Greenberg, S. (1985). The toolbox manual: A high level approach to the Jade window manager.
Research Report of the Software Research and Development Group, Department of Computer
Science, University of Calgary, Calgary, Canada.

Toolbox Manual
for the ‘

Window Manager

Saul
Greenberg, S. (1985). The toolbox manual: A high level approach to the Jade window manager. Research Report of the Software Research and Development Group, Department of Computer Science, University of Calgary, Calgary, Canada.

Toolbox Manual For The Window Manager

by Saul Greenberg

Preface to the June 30th Edition

Man/machine interfaces Lo windowed systems are difficult to sct up for two rcasons. First,
they are complex to build, for the flexibility they offer the user must be explicitly catered to by
the programmer. Sccond, it is difficult to present an interface that is consistent between
applications, especially when there are many people designing them. This toolbox attempts to
remedy these prbblcms by providing high level facilities for window manipulation. These
minimize programming and cncourage interface consistency. At the same time, low level
primitives are avallable for complete programming flexibility.

To use this manual, go to the Appendix and scan through the packages available. Be
aware of the high level functions, otherwise you will find yoursclf re-inventing the wheel with
the primitives. At the end of cach section, you will find example programs illustrating the use
of the new concepts. Execute thesc programs before writing any code, to see what simple tasks
canh be done. Afterwards, look at the program code. The tri_message program in Section B is a
particularly good illustration of a simple interface. When rcady, you can copy these program
dircctly and usc them as a template for your own needs.

You need only minimal knowledge of the Jade system to create a windowed system. You
must know how to initialize your processes, manipulate vterm, and get the window manager
variables -~ see the example programs for this. Although you should understand what is going
on, you can probably get away with copying the relevant pieces of example program segments.

The toolbox is open ended. If you write a module which can ease the programming
burdens of others, we will gladly add it to the package.

One last thing. In the (very unlikely) event that you spot errors in the manual or bugs in
the code, please report them to Saul Greenberg (rm 281 Maths building) or send electronic mail
to greenberg@vaxb.

TABLE OF CONTENTS

1. The Toolbox packages

A. Primitive Window Calls
1.
2.
3.
. Events

. Requests to the window manager
. Output. to the window

. Program control of screens

. Program control of windows

C

h)
4

—

-

ot

O W 1>

Initializing and ending a window
Requests of window status
Buffering output requests

Example programs

. Mantipulating cursors, windows and menus
1. Changing the cursor
2. Setting up a window
3. Setting up a menu
4. Example programs
. The Rectangle
1. Using the rectangle
2. Example program
. The Slide Potentiometer
1. Using the slide potentiometer
2. Example program
. Tools Requiring Servors
1. Saving and restoring bitmaps

II. Appendices

S U WN e

. Summary of Primitive Window Calls
. Cursor, Window and Menu Summary
. Rectangle Summary

. Slide Potentiometer Summary

. Tools Requiring Servors summary

. Example Programs & Compiling

Primitive Win‘d()w Calls

| Revision of 30 June 1985

A. PRIMITIVE WINDOW CALLS

This scetion describes a modest extension of all the window manager calls present within Jade. Its primary
purpose Is to offer a clean C-style interface to the window manager and some enhancements not normally
available through the equivalent Jade calls. It offers the following capabilities:

A C-style syntaz to Jade window requests

- Automatic maintanance of its own jipe buffer -- this package will not interfere with other jipe
calls.

- Events are queued one-deep, allowing cvents to be put back. This essentially provides a look-
ahead capability.

- Buffering of output requests - output requests may be sent immediately (unbuflered mode) or
buffered and sent automatically and much more quickly.

- Requests of system states such as whether the bufler is in buffered or unbuffered mode, the status
of the point stroke state (set or unsct), etc.

This section catagorizes and describes all the window manager routines available to the applications
programmer. With one exception, all paramecters are described within the subsection introduction or the
subroutine description.

The exception is window, a parameter found in virtually all routines but one. This parameter is of the
type WINDOW and is returned by the window initialization routine (WInit). The subsequent discussions
assume that the parameter window is declared as WINDOW.

NOTE: If this package is used, the application programmer should avoid using the Jipc-style window
manager messages described in the JADE manual. Also, scan through the rest of the manual before
programming, as lurther sections describe high-level packages which may minimize your programming at
the primitive level.

A.1. Initializing And Ending A Window

Before using this package, the system must be initialized by w_tntt, which returns a value used by.all
subsequent window manager calls. Initialization creates a window structure which keeps track of the
current buffer, queues events and Is aware of the current system state.

When the application no longer has need of the window, it should be ended by w_end, a housekeeping
routine which frees up the window structure.

WINDOW w_init (window_manager, window_identifier)

j_process_id window_manager;
int window_identifier;

A. Primitive Window Calls

This function must be used hefore any other calls in the toolbox. A WINDOW pointer is
returned from the call which is necessary for all subsequent window requests. It is your
responsibility to supply the correct window manager and identifier to the window.

w_end (window)

EEnd the window. This is normally used when the application has no further use for the window.

A.2. Requests Of Window Status

It Is possible for the application to find out. certain attributes of a window. These include finding the value
of the window manager and identifier and the current state of the window buffering and the stroke mode.
Also, one can find the size and color of a window.
J_process_td w_get_manager (window)
Return the window manager of the window.
int. w_get_id (window)
Rct,urn' the window identifier of the window.
int w_is_buffered (window)
Returns TRUE if the window is in cooked mode, else FALSE.
int w_is_stroke_mode (window)
Returns TRUE if the window is in stroke mode, else FALSE.
w_get_info (window, x1, y1, x2, y2, color)
WINDOW window;

int, #x1, #x2, *yl, *y2, *color;

Return the absolute screen coordinates of the window and its current background color. The co-
ordinates returned are the lower-left corner (zI, yI), lower-right corner (z2, y2) and the
background color (0 for black, 1 for white).

.

A.3. Buffering Output Requests

Output requests may be sent individually (unbuffered mode) or packaged together (buffered mode). In
unbuflfered mode, every output request is sent immediately, with the consequence of relatively slow output
to the screen. In buffered mode, output requests are automatically grouped together, with the consequence
of rclatively fast output to the screen. In buffered mode, there is normally no need to flush the output
buffer as it is done automatically. In odd circumstances, a manual flush is possible.

When a window is initialized, it is put into unbuffered mode as a defauit.

A. Primitive Window Calis

w_buffered (window)

Output requests are buflfered and sent only when the buffer is full or when a non-output request
is made. ‘

w_unbuffered (window)

All window manager requests are sent as individual messages. When a window is initialized, it is
put into this state.

w_{lush (window)

Output requests are flushed immediately from the buffer.

A.4. Events

All user actions generate some type of input event, whether it be due to selecting a key on a keyboard,

hitting a mouse button, or destroying a window. Event-based Input is a fundamental difference between

window-orientcd and traditional stream input. It is important to understand and take advantage of this
diffcrence!

The following routines describes how events are detected, the types of events, and the parameters that
can be retrieved when an event has occured. Finally, a small example is provided to illustrate event use.

Event detection.

The following routines provide the capability to see il any event has occurred, the retrieval of the event
type, and the putting back of retrieved events.

int w_any_cvents (window)

This reply returns TRUE if an event is waiting to be picked up by "w_get_next_event” and
FALSE if no event is pending.

int w_get_next_event (window)

Notifies the application that an event has occurred by returning the type of event (see Event
types below). This will not return until an event has occured.

w_put_back_event (window)
Puts back the last event. This provides a look-ahead facility which is not present in the standard

system. An event can only be put back immediately after a "w_get_next_event” call. If a
window manager request occurs between the two, an error will occur.

Event types.

There are only a limited number of input events that can occur. These events and the action that
produced them are described below:

A. Primitive Window Calls

WM_MENU_SELECTION The user has made a menu selection.
WM_POINT_DEPRESSED The point button was depressed.
WM_POINT_RELEASED The point button was released.

WM_POINT_STROKE The point button was held down while the mouse was
moved (sce w_set_stroke_mode).

WM_SIZE_SIIT The user has changed the window size.

WM_KEY The user has hit a key on the keyboard.

WM_CANCEL The user has depressed a menu button and

released it without making a menu sclection.
This is interpretted as a cancel.
WM_DESTROY The user has destroyed the window

Event parameters.

After an event has occured, some parameters may be retrieved by the application. For example, a
WM_POINT_DEPRESSED event indicates that the application may retrieve the (x,y) coordinate of
where the point press occured. It is important that these parameters are retrieved right after the event,
for any other window request will destroy the information.

w_get_menu (window, pane, menu, item, new_window)
int *pane, *new_window;
char menu{12], item|[12};

This call retrieves the parameters from a WM_MENU_SELECTION event. It indicates that the
user has made a selection while in the returned pane. The name of the menu and stem is
returned. If a make window request is associated with the item, the id of the new_window will be
returned, clse a 0 (see w_make_window).

w_get_point (window, x_coord, y_coord)
int *x_coord, *y_coord;

An (x,y) raster point coordinate can be retrieved after any one of the following events occur:
WM_POINT_DEPRESSED, WM_POINT_RELEASED, WM_POINT_STROKE or
WM_SIZE_SET.

w_get_key (window, *key)
char key[50};

The returns the key typed by the user (a WM_KEY event). The string will contain one character
for ordinary keys and up to fifty characters for COMMAND keys. ’

Example.
The following program segment illustrates how events may be used (parameters are assumed to be

previously declared):

switch (w_get_next_event (window)) {
case WM_KEY:
w_get_key (window, key);

case WM_POINT_DEPRESSED:
w_get_point (window, &x_coord, &y_coord)

A. Primitive Window Calls

A.5. Requests To The Window Manager

The window manager may be directed to do many tasks, such as creation and destruction ol pop-up
menus and help windows, changing and retrieving the cursor or title bar of the window, etc. The following
routines direct the window manager to carry out the given rcquest.

Although you should understand and try most of these routines, Section B of this manual provides simpler
facilities (although slightly less flexible) for laying out title bars, pop-up menus and help windows and for
changing the cursor description.

Titles.

The string in the title bar of the window may be changed or retricved by the following routines:

w_set_title (window, window_title)
char *window_title;

Replace the title bar of the window by the string window_title. The title may be truncated to
fit.

w_get_title (window, window_titlc)
char window_title{120];

Return the current title bar of the window in the string window_title.

Menus and help windows.
Pop-up menus and help windows and panes may be added, deleted or modified by the window manager.

w_set_pane_division (window, division_number, orientation, distance)
int division_number;
char orientation;
int distance;

Sets up the pane division identificd in division number to be either a vertical or horizontal
ortentatton, with the division line a given distance from the lower left corner. Divisions are
numbered starting with zero. There are sixteen pane divisions, initially all set at position zecro.
You may use the pre-defined definitions W_VERTICAL and W_HORIZONTAL for orientation.
Panes are described in detail in Section I11.B of the Jade user manual.

w_add_menu (window, division_vector, division_mask, menu_title, help)
int division_vector;
int division_mask;
char #menu_title;
char +help;

A. Primitive Window Calls

This call adds a new menu to the stack for a clump of pancs. The division_vector and
division_mask are the bit-vector and mask identifying the clump; giving a zcro for the mask
indicates that none of the division lines are to be looked at, so the menu applics to the whole
window. Menu_title contains the title of the menu and the individual menu items. Help gives the
contents of the associated help window. Both the division_vector and division_mask may be
replaced by the constant W_IGNORE_PANE if the menu is to be applied to the whole window.
A Tull description of menus is given in section 1ILB of the Jade user manual.

w_add_simple_menu (window, menu_title, help)
This macro is identical to the one above except that it ignhores all references to panes.

w_delete_menu (window, menu_title)
char smenu_title;

Delete the menu with the given menu_title from all panes where it occurs.

w_make_window (window, menu_title, menu_item, x_defauit, y_default)
char *menu_title;
char smenu_item;
int x_decfault, y_default;

Directs the window manager to have the user create a window whenever the menu_ttem from the
given menu_title is selected. The id of the new window will be made available to whoever sces
the menu selection. The default size (in pixels) of the created window is specified by the two
integers. A zero value for a default size will cause the window manager to seleet its own default
for that dimension. Very small defaults are considered to be identical to zero.

w_add_help (window, division_vector, division_mask, help)
" int division_vector; : '
int division_mnask;
char *help;

Adds a new help window with the contents help for the panes identified by the bit-vector and
mask given in division_vector and division_mask. The new window will be on top of help
windows added earlier and below any menu-rclated help windows. Both the division_vector and
division_mask may be replaced by the constant W_IGNORE_PANE il the menu is to be applicd
to the whole window.

w_add_simple_help (window, help)
This macro is identical to the one above except that it ignores all references to panes.

w_delete_help (window, help_title)
char *help_title;

Delete the help window called help_title from the stack from all panes.
w_item_help (window, menu_title, menu_item, help)
char *menu_title; '

char *menu_item;
char +help;

A. Primitive Window Calis

Associates a help window with contents help with a particular menu_ttem ol a particular
menu_title. The help window will be displayed only when that item is highlighted.

