Cite as:

Greenberg, S., Peterson, M., and Witten, I. H. (1986). Issues and experiences in the design of a window
management system. In Proceedings of the Canadian Information Processing Society Edmonton
Conference, pp. 33-44, Edmonton, Alberta, October 21-23. Earlier version as Report 86-240-14.

ISSUES AND EXPERIENCES IN THE DESIGN
OF A WINDOW MANAGEMENT SYSTEM

Saul Greenberg
Murray Peterson
Ian Witten

Man/Machine Systems Laboratory
Department of Computer Science
The University of Calgary
2500 University Drive NW
Calgary, Canada T2N 1N4

Abstract — Window systems underly many successful
human-computer interfaces. But constructing them involves
several fundamental design issues which are resolved in various
ways by different implementations. These affect both user’s
and programmer’s interface, and include tiling vs overlapping
windows; program vs user control of windows; techniques for
coping with changeable window sizes; design of transient
windows; low-level vs high-level tools for the programmer;
Jocal vs distributed control; and the role of a controlling
‘window manager process. There is no broad consensus among
"designers as to how best to make such decisions.

This paper illuminates the issues involved by surveying :

characteristics of window systems and discussing dominant
design questions. The philosophy and implementation
underlying the JADE window manager constructed at the
University of Calgary is revealed, and the design is reevaluated
from the perspective of three years’ experience of using the
system and programming within it.

Overview

It seems to be widely accepted that ‘‘modern” human-
computer interfaces should often be built around the concept
of windows. But what are the characteristics of a window
system? How should it appear to the user? Who should
manipulate windows — the user, the application, or both?
And what about the programmer’s interface? Should his
access to the functional components be low-level (which
increases programming complexity) or high-level {(which usually
limits flexibility)? ~And who should control window
management, the system or the programmer?

This paper surveys design issues surrounding window
systems, and explains the philosophy behind a particular
implementation. The implementation is then reexamined in the
light of experience. In order to set the stage before plunging
into design details, we first review general characteristics of
window systems and the reasons for basing modern human-
computer interfaces on them. Next we raise questions and

concerns about problems which all designers of window
systems must address. There are two kinds of user — “end”
users of application software which is built within the window
system, and “programmers” who create such software; these
are discussed in separate sections. Regrettably, it is not
possible to insulate design questions. completely from
implementation of a window system — for one thing, design
compromises must be made because execution speed is of
paramount importance in many window operations. The
subsequent section descibes the design philosophy of the JADE
window manager, constructed at the University of Calgary as
part of an environment for developing distributed systems.
Finally, our decisions are reevaluated from a three-year
perspective of using and programming within the system.

Introducing windows

Traditional interactive interfaces to computers are highly
sequential. At least by default (and sometimes by decree),
conventional command languages complete the current activity
before the next can begin. Hierarchical menu structures make
matters worse. Before a command can be invoked, the user
must navigate from his present location in the hierarchy (the
previous activity) to the desired target (the next activity).
Despite this imposed sequentiality, parallelism arises naturally
and pervasively in interactive computer dialogues.
Documentation must be consulted, references checked,
subsidiary programs run, and so on. Current activity may be
unexpectedly preempted by more urgent tasks, only to be
resumed later. A user generally has to map his internal
conceptions, in terms of interleaved parallel activities, into a
sequential stream of tasks to be presented to the computer
(Bannon et al, 1983).

The need to sequentialize activity imposes enormous
strains on the user’s short-term and working memory.

Short-term memory is used in conjunction with
working memory for processing information and
problem solving. If many facts and decisions
are necessary to solve a problem, then short-term

CIPS Edmonton 1986

Saul
Cite as:
 Greenberg, S., Peterson, M., and Witten, I. H. (1986). Issues and experiences in the design of a window
 management system. In Proceedings of the Canadian Information Processing Society Edmonton
 Conference, pp. 33-44, Edmonton, Alberta, October 21-23. Earlier version as Report 86-240-14.

and working memory may become overloaded.
[These memories] are highly volatile; disruptions
cause loss of memory, and delays can require that
the memory be refreshed.

Shneiderman, 1984

At least as currently implemented, sequential dialogues make
it difficult to store intermediate sresults. For example, a
programmer requiring documentation of a language construct

must leave the editor, invoke the online manual, find and read-

the required information, and finally reenter the editor. At
this point he must recall his original location within the
program, remember the retrieved information, and apply it.
Obviously a high load is placed on short-term and working
memory, and the almost inevitable failures cause frustration
and inefliciency. No wonder hard copy is so popular!

Computer support for paralle]l activity is a more realistic
framework for helping the user with his thought processes. In
most interactive settings, one needs to view or interact with
many different contexts simultaneously, sometimes suspending
them temporarily to deal with more urgent interruptions.
Admittedly, many command languages permit primitive
parallelism. For example, in the UNIX csh (Joy, 1979), tasks
can be suspended interactively and resumed on demand. But
this provides strictly limited benefits, for just one viewport
must serve all processes. In contrast, window interfaces are

specifically designed to map an indefinite number of views on -

to a single physical screen. If views are regarded as virtual
input/output devices, one can then communicate with different
asynchronous processes in separate windows.

Quite a different use of windows, which is becoming
common in text editors, is to provide multiple viewports into
one or more documents. More generally, windows can separate
different modalities of communication such as command input,
data input, system state, and data output; provide
semipermanent accessories such as clocks, calendars,
calculators; simulate buttons, keyboards, or potentiometers for
input. They can be opened, moved around, and closed, to
reflect the demands of the task. Like a conventional VDU, a
window system constitutes an outer shell within which other
specialized user interfaces can operate.

Windows provide a ready-made
manipulating objects on the screen, such as text, bookmarks

metaphor for

and processes. It seems more “natural” to transfer a chunk of -

text from one place to another by literally moving it between
windows on the screen than by editing it out of the source
document, saving it somewhere, reinvoking the editor,
retrieving it, and placing it in the target. (Imagine, for
instance, copying an address from an address list in one
window to a letterhead in another.) It seems more natural to
save one's place in a document by opening a separate window

for a temporary or not-so-temporary excursion elsewhere,

leaving the main context manifest, than by placing an invisible
marker there and having to return to it by name. It seems
more natural to reactivate a suspended process by pointing at
it than by using a symbolic identifier as argument to a wakeup
command.

