | page 0.90 | apq 0.89 || awk 0.7
commands commands commands commands commands commands

executed 287736 | executed 73288 | executed 70234 | executed 119557 | executed 24657 || executed 9934
unique unique unique unique unique unique

commands 1307 | commands 264 | commands 588 | commands 851 { commands 196 || commands 400
sample sample sample sample sample sample

sige 168 | size 55 | size 36 | size 52 | sise 25 || size 16

Table 1. Command distributions for the top 20 commands of five different user groups

measure of expertise, and that each user is actua.lly a specialist
in a particular corner of the system. -

[Drap84]'s record of command activity was estimated by noting
the UNIX processes spawned during a user’s interaction with

the system, unlike the present study which collects the actual _

text typed. Although a reasonable correspondence is expected -
between the command entered and the process created, infor-
mation about name aliases and commands built into the UNIX
interpreter is lost, even though some are frequently used. So
is the distinction between processes created indirectly through
side effects or through a user’s command scripts or programs.
Although these problems were recognized?, it was suggested that
overall trends and relative vocabulary sizes are probably repre-
sentative.

Our study corroborates the conclusions of [Drap84]. Each row of
Table 2 shows the proportion of commands shared by the users
comprising a particular group, while Table 3 lists some of the
actual commands shared. For example, only 0.2% of the 1307
different commands used by all subjects were shared by more
than 90% of them (these were basic file manipulation commands
for listing, removing and copying files, as shown in column 1 of
Table 3). More surprisingly, fully 92% of all commands were
shared by fewer than 10% of the users, if at all. These differences
are much stronger than those suggested by [Drap84]’s group (the
last column), probably due to inaccuracies in his estimate of
command use.

Tables 2 and 8 also reveal that categorizing like subjects into
groups changes the figures less than one might expect. For ex-
ample, even though individuals in the novice group used the
system for solving the same programming assignments and were
taught UNIX together, there was relatively little intersection of
their vocabularies. Except for a handful of commands, users —
even those with apparently similar task requirements and exper-
tise — have surprisingly little vocabulary overlap.

;8.4 Growth of the command vocabulary

iln the previous discussion, a user’s vocabulary was taken to be
/the set of commands he invoked over a fixed period of time. But
‘}how dynamic is the command vocabulary of a user? Do users

?See [Bannad] for a description of similar problems.

learn new commands sporadically or uniformly over time? Are
new commands acquired continually, or do users stop increasing
this vocabulary after some period of time?

Figure 2 illustrates the growth rate of the command vocabulary

of four typical users, one from each group. The vertical axis is

vocabulary size, while the horizontal axis represents the number

of command lines entered so far. At first, the vocabulary growth’
rate seems to be around 5% — each user shown here has &
repertoire of 43 — 64 commands after 1000 full command lines’
were entered. But the growth rate drops quickly afterwards to

1% or less. The later part of the curve is probably a better

reflection of vocabulary acquisition, for the first part does not

necessarily reflect a learning curve. Since users already knew '
a command subsst before monitoring began, we would expsct

unusually high initial activity as known commands are being

noticed for the first time.

Although Figure 2 suggests that the selected subjects have a
vocabulary growth rate which is proportional to the relative so-
phistication of the group, analysis of variance shows no statisti-
cally significant differences between the mean rate of each group.
However, these rates were determined by counting the new com-
mands acquired between 1000 and 2000 command entries, which
meant excluding those subjects who did not have least 2000 en-
tries.

Figure 2 also reveals how users acquire new commands. Al
though there are short term periods where vocabulary growth
is relatively uniform, there are also long periods of quiescence
followed by a flurry of activity. As might be expected, this was
sometimes associated with new tasks. For example, the sharp
increase in new activity for the Scientist subject after she had
entered 6000 command lines all involved high-quality typeset-
ting (Figure 2). However, there are other instances where no
such task association is evident.

4 Relations in command sequences

4.1 Dependencies in command sequences

The previous discussion says nothing about possible relations
and dependencies between commands. Through a multivari-

Command vocabulary size

120

100

3

(<]
(=]

H
(=]

N
(=]