The pointing device cursor.

The current pointing device cursor may be changed or retricved by the following requests. Note that the
cursor description of any system cursor may be obtained by the Unix level command showcus -d -s
< eursor_name>, which just has to be modified slightly for inclusion in these routines.

w_sct_cursor (window, cursor_description, x_origin, y_origin)
short cursor_description[16];
int x_origin;
int y_origin;

Changes the pointing device cursor to the bit pattcrn given in cursor_description (the array
should represent a 16X 16 pixel pattern). The origin of the cursor (with respect to the upper left
corner) is given by the x and y origins (range of zcro to fifteen). The origin of a cursor is the
point within the pattern which is "where the cursor is at”. Note that this applies only to this
window.

w_get_cursor (window, cursor_description, x_origin, y_origin)
short cursor_description[16];
int x_origin;
int y_origin;

Return a description of the current window cursor in cursor_description, and the (x,y) origin in
the same form as the w_set_cursor routine,

Miscellaneous window requests. , -

w_set_stroke_mode (window, stroke_mode)
int stroke_mode;

Sets whether the window manager should record the positions of the cursor during the time the
point button is depressed or only the positions at the times of depression and release. Setting
stroke_mode to TRUE means record it all; FALSE just the ends.

w_get_window_size (window, x_size, y_size)
int *x_size, *xy_size;

Gets the window size in pixels.

w_get_text_line (window, line_number, text_line, max_string_length)
int line_number;
char text_line{};
int max_string_length;

Returns the character string representing the line of text on the given line_number of the
window. The maz_string_length of the text Is returned is returned in tezt_line which must be
large enough to accept it. The text returned is what the window manager believes to be there for
stash/retrieve purposes. Any graphics requests (such as w_clear_rectangle or w_put_characters)
will not affect the stashed text. It is thus possible to have a line of text returned which has no
relationship to what is on the screen.

A. Primitive Window Calls

A.6. Output To The Window

The window manager may be directed to do many output tasks, such as: drawing characters at pixel or
line/column positions; bit, vector and region graphics, etc. If you desire rapid output, you should probably
put the window into cooked mode (sce section A.3 Buffering output requests).

The coordinate system used for the character-oricnted output operations is line one at the top of the
screen, column one al the left edge. The coordinate system for graphics requests is x to the right, y up,
with (0,0) in the lower left corner. If the window size is not an integral multiple of a character size, the
characters are pushed to the bottom-left of the window, with the excess space on the right and the top.

Most of the routines described below contain the parameter color (an integer).The task of this parameter
is to describe the color of the output as the background color, the contrast color and in some cascs
exclusive-or mode. Three definitions allow these to be described: W_BACKGROUND, W_CONTRAST
and W_XOR. For example, a vector with color set to W_CONTRAST will draw white on a black screen
and vice versa. Similarly, W_BACKGROUND would put a black line on a black screen and a white line
on a white screen. Most output requests have macros which do away with the color paramcter. Macros
suflixed with '_b' do the operation in the background color, '_c’ suffixes do it in the contrast color, while
*_xor’ draws in xor mode. FFor example, the following two requests are equivalent:

w_draw_string (window, 1, 1, W_BACKGROUND, "Hello")
w_draw_string_b (window, 1, 1, "Hello").

Window Graphics.
w_clear (window, color)

Clear the. window to the given color. (Macros available - '_b’, °_¢’ and ’_xor’.)

Drawing text on the screen.

Text may be drawn on the screcen using character-oriented output (line, column) or graphics-oriented
output (x,y pixel position). They are not directly related - while stash and retrieve work on text graphics,
they do not work with raster graphics.

w_draw_string (window, line, column, color, string)
int line, column;
char sstring;

Draw a string originating at (line, column) in the given color. Fonts are fixed pitch. The symbols
WACHAR_WIDTH and WAICHAR_HEIGHT are the width and height of the font in pixels.
(Currently, these are 6 and 10). (Macros available - *_b’, ’_c¢’ and '_xor'.)

w_put_characters (window, X, y, color, string)
int x, y;

char *string;

Draw a string originating at (z,y) in the given color. The origin is the bit position of the upper
left corner of the first character to be drawn. (Macros available - *_b’, ’_c¢' and ’_xor'.)

A. Primitive Window Calls

Positioning and erasing the character cursor.

w_position_cursor (window, line, col)
int line, co;

Position the character cursor at the specified (line, col) character position. The cursor is drawn in
exclusive or mode.

w_erasc_cursor (window, line, col)
int line, col;

Erase the character cursor at the specified (line, col) character position.

Scrolling and erasing lines.

w_scroll_vertically (window, line, number_of_lines, amount, color)
int line, number_of_lines;
int amount;

A region of the screen bound by line and number_of _lines is scrolled vertically the given amount,
with positive amounts being up, and negative down. The fill is given in color. Scroll amounts

larger than the size of the region are allowed and result in the whole region being blanked.
(Macros available - '_b’ and ’_c’.)

w_scroll_horizontally (window, line, col, number_of_cols, amount, color)
int line, col, number_of_lines;
int amount;

A portion of the given line is scrolled horizontally, positive amounts being to the left, negative to

the right. _color and treatment of large scroll amounts are as above. {(Macros available - '_b’ and
' ¢)

w_erase_lines (window, line, col, number_of_lines, color)
int line, col;
int number_of_lines;

Erase the line segments starting at (line, col) for the number_of_lines indicated. The line wiil be
erased only partially, starting at col The fill is given by color. (Macros available - *_b’ and _c.)

Bit and vector graphics.

w_draw_vector (window, x1, y1, x2, y2, color)
int xi1, y1;
int x2, y2;

Draw a-vector between the coordinates (21, yI) and (22, y2) in the given color. (Macros available
- b’ '_¢’ and *_xor'.)

w_put_bits (window, X, y, number_of_bits, color, bit _pattern)
int x, y;
int number_of_bits;
unsigned char bit_pattern(};

A. Primitive Window Calls

Draw the given number_of_bits from the array bit_pattern on the screen, starting at pixel point
(z,y) in the given color. Only "lines” of pixecls may be specified; regions are not possible in a
single call. (Macros available - *_b’, °_c¢’ and ’_xor'.)

Rectangle graphics.

w_clear_rcctangle (window, X, y, x_extent, y_extent, color)
int x,y;
int x_cxtent, y_extent;

Clear the defined rectangular area, starting at (z,y) the pixel amount in z_eztent, y_ezxtent in the
given color. (Macros available - ’_b’, ’_¢’ and ’_xor’.)

w_scroll_rectangle (window, x, y, x_extent, y_extent, direction, amount, color)
int x,y; :
int x_extent, y_extent;
int direction, amount;

A rectangular arca of pixels is scrolled in the direction given for the amount given. The number
of pixels to scroll (amount) may be negative, which reverses the direction. The amount may be
greater than the extent of the region, in which case the entire region is set to the fill color. The
directions Lo scroll are given as the constants WM_UP, WM_DOWN, WM_LEFT, WM_RIGHT.
(Macros available - '_b' and "_¢'.)

w_raster_copy (window, x_sre, y_sre, x_dest, y_dest, x_extent, y_extent)
int x_sre,y_src;
int x_dest, y_dest;
int x_extent, y_extent;

Copy a rectangular block of bits from one area of the wihdow to another (possibly overlapping)
area of the window. The x and y sr¢ and dest points are the lower left corner of the source and

destination blocks respectively; the x. y eztents give the size of the block to be moved. Both the
source and destination rectangles must fit completely inside the window.

Miscellaneous output requests.
w_ring_bcll (window)

Ring the bell

A.7 Program control of screens.

The window manager may be directed to create windows or to return information about the workstation
screen. Note that these calls are prefixed by wm_ (which stands for Window Manager) as they are not
window-specific. The first parameter in all these calls is window_manager which is of the type
Jj_process_id. Il you already have an existing window parameter, you may use the call w_get_manager
(window) in place of the first parameter.

A. Primitive Window Calls

Information about the screen.

wmn_get_screen_size (window_manager, x_size, y_size)
int xx_slze, *xy_size;

IReturns the absolute size of the workstation screen in pixcls (z__size, y_size).

int wim_get_window_list (window_manager, list, max_windows)
int lisi{};
int max_windows;

Returns a sequence of integers in the array hst, each one being the window identifier of a window
on the workstation screen. The capacity of the array Is given in maz_windows. The actual
number of windows on the screen is returned by the function.

Creating a New Window.

int wm_create (window_manager, x1, y1, x2, y2)
int x1, yt, x2, y2;

Create a window on the screcn with the absolute screen coordinates given in (z1, y1) and (z2, y2)
and return the window identifier of the new window (0 if the call failed). Security must be OFF
for this call to work.

int wm_init_window_creation (window_manager, default_x_size, default_y_size)
int default_x_size, default_y_size;

Place the user into window crcation mode, with the default window size as given, and return the
window identifier of the new window (0 if the call failed). :

Manipulating the Mouse Cursor.

wm_move_cursor (window_manager, X, y)
int X, y;

Move the mouse cursor to the absolute screen coordinates given in (z, y)and update the currently
’active’ window accordingly. The call will not work unless the security flag is set to OFF.

A.8 Program control of windows.

The following window manager calls are all non-standard as they all manipulate windows, a task normally
done by the user. As the Jade window interface stresses user control of windows, you may find it a bit
difficult to use some of these calls without distrupting the users view of the system.

Al calls will not work unless the security bit in the Console window OPTIONS is turned OFF. This
security bit may be toggled by downloaded programs; they can call a routine named "flip_security’, which
toggles the security bit and returns the now current state of the flag. See the Jade manual for further
information.

A. Primitive Window Calls

Some of the scrcen routines described in "program control of windows™ (section L.a.7) will be handy for
finding out necessary screen informadtion.

Changing the window appearance.
w_bury (window)

Bury the identified window to the bottom of the stack, exactly as if done via the 'THIS
WINDOW' menu. The call will not work uniess the security flag is set to OFF.

w_raise (window)

Raise the identified window to the top of the stack, exactly as if done via the "THIS WINDOW’
menu. The call will not work unless the security flag is set to OFF.

w_reverse (window)

Reversc the background colour of the identified window, exactly as if done via the 'THIS
WINDOW'™ menu. The call will not work unless the security flag is set to OFF.

w_destroy (window)

Destroy the identified window, exactly as if done via the "THIS WINDOW’ menu. The call will
not work unless the security flag is sct to OFF.

w_place (window, x1, y1, x2, y2)
int x1, y1, x2, y2;

Place and resize the current window so that it resides on the screen with its lower-left and -
upper-right corners at the given (z1,y1) (z2,y2) points. The behaviour duplicates exactly that of
doing a place via the 'THIS WINDOW’ menu. The call will not work unless the security flag Is
set to OFF.

A.9 Example Programs.

This section contains cxamples of how to use the facilities described earlier. The programs on the
following pages illustrates how one initializes a window, makes requests of the window manager to set the
title and put up a menu, handles input events, and how to do output.

Note the gencral layout of the programs. First, you must include the appropriate include file #include
<tools.h>. Second, you must find the window manager and window [dentifier. After that, you can do
what you want!

Example 1.

There are two very similar programs: trirec_vax and trirec_cv which do identical tasks but run on the vax
or the corvus respectively. Both programs change the title bar and allow the user to sclecet a menu option
which draws a triangle or a rectangle.

A. PPrimitive Window Calls

Note that there are much simpler ways to write the program if one uses the advanced routines in later
scetions. However, we advise you to study the example to aid your understanding of this section.

The examples arc located in the following sources. Executable versions have the same name with the ".c”
removed.