The popularity of window systems is increasing rapidly
because people like to use them. The Xerox Star (Smith et al,
1982) and Apple Macintosh (Williams, 1984) are popular
systems aimed at office and home markets. Window systems
are marketed by leading home computer software houses
(witness for example Microsoft’s “Windows,” VisiCorp'’s

“VisiON”). Innumerable systems have been developed in
research laboratories to support or supplement general
programming environments; well-known examples include Sun
and Apolle workstations; Xerox Dandelion, Dolphin, and
Dorado; and Lisp machines from a variety of manufacturers.
Packages such as the Maryland system (Wood, 1982) and
NUNIX (Test, 1982) offer the programmer high-level
subroutines for window manipulation within the UNIX
operating environment. Several non-graphical window systems
are also available, including the CMU Network Window
Manager (Gosling & Rosenthal, 1983) and the Waterloo Port
user interface (Malcolm & Dyment, 1983). Some editors for
ASCH terminals provide their own support for windows (eg
emacs; Stallman, 1981).

But windows also increase complexity for the user. He
must now physically manipulate the windows and keep track
of which does what. Operations on windows generally involve
a pointing device (such as a mouse), both to indicate where to
place windows on the screen and to identify which one is to be
manipulated. Typical operations include creating a window,
binding it to a particular process, moving and resizing it,
activating and destroying it, and shuffling the order of
windows in a pile.

Similarly, complexity is increased for the programmer, as '
he can no longer consider input and output as indivisible '
primitives provided by the operating system. User actions
such as keystrokes, pointing, menu-selection or window
manipulation can occur at any time and must be anticipated
explicitly by the program. ‘Output complexity is increased too:
the window may change size and position; it may be
completely or partially occluded by others; or the application
may have to keep a coordinated set of windows updated.

Despite their growing popularity, there has been
surprisingly little human factors research on the use of
windows. = Although there have been some publications which
address technical questions of implementation (eg Pike, 1983;
Rosenthal, 1982), fundamental design decisions such as
whether windows should overlap, or whether only the user
should be capable of creating them, must be taken in the
absence of hard experimental evidence one way or the other. .
{The few evaluations that have been published are reviewed
below.) Moreover, the proprietary nature of most

"implementations makes experiments difficult to perform and

alternatives difficult to evaluate.

Design issues from the user’s viewpoint

Window design is not simple. Seemingly small decisions

“may profoundly affect how the overall system appears to the

user, and dictate the style of programming within the
interface. Several important issues central to all window-based
software are outlined below. The questions raised do not have
easy answers, and their resolution will depend eritically upon
application requirements, hardware and software resources,
and the creativity of the designer. The choice depends too on
the use to which the window is put. Possible uses include
viewing greater amounts of information; accessing and
combing multiple information’ sources; independently
controlling multiple programs; using reminders to see what is
available; working within special contexts; and viewing the
same information in different ways (Card et al, 1984). Given

CIPS Edmonton 1986

this variety of user tasks,

.. attempts to understand the merits of competing
window designs must be clear about the function
for which the windows are being used.

Card et al, 1984

QOverlapping versus tiling of windows. Many existing
systems allow windows to overlap; others do not. Figure 1
shows a representative screen with overlapped windows from
the Apple Macintosh, while Figure 2, from the emacs text
editor, is non-overlapping or “tiled”. (Depending on the
implementation, one can tile horizontally, vertically, or both.)
Which to implement is a crucial and far-reaching design
decision. Overlaps create considerable technical complications
because they require the overlapped portion to be saved
somewhere. In general there may be multiple overlaps, so that
a tree structure of saved areas is needed. At some extra cost
in storage, it may be easier to save complete windows instead
of obscured fragments. However, then it takes longer to
redraw when the window pile is altered, and redrawing time is
usually a critical resource. There is also the question of what
. happens to output to a fully or partially covered window. If it
is blocked, the user loses much of the attraction of running
jobs in the background. If it is active, implementation
complexity is increased and the system may expend
considerable resources updating screen images which will never
be viewed.

One of the few works evaluating tiled and overlapping

windows indicates, not surprisingly, that the choice of
technique depends on the situation (Bly and Rosenberg, 1986).
Overlapped windows are preferred when much window
manipulation is required, for example when a user requires
maximum visibility of the contents of one or several windows.
Tiled windows are appropriate for those sitnations requiring
little manipulation, for example when a user requires a balance
of visibility for all windows. In spite of experimental results
confirming the expectations above, Bly and Rosenberg {1986)
note that most of their subjects preferred overlapping
windows. Indeed, overlaps seem to be fashionable rather than
demonstrably beneficial. Shneiderman et al (1985) report user
complaints that overlapped windows are confusing — hidden
windows can be forgotten and an inordinate amount of -time
spent shuffling and redrawing the screen. Some users have
been observed to expend considerable energy in making their
overlap displays resemble the tiling illustrated in Figure 2. On
the other hand, users also experience frustration with tiled
windows, particularly when the screen is small. Each new
window causes others to be reduced in size, obscuring
‘information at least as readily as overlapping.. Much effort
may be consumed in adjusting window sizes to approximate an
optimal fit, only to be ruined when a new window is opened —
a ready soruce of frustration. Although automatic sizing of
windows based upon constraints may alleviate the problem
somewhat, techniques for doing so are still in the research
stage (Cohen et al, 1985).

The choice between overlapping and tiling may depend
on the relationship between screen size and expected number
of simultaneously visible windows. Large screens with a
handful of related windows may be best tiled, whereas
overlapping minimizes the inevitable limitations of a small
screen. One compromise is to have a number of small physical
screens, each supporting a single or tiled view (Shneiderman et

al, 1985).

Also, careful design may alleviate some of the !

i

problems which beset overlapping windows. The system may °

supply a default strategy for tiling which is overridden

manually only rarely (Cohen et al, 1985). Or perhaps a fuller .

understanding of the ways people use windows will provide a °

firmer foundation to window system design, minimizing the
user’s overhead and feelings of frustration (Norman et al, 1985;
Card et al, 1984).