7# of users Proportional Number of Commands Shared {
* sharing a All Novice | Exper'd | Computer on [Drap8d]’s
command (%) || Subjects | Program- | Program- | Scientists | Program- Group
mers mers mers
100-91 2 2.7 2.2 .9 15 .5
90-81 3 8 N .8 0 2.0
80-71 3 4 1.0 8 2.0 3.1
T0-61 4 8 1.0 .8 5 33
60-61 5 1.5 2.2 1.9 4.6 3.1
50-41 5 2.7 1.9 11 3.1 6.1
40-31 1.2 0 1.2 1.4 4.6 6.1
30-21 1.5 9.1 4.1 44 6.6 8.6
20-11 3.0 12.1 8.9 6.5 347 17.8
10-1 92.0 70.1 76.9 81.7 42.4 49.5
Total unique
commands 1307 264 588 851 196 394
Table 2. Number of users per command
The 20 Most Shared Commands
All Novice Experienced | Computer Non-
Subjects Programmers | Programmers | Scientists Programmers
com- # of | com- # of | com- # of | com- # of { command # of
mand users | mand users | mand users | mand users | mand users
N 168 | Ipr 55 | od 3% | B 52 | Is 25
m 164 | Is 55 | 1s 36 | mn 51 [rm 24
cp 154 | pix 55 | more 36 | cat 50 | emacs 23
Ipq 149 | rm 85 { Ipq 35 | cd 50 } ed 19
Ipr 144 | script 55 | man 35 { mv 49 | cp 19
cd 141 | cp 53 | cat 34 |cp _48 | nroff 18
cat 140 | Ipq 53 | cp 34 | mail 48 | lpg 17
mail 131 | umacs 47 | lpr 34 | man 48 | ps 16
more 130 | cat 46 | mail . 34 | mkdir 46 | lIpr 14
man 124 | more 42 | mkdir 34 | ftp 44 | more 14
who 117 | ed 36 | rm 34 | Ipq 44 | logout 13
mv 114 | mail 36 | ftp 33 | ps 44 | mail 13
emacs 112 | limits 32 | ps 32 | pwd 44 | man 13
mkdir 104 | who 30 | mv 31 | who ® 44 | hpq 12
ps 103 | man 28 | who 31 |fg | 42 | mv 12
fg 95 | pi -28 | ruptime 30 | e © 41 | spell 12
script 95 | logout 26 | fg 29 | emacs 41 | who 12
pwd 92 | help 24 | kill 28 | lpr 41 | kill 1
fip 91 | lquota 28 | limits 28 | rlogin 40 | pwd 11
logout 88 | emacs 23 | rwho 28 | kill 38 | cat 10
sample sample sample sample sample
sise 168 | sise 55 | sise 36 | size 52 | sise 25

Table 3. The 20 most shared commands per user group

Scientist

Experienced

Non
Programmer

2000 4000 6000
Number of command lines entered

Figure 2. Command vocabulary size versus the number of

command lines entered for four individuals

1500

Command line vocabulary size

Figure 3. Command lin

8
(=]

g

Scientist

2000 4000 6000

Number of command lines entered

size versus the number

of commands ennexed for four individuals

ate analysis of UNIX commands invoked by the site population,
[Hans84] examined the interaction effects between commands.
Their results show statistically significant relationships between
certain command chains. One dimension of these relationships
is modularity. Some commands are core commands — they are
used frequently and are surrounded by many other commands
(ie highly modular and independent). Others are not; they are
surrounded by specific command sequences.

Commands are also related by functional clusters, such as: edit-
ing, process-management, orientation, social communication, and
so on [Hans84], which may not be revealed by statistics. Con-
sider a user who prints files in several ways: a short draft may go
to the screen; a long listing to a lineprinter; and a final version
to a laser printer. Although these non-sequential and possibly
rarely invoked actions are related by function in the user’s mind,
it is unlikely that such a relationship would appear from a multi-
variate analysis of commands like {Hans84]s’. Additionally, it is
a mistake to assume that all dependencies revealed by analyzing
a group of users will hold for an individual, since each person
uses their own particular subset of commands (Section 3.3).

4.2 Grouping commands by user goals

Perhaps a more meaningful way of considering command de-
pendencies is by relating them to particular tasks. [Bann83]
analysed activities on a UNIX system by asking users to anno-
tate periodically their command histories with their intentiona.
The data collected showed that it is possible to partition user
actions and the objects they manipulate (such as files) into task
sets related by the user’s goals. When users are observed from

this perspective, patterns appear which are not evident at the

individual command level. For example, tasks are not invoked
_sequentially, but are interleaved due to the user switching, sus-
pending and resuming his goals. T :

But [Bann83]s’ study does not indicate how task sets differ be-
‘tween users. Perhaps a clue can be gleaned from the work of
{[Niel86}, who investigated integrated software usage by profes-’
‘sionals in a work environment. They tried to identify the main
goals and subgoals of professionals and the methods used by
them for satisfying their goals. Data was collected through ques-
tionnaires and interviews: ‘

o Five high-level programs accounted for 42% of program
use over the population.

o It was not possible to rank the programs accounting for
the other 58% at the population level, as most were used
by only a few professionals each.

o Integrated packages were not exploited fully. For example,
users chose non-integrated modules if they were judged
more effective in terms of goal achievement than the inte-
grated version, ie users were “choosing a set of heteroge-
neous programs and integrating them in their own way”
[Nielsé).