- jade/examples/toolbox/ Trirec/trirec_vax.c
- jade/cxamples/toolbox/Trirec/trirec_cv.c

You can conpile the sources by copy the above files into your directory. As with all jade software, you
must usc the ce and cex defined in /usr/local/jade/bin/ to compile your programs. Then type (for the vax

and corvus versions respectively):

ce trirce_vax.c -o trirec_vax -ltools -lvterm -ljipc/2
cex triree_cv.c -0 trirec_cv -Itools -ljipc/2

To run the program on the vax, type trirec_vaz in a vterm window. On the corvus, create an Other
window and type in the full pathname of trirec_cv.

Example 2.
Another program exists which demonstrates most of the window manipulation routines. To run it, security
must be set to OFF (by selecting security from the OPTIONS menu in the Console window). The
program is intensionaly disconcerting to make you realize that program control of windows should not be
abused. No corvus version is present, although one could easily be written. The source is in:

~ jade/examples/toolbox/Manipulate/manipulate_windows.c
and can bhe com_pilcd with: - .

cc manipulate_windows.c -o manipulate_windows -ltools -lvterm -1jipc/2

To run the program, just type mantpulate_windows in a Vterm window and go for the ride!

A. Primitive Window Calls

/* Source ln "jade/examples/toolbox/Trirec/trirec_vax.c ./
/* This program demonstrates menu and help creation, simple event handling, */
/* and output requests. Similar to example in IIIB of the Jade Manual. *
#include <stdio.h>

#include <jipc/2.h>

#include <windows.h>

#include <vterm.h>

#include <tools.h>

WINDOW window; /* Window to be initialize */
int x_size; /* Size of window in X direction */
int y_-size; /* Size of window in Y direction */
char old_window_title[80]; /* Original title of the window *
main () {
initialize () /* Set up the window ./
while (process_event ()) ; /* Process events until FALSE returned */
clean_up (): /* Clean up the mess .
}
/* Find the window manager and the window id we talk to, set up */
/* the pop-up menus, get the initial size of the window and clear it. */
initialize (? {
j_process_id wam; /* The window manager */
int wi; /* The window id */
1f (tvterm_tty (2)) {(/* Run only in vterm window */
fprintf (stderr, "Not in a vterm window\n"):
exit (1);
j_enter_system (0, "TRIREC"); /* Jipc initialization stuff */
vterm_disable_input (2, &wm, &wi); /* Dont want vterm to interfere v/
vterm_direct_output (2, &wm, &wi); /* Talk to real window manager */
window = w_init (wm, wi); /* Initialize window */
v_buffered (window):; /* Buffer the window ocutput */
/* Add help message and menu */

w_add_simple_help (window,

"TRIREC|This example program lets you draw triangles & rectangles.");
w_add_simple_menu (window,

"TRIREC|Triangle}Rectangle|Quit"”,

"- TRIREC|The proper menu choice draws a triangle, rectangle, or quits"):;
w_item_help (window, "TRIREC", "Triangle"®,

".- TRIANGLE|Selecting this item will cause a triangle to be drawn"):;
w_item_help (window, "TRIREC", "Rectangle",

" -- RECTANGLE|Selecting this item will cause a rectangle to be drawn"):
w_item_help (window, "TRIREC", "Quit",

"-- QUIT|Terminates this program, returning you to Vterm."):;

w_get_window_size (window, &x_size, &y_size): -/* Get window size */
w_get_title (window, old_window_title): /* Change the title */
v_set_title (window, "TRIREC - an example program"):;
v_clear_b (window): /* Clear window */
}
/* Clean up the mess. Delete the menus and the help pop-up windows, t/
/* turn vterm back on, and clear the screen. */
clean_up {
w_clear_b (window): /* Clear window */
w_delete_help (window, "TRIREC"):
w_delete_menu (window, "TRIREC"):
w_set_title (window, old_window_title);
) vterm_enable_input (2):
/* Process an input event. SIZE_SET events are noted, DESTROY events */
/* cause an exit, and MENU_SELECTION events draws a triangle, rectangle, */
/* or returns 0 for a Quit. Other events are lgnored. */
int process_event () {
char ignore_string{20]: /* Parameters we don't need */
char item[20]; /* lItem on selected menu */
int ignore_int; /* Parameters we don't need */
switch (w_get_next_event (window)) { /* Get the input event */
case WM_SIZE_SET: /* Size has been changed ./
w_get_point (window, &x_size, &y_size);
break;
case WM_DESTROY: /* Window destroyed */
exit (0):
case WM_MENU_SELECTION: /* Menu selection *

v_get_menu (window, &ignore_int, lgnore_string, item, &ignore_int);

w_clear (window);

if (strcmp (item, "Triangle”) == 0)
w_draw_vector_c {window, x_size/2, 10, 10, y_size-10);
w_draw_vector_c (window, 10, y_size-10, x_size-10, y_size-10):
w_draw_vector_c (window, x_size-10, y_size-10, x_size/2, 10);

}

else if (strcmp (item, "Rectangle") == 0) {
w_drawv_vector_c (window, 10, 10, x_size-10, 10);
w_draw_vector_c {window, x_size-10, 10, x_size-10, y_size-10
w_drawv_vector_c (window, x_size-10, y_size-10, 10, y_size-10
w_drav_vector_c (window, 10, y_size-10, 10, 10);

;
i

}
else 1f (strcmp (item, "Quit™) == 0) return (FALSE):;
break;

}
return (TRUE);

/* Source in ~jade/examples/toolbox/Trirec/trirec_cv.c */
/* This program demonstrates menu and help creation, simple event handiing, */
/* and output requests., Similar to example in IIIB of the Jade Manual. *

#include <jipc/2.h>
#include <windows.h>
#include <tools.h>

WINDOW window; /* Window to be initialize */
int x_size; /* Size of window in X direction */
int y.size; /* Size of window in Y direction */
main () {

initialize (): /* Set up the window */

while (TRUE) process_event (): /* Process events forever */
/* Find the window manager and the window id we talk to, set up */
/* the pop-up menus, get the initial size of the window and clear 1it. ./
initialize () {

j_process_id wm; /* The window manager v/

int wi; /* The window id */

j_initialize (): /* Jipc initialization */

wm = j_search_locally ("window_manager”):

wi = MY_WINDOW;

window = w_init (wm, wi); /* Initialize window */

w_buffered (window); /* Buffer the window output ./

/* Add help message and menu */

w_add_simple_help (window,

“TRIREC|This example program lets you draw triangles & rectangles."):;
w_add_simple_menu {(window,

"TRIREC|Triangle|Rectangle”,

"- TRIREC|The proper menu choice draws a triangle, or rectangle”);
v_item_help (window, "TRIREC", "Triangle”,

"-- TRIANGCLE|Selecting this item will cause a triangle to be drawn");
w_item_help (window, "TRIREC", "Rectangle"”,

"-- RECTANGLE|Selecting this item will cause a rectangle to be drawn");

w_get_window_size (window, &x_size, &y_size): /* Get window size */
w_set_title (window, "TRIREC - an example program");
w_clear_b (window): * Clear window */
w_drav_string_b (window, 1, 1, "Destroy this window to quit");
}
/* Process an input event. SIZE_SET events are noted, DESTROY events */
/* cause an exit, and MENU_SELECTION events draws a triangle, rectangle, */
/* or returns 0 for a Quit. Other events are ignored. *
int process_event () {
char . ignore_string{20]); . /* Parameters we don't need %/
char item[20]): /* ltem on selected menu */
int ignore_int; /* Parameters ve don't need */
switch (w_get_next_event (window)) { /* Get the input event */
case WM_SIZE_SET: /* Size has been changed */
w_get_point (window, &x_size, &y_size);
break;
case WM_DESTROY: /* Window destroyed */
exit (0):
case WM_MENU_SELECTION: /* Menu selection */

w_get_menu (window, &ignore_int, ignore_string, item, &ignore_int):

w_clear_b (window);

if (strcmp (item, "Triangle") == 0) {
w_draw_vector_c (window, x_size/2, 10, 10, y.size-10):
w_draw_vector_c (window, 10, y_size-10, x_size-10, y_size-10):;
w_draw_vector_c (window, x_size-10, y_size-10, x_size/2, 10):

)}

else 1f (strcmp (item, "Rectangle”) == 0) {
w_draw_vector_c (window, 10, 10, x_size-10, 10);
w_draw_vector_c {(window, x_size-10, 10, x_size-10, y_size-10
w_draw_vector_c (window, x_size-10, y_size-10, 10, y_size-10
w_draw_vector_c (window, 10, y_size-10, 10, 10);

.
.

break;

/* Source in "jade/examples/toolbox/Manipulate/manipulate_windows.c
-
* Runs on the vax only, but simple changes make it downloadable.
* Illustrates most window and screen manipulation routines.
* It demonstrates some bad features of window manipulation in
* the hope that you will use these routines VERY conservatively
-
#include <stdio.h>
#include <vterm.h>
#include <jipc/2.h>
#include <windows.h>
#include <tools.h>
main ()
j_process_id wm; /* The window manager r/
int wi; /* The window id */
WINDOW window, windowl:; /* Windows we create *
int new_window; /* 1d of created window */
int x1, yl, x2, y2, color, centre; /* Info about new window*/
int sx, sy; /* Screen size */
int window_list([20], number_of_windows; /* Windows on the screen*/
char str[100]; /* Working variables */
int &;
1f (!vterm_tty (2)) (/* Must be vterm window */
tprintf (stderr, "Not a vterm window\n"):
exit (1):
j_enter_systea (2, "Example"):; /* Jipc stuff */

vterm_disable_input (2, &wm, &wi);
vterm_direct_output (2, &wm, &wi);

wa_get_screen_size (wm, &sx, &sy): /* Get info about screen*/

new_window = wm_create (wm,0,0, sx/2, sy/2): /' Create a new window */
if (new_window != 0) and tell the user */
window = w_init (wm, new_window):
else {
vterm_enable_input (2):;
fprintf (stderr, “You must turn security off in the Console ");
fprintf (stderr, “"window\nto run this program.\n"):
return (-1):
w unbuffered(vlndow)
centre = s8y/4;
w_put_ characters_c {window, 10, centre, "I'm a new window!"):;
sleep (4);

/* Move the cursor */
w_put_characters_c (window, 10, centre, "Watch my cursor move!");
for (x1 = 10; xl<= 136; x1++)

wm_move_cursor {wm, x1, centre-7);

/* Reverse the window */
w_put_characters_c (window, 10, centre, "I've reverse myself. Fancy! "}:
w_reverse (window);
sleep (3);

/* Bury/raise the vindov'/
w_ptit_characters_c (window, 10, centre, "Now to bury myself... "):
sler:p(3);
w_bury {window);
slecp(2):
w_raise (window):;

/* Move the window */
w_put_characters_c {window, 10, centre, "Time to move! ")

sleep (3):;

w_get_info (window, &x1, &yl, &x2, &y2,
w_place (window, sx/2, sy/2, sx, sy):
w_put_characters_c {(window, 10, centre,
sleep(3):

&color);
"Here I am!

/* Reverse all windows
w_put_characters_c (window, 10, "Lets reverse all windows
sleep(3):
number_of _windows = wm_get_window_list (wm, window_list, 20):
for (1 = 0; i < number_of_windows; 1i++)

windowl = w_init (wm, window_list(i]):
w_reverse (windowl);
w_end (windowl):;

centre,

}

w_put_characters_c (window,
w_ring_bell (window):
nev_window = wm_init_window_creation {wm, 150,
if (new_window != 0)

w_unbuffered (windowl):

windowl = w_init (wm, new_window); /*

w_draw_string_c (windowl, 2, 2, "Hi there,

sleep (S):

w_destroy (windowl):

v_end (windowl):

/* Put into place mode */

10, centre, "Ok, create a new window: ")

100):

and make a new window*/
sugar buns!”");

}

/* So long, and destroy '/
w_put_characters_c (window, 10, centre, "Thats all. Bye! "):
sleep (S);

w_destroy {window):;
w_end (window);
vterm_enable_input (2):

B.

Manipulating Cursors, Windows

And Menus

Revision of 30 June 1985

B. MANIPULATING CURSORS, WINDOWS & MENUS

The first section provided the primitives for manipulating many window manager facilities. Unfortunately,
these primitives are very low level and require much work on the part of the programmer for sctting up
conceptually simple entities.
This scction provides a higher level interface to some of these tasks. Specifically,

- the window cursor may be changed to a pre-defined cursor shape in a single call

- window titles and help menus may be decfined in a structure and installed in a single call

- pop-up menus and their associated help windows may be defined in a structure and installed in a
single call

But remember, there is no such thing as a frec lunch. There is a tradeofl of ease of use versus power. If

you wish to do something outside the constraints of these high level routines, you must go back to the
first tool box.