Program versus user control of windows, Who has
the power to create, position, and destroy windows? This is a
very important design consideration. At one extreme the user !

may be given absolute control over his screen, so that he —
and he alone — can manipulate windows. Then a process
which needs a window must ask for one to be created and
assigned to it. This runs the risk of causing the user
considerable bother in doing simple things. For each process,
the user must open the window, place it on the screen and size
it. When the process completes its actions, the user is left
with a “dead” window which must then be destroyed.

At the other extreme, the user may have no direct
control over. creating, placing, or destroying windows. A
program which wants a window opens one; perhaps the
window manager at least attempts to place it sensibly on the
screen. Unfortunately this can be very disruptive, disturbing
the user’s context and breaking his train of thought. Indeed,

windows may be created whose function (and the appropriate
response) is a mystery to the user.

Many compromises are possible between these two
extremes. One simple solution allows both program and user
to manipulate windows. But this raises the spectre of conflict
between the programmer’s and the user’s desire. The user may
feel, for instance, that a large overhead is continually involved
in repositioning windows that are ruined by insensitive
automatic placement. As another example, while a user may
destroy any window in the INTERLISP environment, certain
windows will insist on recreating themselves (Teitelman and
Masinter, 1981). Another scheme which seems attractive is to
allow each program to command the window manager to
create sub-windows within any areas of the screen that are
allocated to it. At its simplest, this could involve splitting
windows into non-overlapping ‘“panes”. However, for the sake
of uniformity it may be preferable if the same window format
and overlap possibilities are available to a program within its
window as the user has within his screen. This raises the issue
of whether a user is allowed to move a program-created
window outside its parent window, and if so doing changes its
status as belonging to the program that created it (for
purposes of enlargement, deletion, and so on).

Panning and auto-formatting. An important difference
from the conventional VDU environment is that programs
executed within a system with user-controlled windows do not
know the size of their output device until run time (and even
then it may changel). This causes difficulty because the best
output format may vary substantially with radically different
page sizes (for example, handheld computers use their very
small displays in quite a different fashion from normal-screen
personal computers). Generally, an application program will
either allow any window size with no guarantee that it will be
usable, or impose a range of size restrictions on windows
within which it can run effectively (even if this violates a
policy of user control over windows).

CIPS Edmonton 1986

"M File Edit Uiew Special
About the Finder...

Papers for Conferences
4 items 49K in folder 901K available

]

Issues & Experiences Frame for Pers... Workbench Creation|

Drawers
Scrapbook
Note Pad
Control Panel
Calculator
fitarm Clock

=————= Issues & Experiences =———|
S items 49K in folder 901K available

Abstract Introduction Section 1 Section 2

(]

Figures

]

Cips '86

Figure 1: Overlapped Windows and a Pull-Down Menu — The Apple Macintosh

* UTERM - vaxb sdeusttypd

.ce . l
.ps+d !
.ce :
Issues and Experiences in the Desion l
.Sp

.ce

NPBETXWY x 1title=ltitle 12:56pm 3.69L6] (Normal) Top

.sh "\fBAbstract\fR"

“(em Window systems underly many successful human-computer interfaces.

But constructing them involves several fundamental design issues which are
resolved in various ways by different implementations.

These affect both user’s and programmer’s interface, and include

tiling “fIus\fR overlapping windows;

program “fIvs\fR user control of windows;

.ce
MPBETSXUWY % 2abstract=2abstract 12:56pm 3.69L61 (Normal) 247

ISSUES AND EXPERIENCES IN THE DESIGN
OF A WINDOW MANAGEMENT SYSTEM

Saul Greenberg
Murray Peterson
Ian Witten

Abstract -- Window systems underly many successful human-computer interfaces.
But constructina them involves several fundamental design issues which are
resolved in various waus by different implementations. These affect both
user’s and programmer’s interface, and include tiling vs overlapping windows;
program vs user control of windows; techniques for coping with changeable
window sizes; desion of transient windows; low-level vs high-level tools for
NPEETXUWY * roffed-doc=[None] 12:55pm 3.01C71 (Normal)> 13%

Yes Sweetie: ls

Pheader 3introduction 5.2issues 9bib cover. letter
ititle 4mot ivation Sissues lansDraft roffed-doc.CKP
2abstract S.1lissues 6jade Makefile working.notes

Yes Sweetie:

NPBETXWY % shell=CHone] 12:55pm 3.0107] (Hormal) Bottom
Search for: Abstract

Figure 2: Tiled Windows — The Emacs Editor

CiPS Edmonton 1986

Many window managers allow the user to pan or “scroll”

across and down all text and graphics windows. (In others,

this kind of facility must be implemented at application level,
creating considerable headaches for the programmer.) But :

viewing your text through a peephole makes it difficult to scan
easily. An alternative is to wrap lines that exceed the window
boundary; but breaking at arbitrary points within words
compromises readability. A better, although computation-
intensive, plan is to reformat all text dynamically into the
current window size.
output structured document descriptions instead of plain text
(see, for example, Witten, 1985).

Other techniques are more radical. Real-time zooming,
via continuously-variable scaling, is attractive but somewhat
impractical for text with current display technology. The
“bifocal display” of Spence and Apperley (1982) is an
interesting alternative. Here, a few items of a data base are

shown in a central region of the screen in detail, while two ‘
outer “demagniified”’ regions contain symbols representing the ;

contents of the data base. Moving a symbol into the center

expands upon it. More general are “fisheye’ views, which

present a balance of local detail and global context in a single
window (Furnas, 1986). However, these techniques depend on
what is being displayed and cannot be used with any kind of
data. For example, fisheye views require each item of
information to be annotated with a “degree of interest”.

Transient windows. A primary concern of window
systems is to allow convenient, dynamic, management of
screen ‘““real estate” — a most valuable resource. Although
normal windows remain on the screen until explicitly removed
by user or program, temporary popup windows are invaluable
for displaying transient information, for they - disappear
immediately after use. These windows are particularly
appropriate for menus, to clarify options through simple
prompts, to alert the user about the system status, or to show
help information.