[Niel86} concludes that integrated programs are not a panacea
for communicating with general purpose computers, for “most
current analyses have not yet developed categories of represen-
tation adequate for identifying the task requirements of integra-
tion” (p167). Even so, the high number of disparate programs
used by professionals and the different ways they were “inte-
grated in their own way” suggests that there are both subtle
and overt differences between the task sets of users.

5 Command lines

As well as examining the commands users invoke, it is fruit-
ful to look at complete command lines. We define a command

line as the complete line (up to a terminating carriage retdrn)
entered by the user. This is a natural unit because commands

" are only interpreted by the system when the return key is typed.

Command lines typically comprise an action (the command), an
object (eg files, strings) and modifiers (options). In the follow-
ing discussion, a sequential record of command lines entered by
a user over time, ignoring boundaries between login sessions, is.
called a history list. Unless stated otherwise, the history list is
a true record of every single line typed. The distance between
two command lines is the difference between their positions on
the list. The number of different entries in the history list is
the command line vocabulary. Although white space is ignored,
syntactically different but semantically identical lines are con-
sidered distinct®.

5.1 Vocabulary and recurrences of command lines

Although it is known that only a small set of commands ac-
counts for all user actions (Section 3), it is not known how often
new command lines are formed and old ones recur. One might
expect that they would recur infrequently, given the limitless
possibilities and combinations of commands, modifiers and ar-
guments.

Surprisingly, this is not the case. Although users extend their
vocabulary of command lines continuously and uniformly over
the duration of an interaction, the majority of lines entered are
recurrences, where the mean recurrence rate for groups ranges
between 68% and 80%, with Novice Programmers exhibiting the
highest scores. Although an analysis of variance of the raw scores
rejected the null hypothesis that the group scores are equal, it is

- reasonable to approximate the recurrence rate by the population

mean of 74%. That is, about three out of every four lines entered
by a user already exist on the history list. Conversely, an average
of one out of every four appears for the first time.

The formation of new command lines is surprisingly linear and
regular, as illustrated by Figure 3. Similar to Figure 2, and us-
ing the sanie typical users, the liorizontal axis still represents the
number of lines entered so far, but now the vertical axis indi-

cates the size of the command line vocabulary. For example, the

scientist subject has composed close to 1400 new command lines
after 6000 lines were entered. The long periods of quiescence and

the flurries of new activity seen in Figure 2 are notably absent

from Figure 3.

5.2 Commangd line frequency as a function of dis-
tance

For any command line entered by a user, the probability that
it has been entered previously is quite high. But what is the
probability distribution of that recurrence over each previous
input? Are recurrence distances, for example, spread uniformly
across the distribution or skewed to the most recently entered
items?

The recurrence distribution as a measure of distance was calcu-
lated for each user, and group means are plotted in Figure 4. The
vertical axis represents the rate of command line recurrences,
while the horizontal axis shows the position of the repeated line
on the history list relative to the current one. Taking Novice
Programmers, for example, there is an 11% probability that the
current command line is a repeat of the previous entry (distance
= 1), 28% for a distance of two, and so on. The most striking
feature of the Figure is the extreme recency of the distribution.

The previous seven or so inputs contribute the vast majority of
recurrences. It is not the last but the second to last command
line that dominates the distribution. The first and third are
roughly the same, while the fourth through seventh give small

2This aspect of our study is reported in greater detail in a companion ps-
per, which develops principles of design for history machanisms [Gree8s].

ONovices

O Experienced AScientists
30 ©ONon Programmers + All subjects

g
@ 254 2 maximum possible ...
£ o
§ 20] § all subjects
£ 5
£ e
g8 15 T
2 s
= 2
B g
g 104 Q r v v Yoy
£ 24 10 20 30 40 50
3

5

o 2 4 8 8

10 12 14 18 18 20

Distance of command line from the current one

Figure 4. The recurrence distribution of command lines as a measure of distance

but significant contributions. Although probability values con-
tinually decrease after the second item, the rate of decrease and
the low values make all distances beyond the previous ten items
practically equivalent. This is illustrated further in the inset of
Figure 4, which plots the same data for the pooled groups as a
running sum of the probability over a wider range of distances.
The most recently entered command lines on the history list are
responsible for most of the accumulated probabilities. In com-
parison, all further contributions are slight (although their sum
total is not). The horizontal line at the top represents a ceiling
to the recurrence rate, as 26% of all command lines entered are
first occurrences.