B.1. Changing The Cursor

The routines offered here allow changing or saving of the cursor in a specific window. There are many
applications for changing the cursor. For example, a time-consuming task may change the cursor to an
hourglass and back again afterwards. Different applications may ask for a cursor rclated to it, such as the
pencil one for sketching.

Window has its usual meaning. Cursor_type is one of the sets of cursors defined as constants. (The
complete list is provided below). Other cursors not in this list may be included at your request.

The Routine.

w_change_cursor (window, cursor_type)
WINDOW window;
int cursor_type;

Change the cursor to the one defined by cursor_type (see below)

Cursor types.

The following cursor constants are currently available.

DEFAULT_CS Standard left-leantng arrow
LEFT_ARROW_CS Standard left-leaning arrow (as above)
TARGET_CS Target

B. Cursors, windows and menus

GLASSES_CS
PENCIL_CS
HOURGLASS_CS
GROUCHO_CS
CORNER_ILL_CS
CORNER_LR_CS
CORNER_UL_CS
CORNER_UR_CS
CROSS_CS

Glasses

Writing Pencil
Hourglass

Groucho Marz
Lower left corner
Lower right corner
Upper left corner
Upper right corner
Cross

X _CS X
CONFIRM_CS Mouse with middle button highlit
STASH_CS The system stash cursor

Example use.

The following bit of code will change the cursor into an hourglass (telling the user to wait), cxecutc some
arbitrary code, and then restore the default cursor.

w_change_cursor (window, IHHOURGLASS_CS)
-- Your code here --
w_change_cursor (window, DEFAULT_CS)

Cursor becomes a pencil
Ezxecute a long operation
Restore the default cursor

B.2. Setting Up A Window

When application programs are run, they will normally change the title of the window and add a help
message describing the window’s function. It is extremely tedious to lay out the window by using the first
toolbox. This series of routines and structures overcome this problem.

The approach given hcere is to define windows by filling in structures. The structure window_layout defines
the appecarance of the window title and the help screen. Once defined, the window can be “"layed out” by
a simple procedure call.

Once the window is sct up, the programmer can change the appearance of the window by altering the
structure (for a complete change) or by calling the more primitive routines in toolbox! (for small changes).

The structure.

The programmer can sct up a window by filling in the lfollowing structures (this is declared in the include
file <tools.h>:

typedef struct window_layout {
char title_bar [};
char window_name [|;
char window_help [};

} WINDOW_LAYOUT;

Window layout information:
-Title bar of window
-Name of help window
-Contents of help window

B. Cursors, windows and menus

The Routine.

Once the structure has been filled, the user has the following layout procedure at his disposal.

w_layout_window (window, window_appearance)
WINDOW window;
WINDOW_LAYOUT *window_appecarance;

Window_appearance is the address of the structure. The window title_bar as tdentificd in the
structure is installed. Similarly, a help pop-up window identified by the window_name and
containing the window window_help is installed.

Example use.

We may sct up the window described in the examples at the end of Scction A.7 by the following code (the
complete example is offered at the end of this section):

/ * fill in the WINDOW_LAYOUT structure described above #/
WINDOW_LAYOUT window_appearance = {
"TRIANGLE/MESSAGE - an example program”,
"TRIANGLE/MESSAGE",
“Triangles are drawn in one window, a message is drawn in another”

|5

main() {
-- your code here --
w_layout_window (window, &window_appearance);
-- your code here --

B.3. Setting Up A Menu

When application programs are run, they will normally create one or more pop-up menus with all their
associated help messages. It is extremely tedious to create these menus by using the first toolbox. This
series of routines and structures overcome this problem.)

The approach given here is to define menus by filling in structures (as in the previous section). The
" structure menu_leyout defines the name of the menu and the contents of the help screen. The name of the
help screen Is taken to be the name of the menu.

The structure stem_layout defines an array of items to be associated with a given menu. Each item has as
an attribute an item name, the contents of the help screen, a flag for new window creation and default
slzes of that window (see w_make_window in A.5.) Once defined, the pop-up menu and all the associated
windows can be "layed out” by a simple procedure call. If the programmer wishes to change the menu, he
can delete the old menu (w_delete_menu, section A.4), then change the structure and lay it out again.

The structure.

The programmer can set up a menu by filling in the following structures (this is declared in the include
file <tools.h>:

B. Cursors, windows and menus

typedef struct menu_layout { " Menu layout information
char menu_name {J; -Name of menu & help window
char menu_help {}; -Contents of help window

} MENU_LAYOUT;

typedef struct item_layout { Item layout information
char item_name [}; -Name of item & help window
char item_help {J; -Contents of help window
int new_window_flag; -Make a new window flag
int x_default_size; -Default (z,y) window size
int y_default_size; tn pizels

} ITEM_LAYOUT;

The Routine.

Once the structure has been filled, the user has the following layout procedures at his disposal. The first
(w_layout_menu_in_pane) installs the menu in the indicated panes. The second (w_layout_menu) is a
macro, which installs the menu over the whole window.

w_layout_menu_in_pane (window, menu_appearance, item_appcarance, number_items,
division_vector, division_mask)
WINDOW window;
MENU_LAYOUT *menu_appearance;
ITEM_LAYOUT item_appearance]];
int number_items;
int division_vector;
int division_mask;

Menu_appearance and item_appearance are the addresses of the structure and number_stems is
the number of menu items. A pop-up menu labeled with the menu name and a corresponding
help window are installed in the panes indicated by division_vector and division_mask. Sce
section A.5 of this manual or section HI.B of the Jade Manual for a description of panes. The
menu is filled with items from the items structure, with each item having a corresponding help
window. A new window will be made of a given size on an item’s selection if that itern has the
new_window_flag set in the structure.

w_layout_menu (window, menu_appearance, item_appearance, number_items)

This macro is identical to the one above except that the menu is installed over the whole
window.

Useful constants.

The following constants may be used within the stem_layout structure for defining new window creation
and its size.

W_MAKE_WINDOW Will make a window tn new_window_flag

W_DEFAULT_COLUMNS 80 columns in the z_default_size
W_DEFAULT_LINES 24 lines in the y_defaull_size
W_IGNORE Don’t make a window

The new_window_flag may be initialized by the definitions W_MAKE_WINDOW or W_IGNORE. The
default_size of the window may be initialized to W_DEFAULT_COLUMNS, W_DEFAULT_LINES,
W_IGNORE or your desired size.

B. Cursors, windows and menus

Example use.

We may set up the pop-up menu described in the examples at the end of Section A.7 by thc following
code (the complcte example is offered at the end of this section):

#dcfine NUMB_ITEMS 3

/ * fill in the MENU_LAYOUT structure described above */
MENU_LAYOUT menu_appearance = {
"TRI/MESSAGE",
"The proper menu choice draws a triangle, prints a message or quits.”

|5

/ * fill in the ITEM_LAYOQOUT structure described above #/
ITEM_LAYOUT item_appearance]NUMB_ITEMS] = {
“Triangle”,
" Selecting this item will cause a triangle to be drawn”,
W_IGNORE, W_IGNORE, W_IGNORE,

"Message”,
" Asks you to create a new window and writes a message in it”,
W_MAKE_WINDOW, 100, 50,

"Quit”,
"Terminates this program, returning you to Vterm”,
W_IGNORE, W_IGNORE, W_IGNORE

b
main() {
-- your code here --

w_layout_menu (window, &menu_appearance, item_appearance, NUMB_ITEMS);
-- your code here --

B.4 Example Programs.

This section contains two examples of how to use the lacilities described earlier.

- Example 1.

The first program used Is a variation of the "trirec” program described in the first section and is called
tri_message.c.

Tri_message.c changes the cursor to an hourglass until the window is initialized. Part of the initialization
process is to lay out the window and pop-up menu as described in this section. The first pop-up menu
selection draws a triangle In the current window. The second selection asks the user to create a new

window and then puts a message in it.

To avoid cluttering the program, the structures are defined in an include file called iri_message.h. The
example is located in the following sources:

~ jade/examples/toolbox/Trimessage/tri_message.c

B. Cursors, windows and menus

- jade/examples/toolbox/Trimessage/tri_message.h
You can compile the sources in your own directory by:
ce tri_message.c -0 tri_message -ltools -lvterm -ljipc/2

To run the program on the vax, type fri_message in a vterm window. You may wish to write the
equivatlent down-loadable version as an exercise - it is exactly the same Initialization process as in
trirec_ev.c (sec section A).

sxample 2.

The second program introduces a driver which manipulates many example programs, running as
indcpendant processes.. It allows the user to create windows and run the examples in them. The
interface is quite simple: The user makes a sclection from a pop-up menu which asks the uscr to create a
window. Once created, the driver attaches a specific process to the new window. These processes then run
independantly.

The source for the driver is in ezamples.c. It uses ifdefs so that it can be compiled for either the vax or the
corvus (as described below). The executable versions are called ezamples_vaz and ezamples_cv
respectively. As this driver is secondary to our examples, we do not include a listing in this manual.
However, you are invited to browse the the on-line source at your leisure.

Only one sub-process is described here: cursor.c. This program puts up a pop-up menu with all the
possible cursor types. Selection of a given menu item will change the cursor to the one described. The
executable form of this process is in cursor_var and cursor_cv for the vax and the corvus respectively.
Although these versions must be initialized by the driving program ezamples.c, it is a simple exercise to
make them run independantly. The other sub-processes will be described in following sections.

The sources are located in:
~ jade/examples/toolbox/Example_driver/examples.c
- jade/examples/toolbox/Example_driver/examples.h
= jadc/examples/toolbox/Cursor/cursor.c

You can compile examples.c for the vax or the corvus by:

cc examples.c -0 examples -DVAX -ltools -ivterm -ljipc/2
ccx examples.c -o examples -ltools

The cursor program is compiled in exactly the same name, except that the -D flag is not necessary.
IMPORTANT: If you copy the examples.c program, you must change the pathnames of the processes in

the examples.h file to match the ones you want to fire up! If you do not do this, or if you do it incorrectly
it will either run the default examples or hang altogether.

B. Cursors, windows and menus

/* Source in “jade/examples/toolbox/Trimessage/trimessage.c *
* This program illustrates changing the cursor and how to layout the *
* window and pop up menus with high-level functions. In addition, *
* §t illustrates how to make a new window and output messages to it *
*/

#include "tri_message.h"

main () {

initialize (): /* Set up the window ./
while (process_event ()) ; /* Process events until FALSE returned */
clean_up (): /* Clean up the mess */
initialize ()
j_process_id wm; /* The window manager */
int wi: /* The window id */
if (‘vterm_tty (2)) { /* Run only in vterm window */
fprintf (stderr, "Not in a vterm window\n"):;
exit (1)
j_enter_system (0, "TRIREC"):; /* Jipc initialization stuff */
vterm_disable_input (2, &wm, &wi); /* Dont want vterm to interfere */
vterm_direct_output (2, &wm, &wi): /* Talk to real window manager */
window = w_init (wm, wi); /* Initialize window *
w_change_cursor (window, HOURGLASS_CS): /* Cursor becomes an hourglass */

w_buffered (window):
v .get_window_size (vindow &x_size, &y_size);
w_clear_ractangle_b (window, 0, 0, x_size, y_size):
v_,qet_tltle (window, old_window_ title),

/* Layout the window and install the pop-up menus
v_layout_window (window, &window_appearance);
w_layout_menu (window, émenu_appearance, item_appearance, NUMB_ITEMS):

*/

w_change_cursor (window, DEFAULT_CS): /* Change cursor to the default one */

}

clean_up {)
w_clear_rectangle_b (window, 0, 0, x_size, y_size);
v_delete_help {window, window_appearance.window_name) ;
v_delete_menu (window, menu_appearance.menu_name);
w_set_title (window, old_window_title);
vterm_enable_input (2):

}
int process_event () { .
char ignore_ ltrlng[zo] /* Parameters we don't need */
char item[20]); /* Item on selected menu *
int ignore_int; /* Parameters we don't need */
int new_window;
WINDOW window2;
switch (w_get_next_event (window)) { /* Get the input event */
case WM_SIZE_SET: /* Size has been changed */
w_get_point (window, &x_size, &y_size);
break;
case WM_DESTROY: /* Window destroyed */
exit (0);
case WM_MENU_SELECTION: /* Menu selection .
w_get_menu (window, &ignore_int, ignore_string, item, &new_window)

if (strcmp (item, item_appearance([0].item_name)} == 0) {
w_clear_rectangle_b (window, 0, 0, x_size, y_size):
w_draw_vector_c¢ (window, x_size/2, 10, 10, y_size-10):
w_draw_vector_c (window, 10, y_size-10, x_size-10, y_size-10);
w_drawv_vector_c (window, x_size-10, y_size-10, x_size/2, 10):

}

/* Put out a message in the new window

else if (strcmp (item, item_sppearance{l].item_name} == 0) {
window2 = w_init (w. _get_manager {window), new_window):
w_draw_string_c (window2, 2, 2, "Hi there, sugar buns!");
v_end (window2):;

*/

else if (strcmap (1ten,
return (FALSE)
break;

item_appearance{2].item_name) == 0)

leturn {TRUE) ;

/* Source in ~jade/examples/toolbox/Trimessage/trimessage.h */

#include <stdio.h>
#include <jipc/2.h>
#include <windows.h>
#include <vterm.h>
#include <toeols.h>

WINDOW window; /* Window to be initialize */
int x_size; /* Size of window in X direction */
int y.size:; /* Size of window in Y direction */
char old_window_title[80}; /* Original title of the window */

/* What the window should look like */
WINDOW_LAYOUT window_appearance = {
“"TRIANCLE/MESSAGE - an example program”,
"TRIANGLE/MESSAGE",
"Triangles are drawn in one window, a message is drawn in another”

.