Pop-up (or pull-down) menus, for example, are typically

invoked by pressing a button on the mouse or by pointing at a -

menu label, and persist until the button is released. The mouse
can be moved around the screen and used to select an item
from the menu. In this way, consistent access to normally
hidden functions is available at any time. Most systems offer a
hierarchical arrangement of transient menus, of which three
variants are shown in Figures 3a, 3b and 3c. The first takes
the form of an overlapping stack; obscured ones come to the
front when the mouse moves to them. The second design
illustrates a button menu, in which the first level of the
hierarchy is always visible as a menu bar. Pointing to the
button raises the menu next to the symbol. An ever-present
set of buttons creates a feeling of familiarity and consistency
for the user at the cost of screen area. The Macintosh pull-
down menu (Figure 1) is a variant of this — buttons are
ordered in a bar at the top of the window. Figure 3¢ shows a

This implies that programs should

walking menu. Moving the mouse to the right of an entry '

causes a sub-menu to appear. This has the advantage that the
path through the hierarchy is always visible. Pull-down and
stacked menus are illustrated within a window system in
Figures 1 and 4.

Along with instantly-available actions invoked by
pointing at objects on the screen, users need corresponding
instantly-available help messages to explain the effect of
actions or the meaning of objects. Transient windows,

invoked perhaps by a dedicated help button, are ideal for this.
Since the display of the message will not affect the appearance

- of the application, a generic help facility can be installed at all!

levels of the interface. When linked to menus, for example,:
they can identify an operation better than the short,
sometimes cryptic, name of an item. Figure 4 shows an
example.

Transient windows may also result from a program
action, and remain in view until the user acknowledges the
program’s request. For example, status messages may be
relegated to a transient alert box rather than dedicating an
area of the screen to it. Simple queries are also migrating
towards transient windows in the form of dialogue boxes which

. display a message and (perhaps) a set of possible responses

(Figure 3d). Transient forms allow rapid selection and

 clarification of system options (Figure 3e).

However, there is no consensus as to how transient
windows should appear. There are almost as many variants of
popup menu formats as there are window managers.
Hierarchical menu arrangements generate even more variety,
such as walking menus, menu bars and stacks of menus.
Property sheets, which use both visual controls and a form-
based dialogue, are gaining popularity for managing attributes
of windows and objects within applications. Yet in spite of the
plethora of techniques available, there is almost no research
which evaluates and contrasts their effectiveness within an
interface.

Design issues from

the programmer’s viewpoint

Some window systems are embedded in turnkey
applications, and the issue of writing programs within them
simply does not arise (eg Xerox Star). In the others,
programming applications within the window system is a
completely different level of activity from using windows, and
is usually quite difficult. Some systems provide windows as a
more-or-less integral part of the programming environment (eg
Lisp or Smalltalk machines); in others, facilities are grafted on
to a foreign (eg UNIX-based) host; still others provide
programmers with access to the routines used to create a
turnkey end-user interface (eg Macintosh Toolbox; Espinosa
and Hoffman, 1983).

Multitasking. The fundamental motive behind windows is
the desire to support concurrent, parallel contexts on a single
physical screen. Additionally, the system must somehow
permit all the generic window manipulation actions —
creation, destruction, movement and sizing — as well as menu
selection. All these occur as asynchronous events.
Consequently a fundamental issue in window system design is
whether multitasking is the responsibility of the programmer
or the system.

If the base operating system does not support
multitasking, each individual application program must handle

asynchronous events itself. This introduces many problems. -

First, the programming environment becomes extremely
complex, for applications must cater for all possible sequences

CIPS Edmonton 1986

wid Save -»
Load file
thd Select line ¥
sef Split view

nan—-computer interface
put what are the

tents JAEWSEN HY Destiray view har to the user? Who
. ~, | Resat , or both? And what
c hol What Yine #?7 [b the funct*lona'lﬁ -
rstuly as{ Get from file pmplexity) or gh=1le
farstu A1 caret to top @htrol window managemer
’ Line break =
ctory | the Set directory
3r each —r:?‘ S 9 Find, forward 1:;.
Rty St L e AFina; backuard |
::uca!,commd | [Sument e. . | Find Shelf, forward RV
‘sunent orted ar general charad .y snei¢, backward fE

mnan—computer 1

3 -are processe~ hafrare fPirec sohler= 1ihich a1l ronte-morsry “esians of

3a: Stacked Menu 3b: Button Menu 3c: Walking Menu

fire you sure you want to remove the

application "Sketch"? 3d: Dialogue Box

Edit Search NI I4 Paragraph Docu 3a: JADE's stacked menu is raised by pressing a dedicated
Untitled menu button. Moving the mouse to a hidden menu brings it
ntitle immediately to the surface.

ct -- : < 3b: The SUN 3’s. button menu is raised by pointing to the
_ ch ppm— : always visible button (in this case *‘Edit Item’) and
comyj aracter Formats he pressing a mouse button,
s sev F“Ule) ¥ Bic) 3c: The SUN 3's walking menu is raised by pressing a
{in X Bold ot dedicated mouse button. Pointing the arrow right of the
“Cectl [1talic entry raises the auxiliary menu,
+€C _ 2 3d: The Macintosh dialogue box asks the user to select one of
lin & Undertine Position | Im a set of choices
° W: O Outline ® Normal h Je: This Macintosh property sheet, raised from a menu
. [shadow QO Superscript : selection, describes the properties of a character font.
$12¢ (] small Caps QO Subscript V_V' Starting at the upper right and moving clockwise, it
A td list includes: checkboxes (‘‘Character Formats'’), normal
ad|| Font Name: buttons (**Ok’’ and ‘‘Cancel’’); mutually exclusive buttons
in a pane Position’’); a text fie ont Size'’); an
rh 3 1 (u it n) fi 1d (uF S' 1] d
q two scrollable menus (‘‘Font Name™).
est Helvetica
Courier
Mos Eisley
wap
dsti

3e: Property Sheet

Figure 3: Transient Windows.

CIPS Edmonton 1986

of events, and do so in real time. Obviously a computé-bound
program cannot respond satisfactorily to a popup menu
request, unless an explicit check for menu activity .is made
periodically in the program. Second, as multitasking is limited
to only those tasks expressly catered to by the application, the
user will not enjoy system-wide concurrency.

The Apple Macintosh is a good example of a window- .

. based system lacking a full multi-tasking kernel. A user may
not have two windows on the screen running different
applications. For a single application to make use of multiple
windows, it must simulate multi-tasking within itsell. The
program must be aware of all possible states and must handle
explicitly any occurrence in any window. In effect, each
programmer must write his own (albeit restricted) multi-
tasking kernel.