Figure 4 also shows that the differing recurrence rate between
user groups can be attributed to the three previous command
lines. Recurrence rates are practically identical elsewhere in the
distribution. This difference is strongest on the second to last
input, the probability ranging from a low of 10% for Scientists
to a high of 28% for Novice Programmers.

6 Discussion

This paper has analyzed new data in several new areas on user
interactions with command-based computer systems and has
surveyed other related works. The major conclusions are:

1. The rank frequency distribution of command usage by
groups of like and unlike users is approximated by a Zipf
distribution.

2. With a few exceptions, the frequency of use of most com-
mands differs between groups — rank order is not main-
tained.

3. There is little overlap between the command vocabulary
of different users, even those with apparently similar task
requirements and expertise.

4. Users acquire new commands slowly and irregularly.

5. Some commands cluster around or follow others in statis-
tically significant ways.

6. User activity can be partitioned into task sets related by
the user’s goals.

T- There are differences between the task sets of users.

8. A substantial portion (~75%) of each user’s previous com-
mand lines are repeated.

9. New command lines are composed regularly (~25% of all
lines).

10. Users exhibit considerable recency when repeating com-
mand lines.

These conclusions have important implications for system de-
sign, and although space does not permit a comprehensive dis-
cussion, we briefly indicate three areas where they could have an
immediate impact: intelligent tutoring systems; fine-tuning ex-
isting implementations; and design of personalized workspaces.

Intelligent tutoring systems. Models of command-sets used
for a task can become part of an intelligent tutoring or coach-
ing system. One approach for deciding what knowledge should
be presented to the user employs an *expert® and a “student®
model [Slee82]. For example, the differential model of [Burt8l)
bases its instructional presentation on the differences between
a student’s and an expert’s behaviour. But according to the
present study, it is not possible to decide what commands should
be offered to the student, since experienced users of general pur-
pose systems such as UNIX don’t seem to share particular com-
mand sets. Consequently, the differential model is not appro-
priate for teaching people how to use general purpose computer
systems.

Fine-tuning existing implementations. One way of evalu-
‘ating and then incrementally fine-tuning an implementation is
through case studies of users interacting with the system. A
user’s actions and mistakes are observed, and the original sys-
tem design is modified accordingly. For example, the extremely
heavy use by all users of the basic file manipulation commands
(noted in Table 1 and Section 3.3) indicates that users require
not only constant feedback on the contents of the current direc-
tory, but some simple tools for manipulating them. Feedback
of the directory contents can be provided by keeping a perma-
nent display of the current files on view, a simple task given a
window-based environment. If screen real-estate is a concern,
transient windows popped up by a mouse press may be used in-
stead [Gree86). These findings also support the inclusion of the
more sophisticated file browsers that are found on many modern
systems.

Personalized workspaces. A more innovative approach is
to re-structure command sequences as workspaces which group
related commands into a visible structure [Bann83] [Hans84]
[Gree85]. But who should create these workspaces? In ME-
NUNIX [Perl84], for example, it is difficult to reconfigure the
workspaces supplied with the system. Yet the results of the pre-
vious sections indicate that this provides limited benefit. Per-
sonalizable workspaces seem much more promising. For exam-

.ple, the workbench creation system uses a direct manipulation

1

editor that allows rapid creation and modification of hierarchies -

of workspaces by the end-user {Gree85). Using this mechaniam,
a simple default structured workspace can be appended to the
top-level command system by the system manager. Group lead-
ers can then modify this structure to reflect common local needs.

With a set of sensible defaults in place, individuals can alter the
‘workspace further to fit persona.l needs. For example, a novice
using the system for document creation and management may
have available a generic workspace that includes facilities such as
an editor, various printers, spelling and style checkers, and so on.
When this user becomes more adept, he may alter the structure
to reflect his own needs. And since recently entered commands
have a high probability of being repeated, a history mechanism
could offer likely candidates for the workspace, eliminating the
need for their recomposition [Greeg8].

Acknowledgement

We give special thanks to the many volunteer subjects who let
us observe their system use. This research is supported by the
Natural Sciences and Engineering Research Council of Canada.

References

[Bann83] Bannon, L., Cypher, A., Greenspan, S., and Monty,
M. (1983) “Evaluation and analysis of users’ activity
organization® Proc ACM SIGCHI ’88 Human Factors
in Computing Systems pp 54-57, Boston, December 12-
15.