/* The title of the menu and the help message */
MENU_LAYOUT menu_appearance = {
"TRI/MESSACE",
"The proper menu choice draws a triangle, prints a message or quits.”™

}:

%define NUMB_ITEMS 3 /* The number of menu items */
/* The name and help message of each menu item plus the new window state */
ITEM_LAYOUT item_appearance [NUMB_ITEMS] = {

“Triangle"”,
"Draw a triangle in this window",
W_ICNORE, W_IGNORE, W_ICNORE,

"Message",
"Asks you to create a new window and writes a message in it",
W_MAKE_WINDOW, 200, S0,

“Quit”,
"Terminates this program, returning you to Vterm",
W_IGNORE, W_ICNORE, W_IGNORE

/

Source in ~jade/examples/toolbox/Cursor/cursor.c

*
*
*
* This is a CHILD process called from another program!

* This example program jillustrates the different cursor types.
*

*

i

#include "cursor.h"

main () {
initialize ().
while (TRUE) process_event ():

initialize () {
j_process_id temp_wm;
int temp_wi;

j_initialize(): /* Jipc stuff to create */
j_send (j_parent_process()): /* the child in a window*/
j_reset()

temp_wvm = j_getp(});

temp_wi = j_geti();

window = w_init (temp_wm, temp_wi); /* Set up the window *y
w_layout_window(wvindow, &w_layout);

v_layout_menu(window, &menul, items2, NUM_MENU2_ITEMS);

v_layout_menu (window, &menul, iltemsl, NUM_MENU1_ITEMS) :

}

/* Events are processed until the window is destroyed.
* Only menu selections are looked at.
*/

process_event () {
char menu_chosen[20]; /* A parameter we don't need %/
int ignore_int; /* A parameter we don't need */
char item_chosen[20]; /* The item on the menu selected s/
switch (w_get_next_event (window)) { /* Get the event */

case WM_MENU_SELECTION:
w_get_menu (window, &lgnore_int, menu_chosen, item_chosen, &ignore_int):
if (strcmp {(menu_chosen, menul.menu_name) ==
if (strcmp (item_chosen, itemsl{0].item_name) == 0)
w_change_cursor (window, DEFAULT_CS):
else if (strcmp (item_chosen, itelsl[lg.iten_name) == 0)
w_change_cursor (window, TARGET_CS};
else if (strcmp (item_chosen, itemsl(2).item_name) == 0)
w_change_cursor (window, GLASSES_CS):
else if (strcmp (item_chosen, itemsl(3].item_name) == 0)
w_change_cursor (window, PENCIL_CS):
else if (strcmp (item_chosen, itemsl([4].item_name) 0)
w_change_cursor (window, HOURGLASS_CS):
else if (strcmp (item_chosen, itemsl(5].item_name) == 0)
w_change_cursor (window, GROUCHO_CS):

else if (strcmp (item_chosen, itemsl1{6].item_name) == 0)
v_change_cursor (window, CORNER_LL_CS):;

else if (strcmp (item_chosen, itemsl[7].item_name) == 0)
w_change_cursor (window, CORNER_LR_CS):

else if (strcmp (item_chosen, itemsl[8].item_name) == 0)
w_change_cursor (window, CORNER_UL_CS):

else if (strcmp (item_chosen, itemsl[9].item_name) == 0)
w_change_cursor (window, CORNER_UR_CS):

else if (strcmp (item_chosen, itemsl[10].item_name) == 0)
w_change_cursor (window, CROSS_CS):

}
else if (strcmp (menu_chosen, menu2.wenu_name) == 0) {
if (strcmp (item_chosen, items2{0}.item_name) == 0)
w_change_cursor {window, X_CS):
else if (strcap (item_chosen, items2{l].item_name) == 0)
w_change_cursor (window, CONFIRM_CS):
else if (strcmp (item_chosen, items2{2].item_name) == 0)
w_change_cursor (window, STASH_CS):;

break;

case WM_DESTROY: /* Window destroyed. Get out t/
exit (0);

*
* Source in *jadz/examples/toolbox/Cursor/cursor.h
. == Y
#include <jipc/2.h>
#include <windows.h>
#include <tools.h>

#define NUM_MENU1 _ITEMS 11
$define NUM_MENU2_ITEMS 3

WINDOW_LAYOUT w_layout = { /% Window title and help screen */
"Cursor”,
“Cursor™,
“This demonstrates the various cursors available in this package.\
Select the cursor from a pop-up menu. Destroy the window to quit."

MENU_LAYOUT menul = {

"Cursors (1]",

"This is the first menu that allows you to change the current\
window cursor."

MENU_LAYOUT menu2 = {

"Cursors [2]"

"This is the second menu that allows you to change the current\
window cursor."”

}:

ITEM_LAYOUT itemsl (NUM_MENU1_ITEMS] = {
"Default"
"DEFAULT_! CS: The default cursor (left leaning arrow)",
W_IGNORE, W_IGNORE, W_ IGNORE
“Target®,
"TARGET_CS: A target cursor”,
W_ICNORE, W_IGNORE, W_IGNORE,
"Classes®
"CLASSES_ Cs: A pair of spectacles (can indicate reading from disc}",
W_ICNORE, W_IGNORE, W_ICNORE,
"Pencil”
"PENCIL_ cs: A dravan pencil (can indicate writing to disc or sketch mode)”,
W_ICNORE, W_IGNORE, W_IGNORE,
"Hourglass
*HOURGLASS_CS: An hourglass (can indicate lengthy operation to user)”,
W_IGNORE, W_IGNORE, W_IGNORE
"Groucho™
"GROUCHO_ cs: A picture of Groucho Marx (you decide what to do with this!)",
W_IGNORE, W_IGNORE, W_IGNORE,
"Cover left”
. "CORNER LL_CS A Lower left corner",
H IGNORE, W_IGNORE, W_IGNORE, 3 . -
"Lower right",
"CORNER LR_CS A Lower right corner”,
W_IGNORE, W_IGNORE, W_IGNORE,
"Upper left®,
"CORNER_UL_CS: An upper left corner"”,
W_IGNORE, W_ IGNORE. W_IGNORE,
Upper right",
"CORNER_UR_ CS: An upper right corner™,
R_IGNORE W_IGNORE, W_ICNORE,
"Cross"
"CROSS_ CS: A cross
W ICNORE, W_ XGNORE H IGNORE

ITEM LAYOUT items2 [NUM_MENU2_ITEMS] = {

"X CS: an X sha ape”

W_IGNORE, W_ IGNORE W_IGNORE,

“Confirm"

'CONEIRM_CS: A mouse with the middle button highlit."
W_IGNORE, W_IGNORE, W_IGNORE,

"Stash",

"STASH_CS: The system stash cursor”,

W_IGNORE, W_IGNORE, W_IGNORE

}:
WINDOW window;

C.

The Rectangle

Revision of 20 Jan. 1985

C. THE RECTANGLE

The rectanglc may be used in many ways. At its simplest, it is merely a rectangle which can be positioned
by the programmer or the user, outlined, crased, filled, emptied and queried. Additionally, it can be
scleeted - a point press in the rectangle can be detected by the applications program and acted upon. You
will find the rectangle uscful for many situations. It is also used as a primitive for many higher-level tools
in the toolbox..

C.1 Using The Rectangle.

All rectangle routines begin with the letter 'r_' (for rectangle). All variables are integers, with the
exception of window which is of the type WINDOW, and rectangle which is of the type RECTANGLE.

Initialization
Before use, the rectangle must be initialized (r_tnit). As part of the initialization procedure, the currently
active window must be supplied. A pointer identifying the rectangle instance is returned from this cali,

and is declared as a RECTANGLE. All subsequent calls must use it.

Alternatively, you may initialize a new rectangle by copying an old one (r_copy). This Is useful if you
wish to have many similar rectangles differing by only a parameter or two. '

The rectangle must then be positioned within the window by supplying the pixel coordinates of the
diagonal defining the rectangle (r_position). 1t is the programmer’s responsibility to ensure that this area

will not be overwritten, and to reposition the rectangle when the window changes size.

Borders may be set at any time (r_set_borders or r_set_all_borders). These borders are drawn inside the
given positions. Border sizes larger than the rectangle are truncated to the size of the rectangle.

Finally, a fill margin may be designated (r_set_fill_margin). This has the eflect of leaving a margin
between the fill area and the border.

RECTANGLE r_init (window)
Initialize and return a pointer to a rectangle. The defaults position the rectangle between on the
zero diagonal (0,0) (0,0) in the window without drawing it, sets the borders to 1 pixel all around
and the fill margin to 0, and sets the fill state to FALSIS.

RECTANGLE r_copy (old_rectangle)

Return a pointer to a new rectangle which is an exact copy of the old rectangle.

r_position (rectangle, x1, y1, x2, y2)

C. The Rectangle

The Rectangle

firchitecture:

JL border widths
T

fill margin

Using_the rectangle:

r—in_rect r_within_rect
(inctudes outline) (excludes outline)

C. The Rectangle

PPosition the rcctangle between the raster points (z1,y1) and (z2,y2)
r_sct_borders (rectangle, left_border, right_border, top_border, bottom_border)

Set. the borders of the rectangle to be the pixel widths given in left_border, right_border,
top_border and bottom_border.

r_set_all_borders (rectangle, border)
Set all borders of the rectangle to be the pixel width of border.
r_sct_fill_margin (rectangle, fili_margin)

Sct the space between the border and the fill area to the pixel distance given in fill_margin.

Drawing The Rectangle

Nothing will be visible until the rectangle is drawn. The rectanglc may be outlined (r_outline) or filled.
Fills may be exclusive of the outline (r_fill), or inclusive -- ie it is not necessary to outline the rectangle if
you are going to fill all of it r_fill_all). Once filled, the rectangle may be erased by either leaving the
outline intact (r_erase) or by erasing the rectangle completely (r_erase_all) . Additionally, the rectangle
may be 'filled’ in exclusive-or mode (r_fill_zor or r_fill_all_zor), which is uscful if you wish to toggle the
color of the rectangle contents.

Many applications will probably requre knowledge of the current filled or empty state. We may query the
rectangle as Lo its current filled state (r_ss_filled). If the rectangle is filled a TRUE is returned. Note that
drawing in exclusive-or mode toggles this value.

r_outline (rcctangle)
Qutline the rectangle perimiter

r_fill {rectangle)
Fill the rectangle in, excluding the borders.

r_fill_all (rectangle)
Fill the rectangle in, including the borders.

r_{ill_xor (rcctangle)
Fill the rectangle in exclusive-or mode, excluding the borders

r_fill_xor_all {rectangle)
Fill the rectangle in exclusive-or mode, including the borders.

r_erase (rectangle)
Clear the inside of the rectangle, leaving the borders.intact.

r_erase_all (rectangle)
Clear the rectangle, excluding the borders.

int r_is_filled (rectangle)
Returns TRUL if the rectangle is filled, else FALSE

C. The Rectangle

Actively Using The Rectangle

When a point event is detected, the programmer can detect If the point occurred in the rectangle. A
TRUE is returned if it is, otherwise FALSE. Depending on which routine is called, the rectangle arca can
be considered as the complete rectangle including the border (r_in_rectangle) or just the inside of the
recetangle (r_within_rectangle).

int r_in_rectangle (rectangle, x, y)

Indicate if the (z,y) point is in the rectangle by returning TRUK or FALSIE. This includes the
borders.

int r_within_rectangle (rectangle, x, y)

Indicate i the (z, } point is in the rectangle by returning TRUE or FALSE. This excludes the
borders.