Desk-accessories add another level of complexity to the
Macintosh. Within any application, the user can invoke his
favourite accessories, such as calendars, notepads, clocks,
calculators, and so on. When finished, they disappear and the
user resumes his primary task. Yet it is the application
program (and thus the programmer at considerable bother to
himself) who is responsible for making the accessory available,
and for activating it when selected by the user. As Webber
(1986) states, "every program on the Mac becomes a frantic
conspirator in the multitasking cover-up”.

If multitasking is supported, the programming chore is
greatly reduced. Concurrent actions are handled by creating a
corresponding set of processes. Processes responsible for real
time interactions, such as displaying popup menus, are given
higher priority. Although fully supported multitasking makes
application programs easier to write, it introduces the problem
of physical screen management and synchronization between
many processes which (in theory) have little or no knowledge
of each other. For example, some mechanism must prevent
programs from writing on areas of the screen which are
“owned” (even temporarily) by another process. If a popup
menu is currently obscuring part of a window, all output to
that window should be either stopped completely, or at least
prevented from spoiling the menu. Fortunately, this conflict
between multitasking and screen integrity can be solved in
several ways.

Screen arbitration. One method of screen arbitration is
to create a single window manager process which owns the
entire physical bit map. All window operations, including
redirection of mouse and keyboard input, take place through
requests to this process. A message-passing protocol is suitable
for transferring requests between the application and window
manager processes, and has the further advantage of allowing
application processes to be distributed across multiple
computers (Neal et al, 1984). But the design of such a
manager is complex — diverse, asynchronous requests are not
handled comfortably by a single process. The monolithic
window manager cannot take advantage of the multitasking
facilities offered by the base operating system. Instead, it is
now responsible for simulating & multitasking kernel inside
itself.

Alternatively, process synchronizing primitives such as
semaphores or monitors can be used for screen arbitration.
Then the window manager becomes a set of multiple processes,
each handling some small task (eg control of the pointing
device). All requests for screen access, by either the window
processes or the application, are sequentialized through a
semaphore or monitor. However, a serious problem occurs
when a process which has gained ownership of screen resources
dies unexpectédly. The operating system must exercise
considerable ingenuity in identifying these resources and
returning them to the global pool. Also, application processes
cannot reside on a different computer unless they make
requests through some server process on the local machine.

Low- versus high-level functionality. Programmers of
window systems are difficult to please, for they usually seek
high-level window management facilities as well as low-level
flexibility. At one extreme, if the window manager provides
very basic primitives like set-pizel, programmers have the
opportunity to do exactly as they wish — subject to the costs
of programming time and execution speed. At the other
extreme, high-level libraries, although minimizing
programming complexity, impose a commitment to a
particular user interface style.

The major advantage of libraries is that most of the
difficult work has already been done before-hand, work which
may be beyond the skills and budget of the average developer.
These libraries incorporate a philosophy of what a user
interface should look like and how it should be implemented.’
This is especially important for integrated environments,
where different applications have similar interface styles.
From a limited set of pre-defined interface fragments written
by experts in human-machine interfacing, the programmer
chooses the kind of interaction he wishes.

One good example of such a library is the Apple
Macintosh toolbox. The programmer’s manual begins by
describing the philosophy of the user interface, and expects the
developer to follow that philosophy (Espinosa and Hoffman,
1983). The toolbox provides the means for implementing the
Macintosh view of the interface. This library includes
scrollbars, limited text structures and editing packages,
dialogue and alert boxes, different window configurations, and
pull-down menus. Using. these tools is relatively
straightforward. With a minimal amount of work, one can
construct (supposedly) a clean menu-based interface to an
applicationt. Of course, you have to be happy with the
Macintosh view of the world. If, for example, you would
rather use a popup menu, you are out of luck.

Although this is widely accepted as good practice, one
could argue that these design decisions should be the
responsibility of the application programmer rather than the
window system implementor. An obvious solution is to have
the window manager offer very low-level primitives and build
increasingly higher-level software on top. Then the
programmer can select the layer appropriate for the
application in mind. Unfortunately, this scheme does not

tUnfortunately, programming the Macintosh is not as easy as one would expect. Although
individual toolbox routines are reasonable, programming is complex because: a) the toolhox
provides little assistance for event-handling; and b) the machine does not have a multitask-
ing kernel. The system simply does not supply good support for programming within the in-
terface philosophy it insists on! See Webber (1986) for a good discussion of these
deficiencies and how they are overcome by the AMIGA user-interface software.

CIPS Edmonton 1986

work in practice. The lowest level primitives (such as set-
pizel) are much too slow, for each request involves (at
minimum) a subroutine call and a semaphore or message-!
passing operation. True layering is impossible, as higher level
routines must be built into the window manager if it is to have
acceptable performance. Consider, for example, a line-drawing
function. A high-speed Bresenham line algorithm should
manipulate the window bitmap directly, rather than use the'
slow set-pizel primitive. Layering and flexibility are sacrificed.
for the sake of efficiency.

The choice of levels depends on the desired flexibility,:

execution speed, programming ease, and enforcement of
consistency by the interface. Inevitably (for speed) the
window manager will incorporate some high-level primitives
that cannot be easily changed. There are no correct decisions

in this area; one can only strive to achieve an acceptable

trade-off for any particular system.

Lessons from the JADE window manager

The goal of the JADE project at the University of

Calgary was to build a programming environment for
prototyping and implementing distributed computer systems.
Early in 1983 it was resolved to design and implement a small
multitasking operating system kernel and window manager on
a bare 68000 workstation. A simple message-passing protocol
forms the core of all JADE software, and provides a natural
means of communicating with the workstations from a central
cluster of large UNIX systems. The JADE Window Manager
(JWM) is the result.

Figure 4 shows a picture of a typical JADE screen, with a
number of windows (some overlapping), and a stack of popup
menus and help windows. There are five labeled windows, not
counting the transient ones. The first, second and third are
respectively: a virtual terminal into the UNIX system, a
scrollable file viewer; and a small analog clock. Windows four
and five are “workbenches”, a locally developed application
that provides a popup menu-based interface to UNIX
(Greenberg and Witten, 1985). The fifth window, which is a
workbench to the UNIX on-line manual, overlaps two others.
By pressing the “menu” button on the mouse in this window,
the user has popped up a stack of menus, of which one item
(“keyword”) is now pointed to. Pressing a “help” button has
caused a stack of help windows to appear, where the top one
contains a brief description of the “keyword” menu entry.

