4
.

Oxford Surveys in Information Technology, Vol 2, 69-104

I © Oxford University Press 1985

User interfaces for office systems

IAN H. WITTEN and Man-Machine Systems Laboratory
) Department of Computer Science
SAUL GREENBERG The University of Calgary

2500 University Drive NW
Calgary, Canada T2N 1N4

Contents Introduction 69
The quality of the interface 70

Interface design guidelines 71

The user’s point of view 73

Examples of command interfaces 74

Conventional command-driven interactive computer interface 74

Menu systems 76

Window systems 82

Forms 86

Natural language interfaces 89

Integration—the final package 92

The direct manipulation paradigm and metaphors 93

Desktop simulations 95

Soft machines 99

Summary 101

References 102

Abstract This paper surveys recent developments in the ‘top-level’ interface for inter-

acting with office information systems. This is the level at which users
initially make contact with the system, and from which they invoke subsys-
tems for specific tasks such as text manipulation, mail, database access, and
so on. Although the style of the top-level interface need not necessarily dic-
tate that of the subsystems, it is generally agreed that they should share a
similar nature in order to achieve the effect of an ‘integrated’ system. Hence
the top-level interface design has considerable influence in determining the
character of subsystems.

A number of top-level interfaces are described, providing a survey of dif-
ferent interaction styles. Numerous references are made to published
accounts of commercial and research systems, with capsule descriptions of
typical examples. Illustrations of their use are included. As these man-
machine systems must match good design and user compatibility, an intro-
duction of interface design principles is included, although no attempt is
made to survey completely the myriad of published guidelines and related
human factors research.

Introduction One of the biggest problems with office information systems is not
the individual subsystems but rather the ‘glue’ which holds them all

70 |. H. Witten and S. Greenberg

The quality of the
interface

together. Creating subsystems which allow people to do things like
construct documents, send mail, use databases, and so on, may not
be easy but at least it is something that you can get to grips with. But
how do you invoke these subsystems? What does the top-level com-
mand interface look like? What sort of general image does the system
present to the user? Do you type commands and arguments, select
from menus, create windows for different task contexts, fill out forms,
use tools and machines, or shuffle paper on a simulated desktop?
What does the user have to know about computers to use the sys-
tem? What about, for example, the concept of file: multiple versions,
system backups, local storage media like floppy disks, and so on?
How does the user discern between conceptually different file types,
such as executable application packages, document text and graphi-
cal pictures? And how about consistency between applications? Can
the same actions produce the same response in different subsystems,
and if so, how?

These are very general questions. But they highlight real design
choices which will have an enormous effect on the user’s perception
of the system. This article surveys recent work and systems which il-
lustrate the spectrum of possibilities. Of course, there is no ‘best’
command interface; many trade-offs must be considered when
designing an actual system. We do not attempt to come to general
recommendations, for each technique serves its purpose depending
on both the task and the audience. However, it is as well to have
some knowledge of the possibilities, if only to spark the imagination
when designing or comparing systems.

In order to set the scene for descriptions of user interface styles, the
paper begins by discussing the notion of ‘quality’ of a user interface.
This can be assessed through design guidelines, models of human
performance, or an analysis of compatibility with the individual user.
The notion of ‘dialogue determination’ seems to capture best the dif-
fering points of view of a wide user community and forms a common
thread throughout the remainder of the paper. The subsequent sec-
tion presents several different styles of the top-level interface: con-
ventional command-driven interfaces, menus, windows, forms, and
natural language. Although some of the illustrations are not specific
to office systems, all are applicable in that context. The final section
investigates paradigms for integrating system components. The
major paradigm, ‘direct manipulation’, promotes an illusion that the
user is manipulating directly some real-world structure or object; the
popular examples of desktop simulation and soft machines are de-
scribed and current implementations reviewed.