Querying the Rectangle

All rectangle characteristics may be obtained by the applications programmer at any time. These include
the window the rectangle is linked to (r_get_window), and the coordinates of the corners (r_get_corners)
or each of the sides (r_get_top, r_get_bottom, r_get_left, r_get_right). All border widths are obtainable in
one lump (r_get_borders) or individually (r_get_left_border, r_get_right_border, r_get_top_border,
r_get_bottom_border). The fill margin is also retrievable (r_get_fill_margin).

Additionally, mathematical rectangle functions are available to find its height (r_get_height), width
(r_get_width) and arca (r_get_area).

WINDOW r_get_window (rectangle)
return the window the rectangle is linked to.

r_get_corners (rectangle, left, bottom, right, top)
return the (left, bottom) and (right, top) points of the rectangle.

int r_get_left (rectangle)
int r_get_right (rectangle)
int r_get_top (rectangle)
int r_get_bottom (rectangle)
return the pixel coordinate of the described rectangle boundary.

r_get_borders (rectangle, left, bottom, right, top)
return the left, bottom, right and top border widths.

int r_get_left_border (rectangle)
int r_get_right_border {rectangle)
int r_get_top_border (rectangle)
int r_get_bottom_border (rectangle)
return the pixel widths of the described border.

int r_get_Rll_margin (rectangle)
return the pixel width of the fill margin.

int r_get_height (rectangle)
int r_get_width (rectangle)

C. The Rectangle

return the height or width of the rectangle in pixels.

int r_get_area (rectangle)
return the arca of the rectangle in pixels.

Ending it All

When the rectangle is no longer needed, the programmer should close it (r_end) to release the space.

r_cnd (rectangle)
End the rectangle

C.2 Example Program

This section contains an example of how to use the facilities described earlier. The program rectangle.c is
a process spawned by a driving program ezamples.c (see section B.4). Similar to cursor.c, it cannot be run
independantly although the program modification to do so is simple.

This simple program will put up a rectangle in the center of a window. A point press in the rectangle
region will change the color and print out on/ofl messages.

The cxecutable process is called rectangle_vaz and rectangle_cv for the vax and the corvus respectively.
Compilation Is similar to that described in section B.4. The sources and executable processes can be
found in:

~ jade/examples/toolbox/Rectangle/rectangle.c

- jade/examples/toolbox/Rectangle/rectangle_vax
~ jade/examples/toolbox /Rectangle/rectangle_cv

C. The Rectangle

Source in "jade/examples/toolbox/Rectangle/rectangle.c

This is a CHILD process called from another program!

This example program puts up a rectangle on the screen.

The rectangle is "on" when it is filled and "off"™ when it isn't.
An on/off message is shown.

LR S A A A Y

*
#include <jipc/2.h>
#include <windows.h>
#include <tools.h>

#define X1 (x_size/2 - 15) /* Rectangle is 30 x 30 */
#define X2 (x._size/2 + 15) /* in middle of window */
#define Y1 (y_size/2 - 15
#define Y2 {y_size/2 + 15
WINDOW_LAYOUT w_layout = { /* Window title and help screen */
"Rectangle”,
"Rectangle”,

"This demonstrates a toggle rectangle. When the rectangle is pressed,\
its color is flipped and an on/otf message is printed.\
Destroy the window to quit

;

/* GLOBALS (Yuk) */
WINDOW window; /* Window manager and window id 74
RECTANGLE rectangle: /* Toggle rectangle */
int x_size, y_size; /* Current size of the window */

wain () {
initialize ():
while (TRUE) process_event ():

initialize ()} {
j_process_id temp_!
int temp_wi;

j_initialize(): /* Jipc stuff to create */
j.send (g_parent_process()): /* the child in a window*/
j_reset (/* Don't alter it unless‘/
temp_wvm = qetpég; /* you know what you're */
temp_wi = geti(): /* doing. r/
window = w_init (temp_wm, temp_wi): /* Set up the window */

w_layout_ vindov(vlndov & layout
w_buffered (window):

rectangle = r_init (window); /% Initialize rectangle */
r_set_all_borders rectangle, 2): /* A border of 2 pixels */
r_set_fill_margin rectangle, 1); /* Margin on the inside */

}

/* Events are processed until the window is destroyed.
* A size change redraws the rectangle or prints an error
* message 1f the window 1s too small
* A point press toggles the rectangle if the point is in it.
*/

process_event () {
nt x, Yy
char uess-go[lO]

switch (v_get_next_event (window)) { /* Get the event */

case WM_SIZE_SET:
v_get _point (window, &x_size, &y_size);
w_clear_rectangle_b (window, 0, 0, x_size, y_size);

r_position (rectangle, X1, Y1, X2, Y2);
1f (r_is_filled (rectangle)) {
r_fi11_all (rectangle);
w_put_characters_b (window, X1, Y1-10, "On "):

else {
r_outline (rectangle);
w_put_characters b (window, X1, Y1-10, "Off");

}
break;

case WM_POINT_DEPRESSED:
w_get_point {window, &x, &y):

if(r_in_rect (rectangle, x, y)) { /* Toggle it */
if (r.is_filled (rectangle))
strecpy (message, 'Off";;
else
strcpy (message, “On ")
r_fil1_xor ({(rectangle):
w_put_characters_b (window, X1, Y1-10, message);

}
break;
case WM_DESTROY: /* Window destroyed. Get out */

r_end (rectangle);
exit (0);

D.
| The Slide

Potentiometer

Revision of 30 June 1985

D. THE SLIDE POTENTIOMETER

The slide potentiometer is a valuator, resembling a slide bar volume control on a stereo. This controt
offers the programmer an interface tool for accepting a user-selected value from a given range. It operates
by moving a positioning bar (called a thumb) within a rectangle (called the slide). See the figure for an
illustration. Within application defined limits, the user is free to move the thumb to a new position: the
program can ask for the value of this new position at any time.

D.1 Using The Slide Potentiometer

All slide potentiometer routines begin with the letters 'sp_’ (for slide potentiometer). All variables arc
integers, with the exception of window which is of the type WINDOW. slide which is of the type
SLIDE_P, and orientation, which must be W_VERTICAL or W_W_HORIZONTAL. It is best to actually
try out the demonstration program before you program with it. [t is a fairly complex control which doces
its own event handling - put it through its pacces!

Initialization.

Before use, the slide potentiometer must be initialized (sp_init). As part of the initialization procedure, the
currently active window must be supplied, as well as'the orientation of the potentiometer. Orientation is
given as W_VERTICAL or W_HORIZONTAL. A pointer identifying the slide potentiometer instance is
returned which must be used in all subsequent calls.

The slide must then be positioned within the window (sp_position). This is given in pixel co-ordinates of
the diagonal defining the rectangle containing the slide. Once the slide is positioned, all activity will take
place within that rectangle. This is the only time that the programmer must worry about pixel locations.
It is the programmer's responsibility to ensure that this area will not be overwritten, and to repositioned
the slide when the window changes size.

The applications programmer will also want to normalize the valuator to a world coordinate system
(sp_normalize). In his co-ordinate system (not in pixels!) he is allowed to supply the range of values (from
0 to range), the position and size of the thumb, and the amount of increment or decrement that occurs
when a point Is pressed on cither side of the thumb. Alternativly, the thumb can "snap” to the current
point press rather than increment or decrement a given amount. If the bar is not normalized, it will
assume defaults of a range of 0 - 100, thumb position of 0, thumb size of 10, with the "snap” on.

SLIDE_P sp_init (window, oricntation)
Initialize a Stide Potentiometer and return a pointer to it. This pointer must be used in all
subsequent calls. NULL is returned on failure. Orientation is whether it should be treated

vertically (W_VERTICAL) or horizontally (W_HORIZONTAL)

sp_position (slide, x1, y1, x2, y2)

D. The Slide Potentiometer

The Slide Potentiometer

0 thumb position range
{ 1—size—| i
t t t
decrement thumb increment
region region
Example:

range = 100, position = 0, size = 10, inc/dec = W_SNAP

0 100
i |
T
10 units A point press here will cause
long the thumb to 'snap' to this position

efifter the thumb is moved by the user, the current
position of the thumb will be returned as an integer
between 0 and 100.

oIn the vertical orientation, the top of the bar is
0 and the bottom is the range. 0

position
L]

range

Position the slide onto the given (z1,y1) (22,92} pixel coordinates. The slide is automatically
normalized to them, giving default values il necessary.

sp_normalize (slide, range, thumb_position, thumb_size, inc_dec_size)

Normalize the potentiometer to the given world co-ordinate system, i.e. if range Is 100, values
returned will be between 0-100. Thumb_position is the world position of the thumb and
thumb_size is the relative world size of the thumb. Inc_dec_stze is the amount of inc/decrement
used in a point press on cither side of the thumb. If set to the constant W_SNAP. the thumb will
just move there. If a slide is not explicitly normalized, it defaults to a range of 100, position of 0,
thumb size of 10, and W_SNAP.

Drawing.

Before anything is visible, one must draw the valuator (sp_draw). This activates the slide - until it is
drawn, nothing will happen. This is usually done after initialization. window resizing, and Il the
application has somchow allowed the slide’s arca to be drawn over. In some applications (such as a scroll
bar) the slide should be redrawn when the normalization is altcred. There is no need to redraw the slide at
any other time. The application may also 'hide’ the slide potentiometer from view (sp_erase), which erases
and inactivates it.

sp_draw (slide)
Draw the complete slide potentiometer This is only necessary initially or whea the applications
program has overwritten the arca or re-normalized the slide. The slide is activated if it is not
already active.

sp_erase (slide)

This erases the slide and inactivates it, ie a point press in bar area will return FALSE.

Active Use.

When a point event is detected, the programmer can detect if the point occured within the valuator
(sp_in_ber) and if a user has completed an action in it. Three things may happen:

- A TRUE is returned If the user’s initial point press was within the slide and il the action was
completed.

- A W_CANCEL Is returned if the initial point press was in the slide but the user cancelled his
current action somehow (ie if you get a cancel, the point was in the slide but nothing meaningful
was done with it). A W_CANCEL is also returned if the point was within the slide region but the
slide was inactive, '

- A FALSE is returned il the point was outside the slide.
The point is passed to the routine, and procedure does not return until the user has finished his current
activity. ANl event handling is done internally - the programmer does not have to worry about

repositioning or redrawing the thumb.

If a TRUE was returned, the current "value” can be obtained (sp_get_units). The application can then use
this value in any way it likes.

D. The Slide Potentiometer

int sp_in_bar (slide, x. y)
The workhorse. Il the (z,y) point is within the slide, the thumb position will be automatically
repositioned until the user stops and a TRULE is returncd. If the point isn’t within the slide, or if
the user has somchow cancelled his operation, a FALSE is returned. Whatever happens, the
thumb will always be in the correct position.

int sp_get_units (stide)

This function returns the current world coordinate position of the thumb. 1t should be used after
a TRUL is returned from an sp_in_bar call.

Querying the Slide Potentiometer.

sp_get_window (slide)
Return the window the slide potentiometer is linked to.

Ending It All.

When the slide is no longer necded, the programmer can erase it from view (sp_erase - discussed
previously) and close it (sp_end).

sp_end (slide)

IEnd the Slide Potentiometer. This frees up all the space

Useful defines.

W_VERT]CAL Orientation of the slide potentiometer. Used in ‘orientation’
W_HORIZONTAL Alternate orientation.
W_SNAP The thumb 'snaps’ to the point press. Used in ine_dec_stze

D.2 Example Program.

This scclion contains an example of how to use the facilities described earlier. The program slide.c is a
process spawned by a driving program ezemples.¢ (sce section B.4). Similar to cursor.c, it cannot be run
independantly although the program modification to do so is simple.