Let us review the major design decisions, why we made
them at the time, and how they feel now after three year’s
daily use. We have been able to accommodate a sizeable user
community (one of the advantages of adopting bare-bones
microcomputers was that many could be purchased within a
tight budget), comprising both end users of a window-based
interface to UNIX and software developed for JADE, and
programmers creating such software. It will be convenient to
follow closely the structure of the last two sections in
considering the design choices that were made.

1. Windows are overlapped, with buried ones
inactivated. As Figure 4 illustrates, we opted for an

overlapping window system; a decision which was in fact taken
quite lightly. Much more controversial was the fact that
output to windows which are covered by others (even
partially) is blocked and the relevant processes suspended. For
example, windows one and two in the Figure cannot accept
output "because they are partially obscured by another
windowt. This decision involved considerable — and, in
retrospect, unnecessary — agonizing.

Deactivation of buried windows was a reasonable choice.
It simplifies implementation very considerably, and users never
saw it as a problem. The overlap issue was not as clear cut.
In practice, most users rarely have more than three or four
windows on their screen at any time, often arranged as tiles
when feasible. In retrospect, tiling should have been supported
in addition to overlaps either at the screen or window level.

One scheme that uses both tiles and overlaps allows a
hierarchy of windows. The top-level windows may be
overlapped. Each of those windows may be further subdivided
into tiled sub-windows supporting specific capabilities, such as:
virtual terminals; scrollable areas; panels of buttons and
switches; forms; and so on. (A good example of this type is the
Suntools package on the Sun workstation.) Another reasonable
scheme tiles windows into a single frame. Although it is
possible to overlap and to change the size of windows, the
default layout of a set of related windows is two-dimensional
tiling with an effective balance of sizes. (See, for example, the
document ezaminer described in Symbolics, 1985).

2. Users have total control over windows,
programs virtually none. It was decided early that users
would control all aspects of window manipulation, including
creation, destruction, movement and shaping. Programs
would be denied this kind of control. This was because it was
deemed essential that users feel in control at all times. Some
in our group who had experienced excessive program control of
windows in other environments (such as INTERLISP on the
Xerox Lisp machines) are content with this scheme. Most
others think that this degree of user control of window
manipulation is excessive — it can make the user {eel a slave
to the system! However, all agree that lack of program control
produces a very consistent user interface.

Most application programmers despise their programs’
impotence to control windows. Particularly annoying is the
inability to fix a window’s size, and to destroy windows — the
user must be relied on for all cleanup. Eventually, the JwM
architect bowed to pressure and included a facility for program
control of windows.

In retrospect, users seem to pay an excessive penalty for
the privilege of being the only one who is allowed to
manipulate windows. We would now recommend building
extensive program control of windows into the system’s
primitives. However, we would also supplement this with a
standard set of system defaults and guidelines to encourage
sensitive use and consistency across the interface.

8. The window manager supports neither
panning nor auto-formatting. With the exception of a
few low-level primitives such as raster scrolling and simple

1 If the clock were covered and therefore stopped, one gets an amusing effect on uncovering
. it. It runs fast to catch up, because the update events have been queued meanwhile.

CIPS Edmonton 1986

clipping, each application has to perform output control and
resizing unaided. Although the window system is graphics
oriented, in fact textually-oriented applications dominate. But
JWM’s conception of text is no more sophisticated than that of
a standard VDU. It has no text formatting capabilities and
does not accommodate multiple fonts.

This lack of help with what application programmers
considered vital functions is probably one of the greatest

weaknesses of JWM. Many users implemented their own text_

panning and scrolling packages; some created font handlers.
The wheel was reinvented many times and, as each version
was different, interface consistency suffered. More emphasis
should have been placed in the original specification on text
editing and scrolling primitives. Panning within graphics and
text is highly desirable for most applications, whereas
autoformatting is useful only within specialized textual
contexts. A few users would have liked zooming capabilities,
even for text. In retrospect, we spent too much of our limited
resources on graphics.

4. Stacked popup menus with associated help
windows are fully supported. A popup menu capability
with realtime response was considered essential for a consistent
user interface. Popup menus take the form of an overlapping
stack (Figure 4). A small help window is associated with each
popup menu, and a stack of these corresponding to the popup
menu stack is always instantly available. The stack also
includes help specific to the window itself. Two of the three
mouse buttons are dedicated to popup menus and help
windows respectively, leaving only one for application
programs.

Heavy use is made of popup menus, and they are simple
to program and use. The menu layout is quite acceptable and
compares favourably with others. One cardinal advantage of
the menu stack is that application programs only add menus
to the stack, so that the basic ones (for window creation etc)
are always accessible at the bottom of the stack. This creates
a comfortable feeling of familiarity and control. Set against
this is the fact that stacks can grow large and become

|_VUTERM - wvaxb /deu/ttgg8
1 Eommands . Wb JUnk

Yes Sweetie: wcs.snap

15-> (run ‘commands.uwb)

Give us a valid machine id: cvié
Yglil must create a window for the workbe
ni

16-> (run ‘commands.uwb?) SYNOPSIS

DESCRIPTION

contents.

Zuser/grads/greenberg/PaperssJadelindd ES
.ce
.hl "Abstract"

PP .
It is widely accepted that most "modern'
supporting window sustem.