What defines a good user interface to an office information system?
Before considering this question it is worth getting to ‘know the user’
(Hansen 1971). Typical office workers have been described as casual
users, in the sense that they use the office information system only

User interfaces for office systems 71

occasionally, spending most of the day doing something different
(Martin 1973). However, as office information systems become more
pervasive, the user is likely to spend increasing amounts of his work-
ing time interacting with them. Although we retain the term ‘casual
user’, we do not wish to imply that he only makes naive use of the
system—on the contrary, he may have quite a sophisticated working
environment and extensive experience with it. What distinguishes
him from a professional computer programmer is that the office
worker has little or no computer or mathematical background
(Zloof 1977).

Consequently we accept Cuff’s (1980) extensive portrait of the
casual user, which does not rely on frequency of use but rather iden-
tifies typical characteristics such as

e poor retention of detail

e propensity for error

e intolerance of formality

e poor handling of ‘normal’ database constructs.

Even from this brief sketch, it is clear that any interface which re-
quires the office worker to understand computer paradigms and to
have strong programming skills is not a good one.

Interface design guidelines

It is well beyond the scope of this paper to present a complete survey
of the myriad of published interface design guidelines. Here we pro-
vide some pointers into the literature and convey the flavor of what
is known.

A good set of design guidelines can be found in Gaines and Shaw
(1983). Shneiderman (1980) provides a comprehensive review of de-
sign goals by other authors, while Maguire (1982) summarizes
suggestions in the literature and identifies areas of conflict. It is im-
portant to realize that almost all published guidelines are based on
experience and intuition, rather than on quantitative empirical in-
vestigation. Although this gives them something of the status of folk-
lore rather than science, they do have their place for, according to
Shneiderman (1979)

... it is not possible to offer an algorithm for optimal or even satisfactory de-
sign. Interactive designers. .. seek a workable compromise between conflict-
ing design goals. Systems should be simple but powerful, easy to learn but
appealing to experienced users, and facilitate error handling but allow free-
dom of expression.

Note in passing that many commercial computer systems—even
very successful ones—flagrantly violate user interface guidelines.
(For an example, see ‘The trouble about Unix’, Norman 1981). This
is not because the guidelines are wrong but because the marketplace
is as yet fairly unsophisticated.

A typical example of a well-respected design principle is the golden

72

I. H. Witten and S. Greenberg

rule know the user, first articulated by Hansen (1971). This includes
using the user’s model of the activity being undertaken as a basis for
the dialogue (Gaines and Facey 1975; Gaines and Shaw 1983). The
goal is to provide the user with a comfortable framework in which to
work, with familiar jargon and concepts. Eason and Damodaran
(1979) consider it crucial for users to be heavily involved in develop-
ing the system if it is to meet their real needs, although the design
should be oriented towards the typical user (who may differ from
those who choose to contribute towards the development process).
Personalized self-adaptive interfaces, which adapt themselves to the
characteristics of each individual user, offer an attractive alternative
to the labor-intensive iterative design and tuning process (Rich 1983;
Innocent 1982; Taylor 1981; Greenberg 1984). In this case it is the
system which ‘knows’ the user: the designer is responsible for ensur-
ing that it incorporates sufficient mechanism for getting to know
him.

Pertinent concerns voiced extensively in the literature which
guidelines seek to address are, for example,

how the casual user learns the system
e on-line introduction to the system and continual training in its
use
* @ on-line help facilities
e situations where the task is beyond the expertise of the user (or
the application system)
e robustness of the interface, and treatment of errors by users
o the tone of error messages
e feedback on how the dialogue is proceeding, at both the com-
mand level and the application level
e consistency of feedback with the user’s internal model of the
system.

Individual references are not given in the above list, for most authors
in this area cover much common ground in their design guidelines.
Shneiderman (1980) and Maguire (1982) provide excellent reviews.