[Bann84] Bannon, L. and O’Malley, C. (1984) “Problems in
evaluation of human-computer interfaces: a case study”
Interact '8§ — First IFIP Conference on Human-Com-
puter Interaction, £ pp 280-284, London, UK, Sept 4-7.

[Burt81] Burton, R.R. and Brown, J.S. (1981) *An investigation
of computer coaching for informal learning activities”
in Intelligent Tutoring Systems, edited by D. Sleeman
and J.S. Brown, pp 79-97, Academic Press.

[Drap84)] Draper, S.W. (1984) “The nature of expertise in Unix”
Interact 84 - First IFIP Conference on Human-Com-
puter Interaction, £ pp 182-186, London, UK, Sept 4-7.

[Gree88] Greenberg,
peat their actions on computers: Principles for the de-
sign of history mechanisms” Proc ACM SIGCHI ’88
Human Factors in Computing Systems, Washington,
D.C. May 15-19.)

|Gree85] Greenberg, S., and Witten, LH. (1985) “Interactive
end-user creation of workbench hierarchies within a
window interface” Proc Canedian Information Process-
ing Society National Conference, Montreal, Quebec,
June. Also available as Research Report 85/181/04,
Dept of Computer Science, University of Calgary.

[Gree868] Greenberg, S., Peterson, M., and Witten, L. “Issues
and experiences in the design of a window manage-
ment system® Proc Canadian Information Processing
Society Edmonton Conference pp 33-50, Edmonton,
Alberta, October 21-23. Also available as Research
Report 87/257/05, Dept of Computer Sclence Univer-
sity of Calgary.

[Gree84] Greenberg, S. (1984) “User Modeling in Interactive
Computer Systems® MSc Thesis, Dept of Computer
Science, University of Calgary. Also available as Re-
search Report 85/193/6.

[Hans84] Hanson, 8.J., Kraut, R.E., and Farber, J.M. (1984)
“Interface design and multivariate analysis of UNIX
command use® ACM Transactions on Office Informa-
tion Systems, £ (1), March

S., and Witten, LH. (198) “How users re- '

[Joy80] *An introduction to the C shell® Uniz Programmer’s
Manual, Seventh Edition Volume 2¢, University of Cal-
ifornia, Berkeley

[Kern81] Kernighan, B.W. and Mashey, J.R. (1981) *The UNIX
programming environment® IEEE Computer 14 (4) pp
25-34, April.

[Knut73] Knuth, D.E. (1973) The art of computer programming:
searching and sorting. Addison-Wesley.

[Krau83] Kraut, R.E., Hanson, S.J., and Farber J.M. (1983)
“Command use and interface design® Proc ACM SIG-
CHI 88 Human Factors in Computing Systems, pp 120-
124, Boston, December 12-15.

[Niel86] Nielsen, J., Mack, R.L., Bergendorff, K.H., and Gris-
chkowsky, N.L. (1986) “Integrated software usage in
the professional work environment: evidence from ques-
tionnaires and interviews” Proc ACM SIGCHI ’86 Hu-
man Factors in Computing Systems, 162-167, Boston,
April 13-17.

[Peac82] Peachey, J.B., Bunt, R.B., and Colbourn, C.J. (1982)

“Bradford-Zipf phenomena in computer system® Proc
Canadian Information Processing Society National Con-
ference, pp 155-161, Saskatoon, Saskatchewan, May.

[Perig4] Perlman, G. (1984) *Natural artificial languages: low-
level processes® Int J of Man-Machine Studies, 20 (4)
pp 373-419

[Ritc74] Ritchie, D.M. and Thompson, K. (1974) “The UNIX
time-sharing system® Commaunications of the ACM,
17, (7) pp 365-375.

{Slee82} Sleeman, D. and Brown, J.S. (1982) “Introduction: In-
telligent tutoring systems® in Intelligent Tutoring Sys-
‘tems, edited by D. Sleeman and J.S. Brown, pp 1-8
Academic Press.

[Witt85) Wxtten LH. and Greenberg, S. (1985) “User mterfacea

for office systems” in Ozford Surveys in Information
Technology, edited by P. Zorkocsy, pp 69-104, Oxford
. University Press.

[Witt84] Witten, I1.H., Cleary, J., and Greenberg, S. (1984) “On
frequency-based menu-splitting algorithms® Int J of
Man-Machine Studies, 21 (2), pp 135-148

[Zipf49] Zipf, G.K. (1949) Human behaviour and the principle
of least effort. Addison-Wesley, Ontario.