However, no consensus exists amona implementors of such systems |
to resolve several fundamental design issues within the user’s ar

the programmer’s interface.
These include:

tiling versus overlapping windows; % Unix Workbench -processes
Program versus user control of windows; PID TT STAT TIME
technigques for coping with variable window sizes; 12352 dhid I 8:16
design of transient windows; 26393 p3 I B:00
low-level versus high-level tools for the programmer; 25663 p8 1 8:07
local versus distributed control; 23504 pe 1 8:04
and the role of a general window manager process. 24175 pe I 08:53
PP i 24178 pe {43:01
This paper surveus general characteristics of window sustems. 25757 Q9 106
Psychological motivation for using windows are briefly reviewed, 25968 q5 I N @o:11
followed by an introduction to window sustems and the predominant issues 26024 q5 IN 9:03
of their design. 26558 @3 S N 8:82
The philosophy and implementation behind a v 26587 95 S N 0:00
D

mouse.mo.mo wCsl.l

Lisp driver.1 lisp-make print-it wcs2. 1
Save edit.l manual .wb i
Scroll edit.l.old mouse.ml * Manual Workbench

1s - list contents |
1s L -acdfailqrstuly

For each directory |
directory; for each
any other informati,
sorted alphabetical [command

given, the argument: . r
file arguments are processed before directories

There are a large numbe[JETTEPRRIg eI ls)

-1 List in long fy
owner, size in
each file,
the size field
device numbers
pathname of th

LR

-entr

the conte
| _{repeats i

default, t
[gument is giv
current directory i: =+ several argu

orted appropria

THE JADE WINDOW SYSTEM

-- keuword
¢S Show manual entries
with this keyword

Figure 4: The Jade Screen

CIPS Edmonton 1986

cumbersome. Although these menus provided a very high level
of functionality, they were inflexible. This does not seem to
bother either the programmers or users.

There is disappointingly little use of the help windows.
In particular, those associated with the system menus are
rarely used. However, some programmers and users think they
have merit, especially for first-time or infrequent users of
certain complicated application programs. If JADE had a richer

set of menu-based application packages, we suspect that the '

help facility would have been worthwhile.

Users complain about having to use menus for
frequently-invoked actions. In particular, all window
manipulation — including creation, placement, resizing, and
bringing to the top of the pile — is through menu actions
only. We would now choose direct manipulation techniques
instead (Shneiderman, 1983), perhaps by reserving small areas

of each window as buttons with specific functions. (The Apple :

Macintosh is particularly effective in this regard.) Other
frequent menu operations are for textual cutting and pasting.
We recommend allowing keyboard actions to be bound to

menu selections, for many users find moving from the

keyboard to the mouse and back again annoying
particularly during text editing. As a general solution, panels
of soft buttons which are always visible should be available as
an alternative representation of a menu.

Application programmers had trouble
transient messages to the user in their window-oriented
applications. As a result, dialogue boxes were included later to
allow attention and error messages and selection requests to be
handled uniformly across applications.

-

5. The window manager is implemented as a
monolithic process. JWM is a complex piece of software
— a single process which simulates concurrency internally. It
owns the entire display, and arbitrates requests from all other

processes that wish to manipulate the screen. These processes -

communicate requests to the JWM by passing it messages.

Thus applications which reside on different machines look the

same as local ones to the window manager.

An gpplication that needs to do anything not handled
specifically by the JWM, must use a special request facility.
The programmer writes ‘code encapsulating the desired
behaviour, downloads it, and invokes it through the window
manager. In effect, the program segment becomes the window
manager for its lifetime. However, this meant that all normal

JWM functions (such as popup menus) disappear for that
duration.

In general the monolithic approach, although acceptable
to most users, received heavy criticism from the original
designers and the few programmers who needed flexibility.
First, it was difficult for a single application to change the
view of system functionality, since the window manager
process controls the larger part of this, not the application.
For example, it is impossible to change just the appearance of
a popup menu without re-writing and replacing the entire
window manager. Second, the extensive interprocess
communication through messages was often too slow for
adequate realtime response. Third, implementing multi-
tasking inside the JWM when a multi-tasking kernel was
already available made its original design and later
modification difficult and complex.

presenting ‘,

We recommend building a window manager as a set of
multiple processes for the sake of modularity. The coding and
modification exercise would be eased considerably. If, for |
example, a programmer wished to change the appearance of |
the popup menu, then only the menu process would need
replacing.” Also, it would be easier to supply and test
alternative representations of any particular process.
speed, we recommend that processes residing on the local
machine use a procedure-call interface to the window manager.
Remote processes could employ a server on the workstation to
achieve transparent access.

6. The JwM provides limited functionality. A

For :

strict set of moderately high-level primitives is embedded as a -

library within the JWM kernel, accessible only through
requests. Applications may read and write to an identified
window, but not to arbitrary screen areas. Programs recognize
user actions within a window by receiving one of a pre-defined
set of input events. Output is through very simple text and
graphics primitives.

The original version of the JWM library was difficult to
use by non-JADE experts. First, although embedded within
any one of a number of standard host languages, requests were
made in the unfamiliar message-passing language provided by
JADE. Second, there was no real hierarchy of functionality .
available. Although one could draw lines and text strings
easily, much programming was need for anything more
complex than that. Third, the unavailability of some kernel
primitives (such as text fonts and bitblit) discouraged all but
the most ambitious from pursuing certain lines of
development.

In respose to pressure from both application designers
and users, these deficiencies were eventually overcome. As part
of the JADE project, a high-level and extremely powerful 2-D
graphical language was constructed on top of JWM primitives.
Similarly, a toolbox of subroutine calls, based on the original
primitives, added high-level interface constructs such as scroll
bars and scrollable text, buttons, dialogue boxes, and so on
(Greenberg, 1985). Although far from complete, these
constructs eased the programming task enormously and
promoted interface consistency.

In retrospect, the array of primitive actions implemented
was not rich enough. Font and text-editing primitives, as well
as bitblit support, should have been installed in the kernel. For
those few programmers desiring access below the primitives, a

multi-processor window manager described previously would
suffice. As the majority of programmers required high-level
facilities, a reasonable number of high-level constructs should
have been designed and built as part of the original system.

Conclusions

Window systems are having a far-reaching effect on the

user interface. Although they can add considerable complexity .

to the user’s perception of the system, this is mitigated by
direct manipulation techniques, system-wide
conventions, and instantly-available help facilities. The added
complexity for those who write window-oriented application
programs is not so easily disguised, but can be alleviated by a
well-designed programmers’ interface which allows access to
standard facilities offered by the window manager at a variety

CIPS Edmonton 1986

interface

of levels. Despite this complexity, window systems promise
great benefits in naturalness and ease of use, and mark a new
phase in the acceptance of interactive computer systems.
They are altering the expectations of users, and are forcing
programmers to change how they think about the human
interface.