This simpic program will put up a slide potentiometer in the center of a window normalized to a range of
100, a thumb size of 10 and the initial thumb position at 0. Snap is initially on, although a pop-up menu
item allows you to turn it off, with an increment/decrement of 10 units. A point press in the slide region
will allow you to move the thumb. A "True” message is printed when a point press Is in the slide,
otherwise “False” is printed. Try changing the size of the window.

The exccutable process Is called shide_vaz and shde_cv for the vax and the corvus respectively.
Compilation is similar to that described in scction B.4. The sources and executable processes can be

found in:

- jade/examples/toolbox /Slide/slide.c
- jade/examples/toolbox/Slide/slide_vax

D. The Slide Potentiometer

Tl fesarmpes Aol b S st S slide ey

18 The Slide Potenbionmeler

deapras LR Tadesnwecpinnftoc] box Bl s 180,

Thin La & CHILD procoas callad Coom arsthes Tmsrrnnl
thlx azacple @FdGF18 pUTS 00 & hOFLZGnrsl slide potenTicBeTeT
meroulized o LOQY |[1tx SeEsulk] -

[vecorETTUCkR | Eaml F wharn tha wirdos 1& radized.

Fou By changn Eba “anep’ chesscléciallcd wid a pop -y ommu.

.
#uracliade Yxlide h"

" xm o nak kot

msim [}
InliLlallze 4] M Ioletelize Uvh Boss ard - r
wnlle (TREUE] procans_wwent [i; F" prodads events »F they noour o
]

Jmitimalzu [E
oprocmud 1A TORE WE!
Ll Canbgi Wi

_iniclelizai] ; Sé Hpe stuff ta coudnla =
J_rand [{_parwni_procuami] f; l.I'i' tha child Lo & winduw®
J_r!ll-Ll:f

wacp_wm = |_OEpf])

eep i T j gathi]

uipdnow = w_init dbaop wm, Ramp Wl A 5et oup window & oomin 4
w_ ll:,ll:b-l.l‘l.._rr.'l.llﬂl:llq'l:ll'fl.l'lﬁ_ 5"4 Tarcat) -

w_ L et _wonaiwindoy. Smmamul, Jkman, HURS_MEMNU_[IZHE} !

w b Crarad {wirdeu) -

rlide = I|I:.|_J.:|1L MHlreles, "E3: S0 Sar op e 31lde Wi
mp_norioellze {allds, 103, 3. 10, W_SHAF): S Eedundent. »F thim dip A
¥ S oalso the defaclt =

Eﬂ'ﬂ'ﬂ'ﬂﬂﬂ_!"l'-lt 4

inc €, . units:

char ul.-.r:l.r-g[lu .

aher Laqrarn_a[:-].- S OL paraacoer We dontE need 4
Lnk Aqracs_AnT) £+ A parapetar ww fan"E omwk -
enos icea _choesnl 20] - JF The ltac on lbu dafl £01leched o
mulbeh [H_goT_neart_event [wirdew)] FT oCal Uk event b

S CHRNQE T W _SHAD' CHABACTERIETICH OF THE FOTENTIRMETER
caren WY_BEML_EELECTIOH:L

w_pwt Menu feindow. Flgrars_lnb, lgnera_s, iiwo chosen, ELgore_inm)!

if [ptroop {iEmo_choawn, lLuce 3] .Acds_foes] ——
rp_rnoromilis [@llde, 180, dp @e@ unike 151'dn{ 1o, W_ShkL];

alag 1F ffbpcmp {iken chomem. Lbaor[1].1tso_ouwow] = 93
ER_TICTAMTizn [allde, LD0, ap_gat_unltf {@lidel. 100 O]
hrank
A 31TF CHMNCE? BELCHATE AW RELAMN SOWTEINTS “"

endd WH ATSE _GET:
y_gab_point {wlpche, ix shrm, by _alzu];
w_lanr_racksrgle b fvbikab, 0, &, .'|.EE'. ymimnl
_poxltian {allde, 31, ¥, Fd. ¥ + 20):
ap_rlrav {al bda|
Er

A% POIKT FRExsy GET THE POLNT AND HEE [F ETE IN THE S1LLOE i
came WW_POINT_OEFBEEZED! #* Folnt press, Ack an Lt -y
w_gat_palnt [wledow. &x. Syp!

syicch [Ep.lo-bsr [wlads, =. yi] | /4 Ia polnt in tekw sllde® 575

onxa THUE: & Yar. Eﬂﬂm‘lnﬂ danm 'y
t_cherenters Givindow, Xd 4 30T+ 30, YTRUE);
T = :Il.'- gak_unite Iful!l.l:l.-lnh i
sprimtE [etrlowm. . urits
Wt _chsrsctars :Tulﬁﬂu I? + 5, ¥ = 10, =string}:
hrank;

ca3e EALGE; F7 Hui ko che =1lde ny
w_put _charsctarx ¢ [uledow, X2 + 5 X + 20 ATALGE Y1:
Erunlc;

caps B _TRUHLCTIL: S Tar. gk sarcatlad
w_put_cherdcrars_e[Wlndew, XX + 5. Y + 20, "W_QAMCEL"]

raak;
i+ IFSER D‘E'IHMED HIMLCW . CET QIFT =

=arm NHF_DESTROY
wihT (&)

"

"

/* Source in "jade/examples/toolbox/Slide/slide.h */
#ifdef VAX
* include <stdio.h>
#else
* include <res_stdio.h>
#endif

#include <jipc/2.h>

#include <windows.h>

#include <tools.h>

#define X1 (x_size/3) /* Slide will be in the middle third
#define X2 (x_size/3 * 2) /* of the screen horizontally and half
#define Y (y_size/2) /* way up vertically

WINDOW_LAYOUT w_layout = { /* Window title and help screen

"Slide Potentiometer”,
"Slide Potentiometer",
"This demonstrates a slide potentiometer normalized to its defaults.\
Try resizing it to see how it is rebuilt.\
You may change the 'snap' characteristics through the pop-up menu.\
Destroy the window to quit."

#define NUM_MENU_ITEMS 2

MENU_LAYOUT menul = { /* Menu and item description

"Slide",
"This menu allows you to change the increment/decrement value."

}:

ITEM_LAYOUT items[NUM_MENU_ITEMS] = {
"Snap on",

"The thumb will ‘'snap’ to the point press on either side of the thumb”,

W_ICNORE, W_ICNORE, W_IGNORE,
"Snap off-10",

*/
*/
*/

*/

"The thumb will increment/decrement 10 units on a point press on either\

side of the thumb”,
W_IGNORE, W_IGNORE, W_IGNORE

/* GLOBALS (Yuk)
WINDOW window; /* Window manager and window id
SLIDE_P slide; /* The Slide potentiometer

int x_size, y_size; /* Current size of the window

/
*/
*

E.
Tools Requiring

Servers

Revision of 30 Ju‘n(; 1985

E. Tools requiring servers.

The standard Jade window manager system is limited in its offerings. Although many lunctions can be
cxtended by building higher level protocols (as in the toolbox desciption so far), there arc some primitives
which Jade does not supply. As these non-existing primitives are desirable in some applications, server
programs must be downloaded to extend the powers currently available with the standard window
manager.

Downloading a server Is easy - just type the name of the server in an other window or type cucreate
< server name> in a vierm window. The server will exist locally as long as the corvus is not rebooted. All
routines described here will fail (gracefully) if the server has not been downloaded.

E.1 Saving and restoring bitmaps.

Using standard Jade, it Is currently impossible to save and restore a bitmap within a window. A special
server, called savemem, overcomes this lack. It is downloaded by typing savemem in the other window or
by typing cvereate savemem in a vterm window. Once downloaded, use of following bitmap save and
restore routines look like standard toolbox calls.

Saving a bitmap.

A bitmap may be saved upon request. The call will fail if savemem has not been downloaded or if there is
not enough local memory to save the bitmap.

int w_save_bitmap (window, x1, y1, x2, y2)
int x1, yi, x2, y2;

Save a bitmap defined by the absolute window coordinates (z1,y1), (z2,y2). Return an integer
which identifies the bitmap. This integer must be used during bitmap restoration. A FALSE is
returned if the bitmap could not be saved.

Restoring a bitmap.

A bitmap that was previously saved may be restored or disposed of through the following calls. The
variable bitmap is the integer returned by the w_save_bitmap call. Restoration of bitmaps may fail for a
variety of reasons, such as window movement or resizing between saves and restores, or when the .
savemem server does not exist.

int w_restore_bitmap (window, bitmap)
Int bitmap;

Restore the identified bitmap to its previous location in the window. Return TRUE if everything
went ok, False otherwise. The bitmap is discarded after it is restored.
Y

E. Tools requiring scrvors

int. w_discard_bitinap (window, bitmap)
int bitmap

Discard the identified bitmap without restoring it. This should always be used when you have
saved a bitmap and do not wish to restore it. Neglecting to do so uses up memory on the
workstation which may cause successive saves to fail. A TRUE or FALSE is returned denoling
the call’s success,

E.2 Example Program.

This section contains an example of how to use the bitmap routines. The program bitmap.c is a process
spawned by a driving program ezamples.c (sce scction B.4). It cannot be run independantly although the
program modification to do so is simple.

This simple program will look for a console window and save a pre-defined area within it. Tt will then put
up a button over that area and write a message in it. After a short time, the bitmap will be restored and
the console window will look as it did originaly.

To run, download the savemem process and open up a console window. Put something in the console
window by sketching with the point button or through makeing a menu selecetion. Fire up the example
program and go for the ride!

The executable process is called bitmap_var and bitmap_cv for the vax and the corvus respectively.
Compilation is similar to that described in section B.4. The sources and executable processes can be found
in:

~ jade/cxamples/toolbox/Bitmap/bitmap.c

- jade/examples/toolbox/Bitmap/bitmap_vax
= jade/examples/toolbox/Bitmap/bitmap_cv

E. Tools requiring servors

/* Source in "jade/examples/toolbox/Bitmap/bitmap.c
* This is a CHILD process called from another program! */
#include <jipc/2.h>
#include <windows.h>
#include <tools.h>

WINDOW window;
WINDOW find_console ():
WINDOW_LAYOUT w_layout = { /* Window title and help screen */

"Bitmap Demo”,

"Bitmap Demo",

“This demonstrates how bitmaps can be saved and restored.\
Make sure savemem i{s downloaded and open up a conscle window."

main () {
j.process_id temp_wm;
int temp_wi;

j_initialize(): /* Jipc stuff to create */

j_send (j_parent_process()); /* the child in a window*/
j.reset{):

temp_wm = j_getp():
temp_wi = j_geti();

window = w_init (temp_wm, temp_wi): /* Set up the window */
w_layout_window (window, &w_layout);

w_clear_b (window):

w_draw_string_b (window, 1,1,"Press point button in this window");
w_draw_string_b (window, 2,1,"to get a message in the console window"):
w_draw_string_b (window, 3,1,"Make sure the console window is not blocked.");

while (TRUE) { /* Process events */
switch (w_get_next_event (window)) {
case WM_POINT_DEPRESSED:
message () ;.
break;
case WM_DESTROY:
exit (0);
default:
break;
}

}
}
message () {
RECTANCLE rectangle;
WINDOW console;
char message [100];
int bitmap;
int x_size, y_size, m, n ;

1t ((console = find_console ()}) == 0) { /* Get console window */
w_draw_string_b (window, 3,1,"Can't find the console window. ")
w_draw_string_b (window. 4,1, "Did you create it? ")
return;

v_get_window_size (console, &x_size, &y_size).; /* Save the bitmap */

bitmap = w_save_bitmap (console, 30, 30, x_size-30, y_size-30);

if (bitmap ==
w_draw_string_b (window, 3,1, "Couldn't save map ")
w_draw_string_b (window, 4,1,"Is savemem downloaded? ")
return;

strcpy (message, "Hey there cuty buns®): /* Put up the message */
a = (x_size/2) - (strlen (message) * 3

n = y_size/2;

rectangle = r_init (console);

r_position (rectangle, 30, 30, x_size-30, y_size-30):

r_outline (rectangle): '

r_erase (rectangle);

w_put_characters_c (conscole, m, n, message);

r_end (rectangle)

sleep (6);

.

if (w.restore_bitmap (conscle, bitmap) == 0) { /* Destroy message */
v_drav_string_b (window, 3,1,"Couldn't restore map "),
w_draw_string_b (window, 4,1, "Was the window moved?"):;

}

WINDOW find_console () { /* Find console window */
WINDOW console;
char title{100);
int window_list([20].
int numb_windows, i

numb_windows = wm_get_window_list (w_get_manager (window), window_list, 20):
for (i=0; i < numb_windows; i++)
console = w_init (w_get_manager (window), window_list(i]):
v_get_title (console, title):
if (strncmp (title, “"Console™, 6) == 0)
return (console);
w_end {console);

Zeturn ((WINDOW) 0):

Appendices.

ltevision of 40 June. 1985

Appendix 1. Summary of Primitive Window Calls

Initializing and ending a window.

WINDOW w_init (window_manager, window_identifier)
w_end (window)

Requests of window status.

j_process_id w_get_manager (window)
int w_get_id (window)

int w_is_buffered (window)

int w_is_stroke_mode (window)
w_get_info (window, x1, y1, x2, y2, color)

Buffering output requests.
w_buffered (window)

w_unbuflered (window)
w_flush (window)

Events

WM_MENU_SELECTION The user has made a menu selection.
WM_POINT_DEPRESSED The point button was depressed.
WM_POINT_RELEASED The point button was released.

WM_POINT_STROKE The point button was held down while the mouse
was moved.

WM_SIZE_SET The user has changed The window size.

WM_KEY The user has hit a key on the keyboard.

WM_CANCEL The user has depressed a menu button and

released it without making a menu selection.
This is interpretted as a cancel.
WM_DESTROY The user has destroyed the window

int w_any_cvents (window)
int w_get_next_event (window)
w_put_back_event (window)

w_get_menu (window, pane, menuy, item, new_window)

w_get_point (window, x_coord, y_coord)
w_get_key (window, key)

Appendix 1: Summary of window primitives

Requests to the window manager.

w_sct_titie (window, window_title)
w_get_title (window, window_title)

w_set_pane_division {(window, division_number, orientation, distance)
w_add_menu (window, division_vector, division_mask, mcnu_title, help)
w_add_simple_menu (window, menu_title, help)

w_dclete_menu (window, menu_title)

w_makc_window (window, menu_titie, menu_item, x_default. y_default)
w_add_help (window, division_vector, division_mask, help)
w_declete_help (window, help_title)

w_add_simple_help (window, help)

w_item_help (window, menu_title, menu_item, help)

w_set_cursor (window, cursor_description, x_origin, y_origin)
w_get_cursor (window, cursor_description, x_origin, y_origin)

w_sct_stroke_mode (window, stroke_mode)
w_get_window_size (window, x_size, y_size)
w_get_text_line (window, line_number, text_tine, max_string_length)

Output to the window.

Routines with the parameter color have corresponding macro calls suffixed with '_b" '_¢’ which allow the
color parameter to be dropped. Where sensible, the macro suffixed _zor may be used.

w_clear (window, color)

w_draw_string (window, line, column, color, string)
w_pul_characters (window, X, y, color, string)

w_position_cursor {window, line, col)
w_erase_cursor (window, line, col)

w_scroll_vertically (window, line, number_of_lines, amount, color)
w_scroll_horizontally (window, line, col, number_of_cols, amount, color)

w_ecrase_lines (window, line, col, numbcer_of_lines, color)

w_draw_vector (window, x1, y1, x2, y2, color)
w_put_bits (window, x, y, number_of_bits, color, bit_pattern)

w_clear_rectangle (window, X, y, x_extent, y_extent, color)
w_scroll_rectangle (window, x, y, x_extent, y_extent, direction, amount, color)

w_raster_copy (window, x_sre, y_sre, x_dest, y_dest, x_extent, y_extent)

w_ring_bell (window)

Program control of screens.
wm_get_screen_size (window_manager, x_size, y_size)

int wm_get_window_list (window_manager, list, max_windows)
int wm_create {window_manager, x1, y1, x2, y2)

Appendix 1: Summary of window primitives

int wm_init_w_indow_crcation (window_manager, default_x_size, default_y_size)
win_move_cursor (window_manager, X, y)

Program control of windows.

w_bury (window)

w_raise (window)

w_reverse (window)

w_destroy (window)

w_place (window, xt, y1, x2, y2)

Constants.

The following dclinitions are found in the include file toolbozl.h. Constants rcturned by
w_get_next_event are described in the event section above.

W_BACKGROUND Draw in background color
W_CONTRAST Draw in reverse background color
W_XOR Draw in exclusive or mode

WM_CH_HEIGHT Height of a character in pixels
WM_CH_WIDTH Width of a character in pixels

W_VERTICAL Vertical pane orientation
W_HORIZONTAL Horizontal pane orientation
W_IGNORI_PANE Ignore panes in window

TRUE True (1)
FALSE False (0)
WM_UP Scroll up
WM_DOWN Scroil down
WM_LEFT Scroll left
WM_RIGHT Scroil right

Appendix {: Summary of window primitives

Appendix 2. Cursor, Windows & Menu Summary

Changing the cursor.

w_change_cursor (window, cursor_Lype)
where cursor type is one of:
DEFAULT_CS LEFT_ARROW_CS GLASSES_CS PENCIL_CS

HOURGLASS_CS TARGET_CS STASH_CS GROUCHO_CS
CORNER_LL_CS CORNER_LR_CS CORNER_UL_CS CORNER_UR_CS
X_CS CROSS_CS CONFIRM_CS

Setting up a window.

w_layout_window (window, window_appearance)
WINDOW_LAYOUT window_appcarance;

where:
typedef struct window_layout { Window layout information:
char title_bar []; -Title bar of window
char window_name []; -Name of help window
char window_help {}; -Contents of help window

} WINDOW_LAYOUT;

Setting up a menu.

w_layout_menu (window, menu_appearance, item_appearance, number_items)

w_layout_menu_in_pane (window, menu_appearance, item_appearance, number_items)

division_vector, division_mask)
MENU_LAYOUT menu_appearance;
ITEM_LAYOUT item_appearance{};

Where:
typedcf struct menu_tayout { Menu layout information
char menu_name ||; -Name of menu & help window
char menu_help {]; -Contents of help window

} MENU_LAYOUT;

typedefl struct item_layout { Item layout information
char item_name []; -Name of item & help window
char item_help [}; -Contents of help window
int new_window_flag; -Make ¢ new window flag
int x_default_size; -Default (z,y) window size
int y_default_size; in pizels

} ITEM_LAYOUT;
Useful constants:

W_MAKE_WINDOW W_DEFAULT_COLUMNS
W_DEFAULT_LINES W_IGNORE

Appendix 2: Cursor, Windows & Menu Summary

Appendix 3. Rectangle Summary

Rectangle.

Initialization:
RECTANGLE r_init (window)
RECTANGLE r_copy (old_rectangle)
r_position (rectangle, xt, y1, x2, y2)
r_set_borders {rectangle, left_border, right_border, top_border, bottom_border)
r_set_nl_borders (rect, border)
r_set_fili_margin (rectangle, fili_margin)
Drawing:
r_outline (rectangle)
r_f{ill (rectangle)
r_fill_all (rectangle)
r_fill_xor (rectanglc)
r_fill_xor_all (rectangle)
r_erase (rectangle)
r_erasc_all (rectangle)
int r_is_filled (rectangie)
Active use:
int r_in_rectangle (rectangle, x, y)
—.int r_within_rectangle (rectangle, x, y)
Querying: V
WINDOW r_get_window (rectangle)
r_getl_corners (rectangle, left, bottom, right, top)
int r_get_left (rectangle)
int r_get_right (rectangie)
int r_get_top (rectangie)
int r_get_bottom (rectangle)
r_get_borders (rectangle, left, bottom, right, top)
int r_get_left_border (rectangle)
int r_get_right_border (rectangle)
int r_get_top_border (rectangle)
int r_get_bottom_border (rectangle)
int r_get_fill_margin (rectangle)
int r_get_height (rectangle)
Int r_get_width (rectangle)
int r_get_area (rectangle)

Ending it:
r_end (rectangle)

Appendix 3: Rectangles

Appendix 4. Slide Potentiometer Summary

Initialization: v
SLIDE_P sp_init (window, orientation)
sp_position (slide, x1, y1, x2, y2)
sp_normalize (slide, range, thumb_position, thumb_size, inc_dec_size)
Drawing:
sp_draw (slide)
sp_erase (slide)
Active use:
int sp_in_bar (slide. x, y)
int sp_get_units (slide)
Querying:
WINDOW sp_get_window (slide)
Ending it:
sp_end (slide)

Constants:
W_VERTICAL W_HORIZONTAL W_SNAP W_CANCEIL

Appendix 4: Slide Potentiometers

Appendix 5. Tools Requiring Servers Summary

Saving and restoring bitmaps
These rontines require the server savemem to be downloaded to the workstation.
int w_save_bitmap (window, x1, y1, x2, y2)

int w_restore_bitmap (window, bitmap)
int w_discard_bitmap (window, bitmap)

Appendix 5: Tools Requiring Servors Summary

Appendix 6. Example Programs & Compiling

Compiling programs.

Programs running the toolbox must have the include file < tools.hYp Programs normally are compiled for
the vax by:

/usr/local/jade/bin/cc your program here -1tools -lvterm -ljipc/2
Programs normally are compiled for the corvus by:

/usr/local/jade/bin/cex A your program here -itools -ljipe/2

Example programs.
All pathnames described here should be prefixed with = jade/ezamples/toolboz/.... Pathnames on
programs running locally do not allow the = convention. Additonally, local programs must be prefixed on
vax C by /vazc//user.... Programs running on the vax are invoked from a vierm window; on the corvus
they are invoked in an other window.
Trirce/trirec_vax
Dembnstrates menu options for drawing a triangle, rectangle, or 'duit,urnrg. Nlustrates some toolbox1
primitives, such as menu and help window creation, event handling and simple output. Source in
trirec_vaz.c. Runs on the.vax.
Trirce/trirec_cv
Similar to above, but runs on the corvus. Source in trirec_cv.c.
Manipulate/manipulate_windows
This program exists which demonstrates most of the window manipulation routines. To run it,
security must be set to OFF (by selecting security from the OPTIONS menu in the console
window). The program is intensionaly disconcerting to make you realize that program control of
windows should not be abused. (No corvus version is present).
Trimessage/tri_message
Menu options draw a triangle in the current window or writting a message in a user-created window.
llustrates some toolbox2 primitives, such as menu and window construction, triggering new window
creation on a given menu choice, and outputing to a window different from the current one. Source

in tri_message.c. (No corvus version is present.)

Example_driver/examples_vax

Appendix 8: Example Programs & Compiling

Mecnu options spawn new (and independant) processes in user-created windows. By itself, it
illustrates menu construction and use of ifdefs to make the same source code compilable for both the
vax and the corvus. The programs spawned are discussed below. Source is in ezamples.c. Note: Al
the processes spawned are given by absolute pathnames. If you copy this program for test purposes,
make sure these pathnames reflect your needs!
i2xample_driver/examples_cv
As above, but runs on the corvus.
Cursor/cursor_vax
This is a child process - it cannol be executed independantly. Menu options draw all cursors in the
toolbox2 package. The ChangeCursor command is shown. Source is in cursor.c. Called from
ezamples_vaxz..
Cursor/cursor_cv
As above, but runs on the corvus. Called from ezamples_cv.
Rectangle/rectangle_vax
This Is a child process - it cannot be executed independantly. Illustrates use of some rectangle
routines by using a rectangle as a toggle switch to print an off/on message. Source is in rectangle.c.
Called from examples_vaz.
Rectangle/rectangle_cv
As above, but runs on the corvus. Called from ezamples_cv.
Slide/slide_vax
This is a child process - it cannot be executed independantly. Iilustrates use of most of the slide
potentiometer routines by putting up a bar which prints out its current position plus what SPInBar
returned. Snap may be turned on and off by a menu selection. Source is in slide.c. Called from
ezamples_vaz.
Slide/slide_cv
As above, but runs on the corvus. Called from ezamples_cv.
Bitmap/bitmap_vax
This is a child process - it cannot be executed independantly. Illustrates use of bitmap routines by
saving and restoring bitmaps in the comsole window. Source is in bitmap.c. Called from
ezamples_vaz.

Bitmap/bitmap_cv

As above, but runs on the corvus. Called from ezamples_cv.

Appendix 6: Example Programs & Compiling