The JWM has had a significant impact on the way we
work in the Computer Science Department at Calgary. Many

people routinely run several virtual terminal windows on their
screen, often connected to different computers. (Users may :

access any of four VAX-11/780’s through popup menu
selections.) A return to conventional VDU terminals would be
seen as a significant reduction in service. Application

programmers are no longer content to develop glass-teletype

interfaces, but now use direct manipulation techniques where
possible. The teaching program has also been affected. A new
course on the technology of office information systems was

- created to instruct undergraduates in modern techniques of

interface design (for example, the use of windows). Another,
on distributed systems, uses JADE and the JWM for teaching

"~ about concurrency at a far greater depth than was previously

© possible.

This paper has identified and discussed some of the !

. issues raised by the design of window managers, so that our

experience may benefit other implementers. By pointing out |
the consequences of certain design decisions, and by listing
some alternatives and the trade-offs involved, a foundation for
the design of better window management systems has been
laid. Yet we do not offer a recipe for design. Not only are’
many issues as yet unresolved, but the ideal window system
will depend on the users of the system and the tasks they

. undertake.

Acknowledgement. We would like to give special thanks |
to Radford Neal, the chief architect of the JADE project, and :
all the people that took part in the animated and often heated ;
discussions that preceded the design of the JWM. This research '
is supported by the Natural Sciences and Engineering Research :
Council of Canada. i

i
References

t
Bannon, L., Cypher, A., Greenspan, S., and Monty, M. (1983)
“Evaluation and analysis of users’ activity organization’’ :
Proc ACM CHI 8% Human Factors in Computing Systems,
54-57, Boston, December 12-15.

Bly, S.A. and Rosenberg, J.K. (1986) “A comparison of tiled
and overlapping windows” Proceeding of the ACM
SIGCHI 86 Human Factors in Computing Systems, 101-
106, Boston, April 13-17. o

Card, SK., Pavel, M., and Farrell, JE. (1984) “Window-
based computer dialogues” Interact 84 - First IFIP

Conference on Human-Computer Interaction, 1, 355-359,
London, UK, Sept 4-7.

Cohen, ES., Smith, E.T., and Iverson, L.A. (1985)
“Constraint-based tiled windows” Research Report,
Computer Science Department, Carnegie Mellon

University, Pittsburgh.

Espinosa and Hoffman (1983) “Macintosh user interface

guidelines (2nd edition)” in J[nside Macintosh. Apple
Computer Inc.

Furnas, G.W. (1986) “Generalized fisheye views” Proceeding of
the” ACM SIGCHI ’86 Human Factors in Computing
Systems, 16-23, Boston, April 13-17.

Gosling, J.A. and Rosenthal, D.S.H. (1983) “A network
window-manager” Report, Information Technology

Center, Carnegie-Mellon University, Pittsburgh, PA
15213.

Greenberg, S. and Witten, LH. (1985) “Interactive end-user
creation of workbench hierarchies within a window
interface” Proc Canadian Information Processing Society
National Conference, Montreal, Quebec, June.

Greenberg, S. (1985) “The toolbox manual - a high level
approach to the Jade window manager” Internal report,
SRDG group, Department of Computer Science,
University of Calgary.

Joy, W. (1979} “An introduction to the C shell” Computer
Science Division Report, University of California,
Berkeley, California.

Malcolm, M. and Dyment, D. (1983) “Experience designing the
Waterloo Port user interface” Proc ACM Conference on
personal and small computers, 168-175, San Diego,
California, December.

Neal, R.M., Lomow, G.A., Peterson, M.W., Unger, BW._, and
Witten, LH. (1984) “Inter-process communication in a
distributed programming environment” Proc Canadian
Information Processing Society National Conference, 361-
364, Calgary, Alberta, May.

Norman, K.L., Weldon, L.J.,, and Shneiderman, B. (1985)
“Cognitive representations of windows and multiple
screen layouts of computer interfaces” Research report
CAR-TR-123, CS-TR-1498, Dept of Computer Science, U.
of Maryland, MAY,

Pike, R. (1983) “Graphics in overlapping bitmap layers” ACM
Trans on Graphics, 2(2) 135-160, April.

Rosenthal, D.S.H. (1982) ‘Managing graphical resources”
Computer Graphics, 16 (4) 38-45, December.

Shneiderman, B. (1983) “Direct manipulation: A step beyond
programming languages” IEEE Computer, 16 (8) 57-69,
August.

Shneiderman, B. (1984) “Response time and display rate in
human performance with computers” Computing Surveys,
16 (3), September. .

Shneiderman, B., Norman, K., Rogers, J., Arifin, R., and
Weldon, L. (1985) “A multi-screen programmer work
station based on the IBM PC” Research report, Dept of
Computer Science, U. of Maryland, April.

CIPS Edmonton 1986

Smith, D.C., Irby, C., Kimball, R.., Verplank, B., and Harslem,

E. (1982) “Designing the Star user interface” Byte, 7 (4)

242-282.

Spence, R. and Apperley, M. (1982) “Data base navigation: an |
office environment for the professional” Behaviour and:

Information Technology, 1 (1) 43-54.

Stallman, R.M. (1981) “EMACS the extensible, customizable
self-documenting display editor” ACM Sigplan Notices —
Proceedings of the ACM Sigplan SIGOA symposium on
text manipulation, 16 (6) 147-155, Portland, Oregon, June
8-10.

Symbolics (1985) “Using the online documentation system” in
User’s Guide to Symbolics Computers. Symbeolics, Inc.,
March.

Teitelman, W. and Masinter, L. (1981) “The Interlisp

programming environment” IEEE Computer, 14 (4) 25-34, |

April.

Test, J.A. (1982) “The NUnix window system” Internal report,
Laboratory for Computer Science, MIT, Cambridge,
Massachusetts.

Webber, A.B. (1986) “Amiga vs. Macintosh” Byte, £ (9) 249-
256, September.

Williams, G. (1984) “The Apple Macintosh computer” Byte, 9 °
(2) 30-54.

Witten, LH. (1985) “Elements of computer typography” Int J -
' Man-Machine Studies, 23 (6) 623-687, December.

- Wood, R.J. (1982) “k ‘window based display management

system’ Internal Report, University of Maryland.

CIPS Edmonton 1986