There is a significant and rapidly growing body of human factors
research which is much more specific than the formulation of general
interface guidelines. This aims to construct

... a model of user-computer interaction that can predict the performance of
both new and skilled users of various interaction techniques. While this goal
may never be completely achievable in practice, it can nevertheless act as the

motivator for research.
(Foley et al. 1984)

A good example of this kind of work is the ‘keystroke-level model’ of
keyboard communication with interactive computer systems (Card
et al. 1980). A recent paper by Foley et al. (1984) combines a tax-
onomy of interaction tasks and techniques with a very useful survey
of known experimental findings results pertaining to them. However,
this addresses issues of human—computer interaction at a much finer

User interfaces for office systems 73

granularity than the present paper, which is concerned with a broad-
brush characterization of different styles of interaction.

The user’s point of view

A user is not of course concerned with interface design guidelines,
nor with the human factors of interface design, but reacts in an indi-
vidual way to the interface as it appears to him. Because the ‘feel’ of
an interface is highly subjective, it is hard to uncover meaningful
dimensions along which to measure user response. The principal
dimension used throughout this paper is that of dialogue determi-
nation: the extent to which a user controls the system vis-a-vis the
extent to which it appears to control him (Thimbleby 1980).

Dialogue determination describes the subjective quality of the
user interface by considering the user’s feeling of control of the dia-
logue as a fundamental measure (Thimbleby 1980). It is composed of
many aspects, some being a direct consequence of the guidelines sug-
gested above, such as:

o flexibility in allowing users to determine their own level of use,

e commonality between the interface and a user’s previous experi-
ence,

e immediacy of a response relative to the task on hand,

e intromission, which allows parallel events to occur within a dia-
logue,

e variability of language within a task—specific modes may con-
strain the user’s choice of actions,

e feedback of the dialogue state.

Thimbleby suggests that a system is overdetermined if it restricts and
unnecessarily controls the user, and underdetermined if the user is
left at a loss as to what to do or how to do it. For example, a terse
dialogue may be underdetermined for a novice needing considerable
direction, while a verbose, computer-directed dialogue is probably
overdetermined for the trained expert. A dialogue is considered ill-
determined when it has attributes of both, but well-determined when
it matches the user’s expectations, pace and ability. But one cannot
label a determination level for a dialogue without considering the ex-
perience and expectations of the user.

As an analogy, consider the family car and the sports car.
Although each offers the same basic function of transportation, indi-
viduals may prefer driving one over the other. The family car driver
choses a car that ‘drives itself’, and considers the sports car as under-
determined; the highly-visible instrumentation, manual transmission
and choke, and steering sensitivity only serve to confuse. But the
sports car enthusiast finds the family car overdetermined; the lack of
control and general insensitivity is viewed with disdain to one who
considers responsiveness important. Yet both cars are ergoromically
well-designed, it is the driver who selects a car type as appropriate, a

74 1. H. Witten and S. Greenberg

Examples of command
interfaces

point well understood by an automotive industry which markets
radically different types of vehicles.

Just as an automobile manufacturer cannot build a single model
of car to satisfy all customers, neither should we expect to find a
single ‘best’ interactive interface. The next section will examine
several examples of command interfaces and the trade-off of power
versus simplicity offered by each. Judge them cautiously, for it is too
easy to label any one system as ideal or unsatisfactory. Remember
that it is the user’s highly subjective opinion that counts. Each dia-
logue technique should be contrasted by approximating the prob-
able dialogue determination level with the skills, knowledge, needs,
and background of our casual user—the office worker.

Several quite different interface designs have been introduced
recently which give examples of top-level system interfaces and the
degree of control they offer the user. Be warned, however, that they
are by no means mutually exclusive; neither do they all address
exactly the same problem or user population nor provide the same
facilities. The approaches represent different tools in a kit—several
may be used together to do a job. Each one represents a compromise
between power and simplicity.

We begin with conventional command-driven interfaces, a dialogue
normally used by ‘experts’ interacting with general-purpose com-
puter systems. This is followed by menu-based interfaces, which are
usually considered more suitable for inexperienced or casual users.
Subsequent examples are somewhat more exotic and perhaps more
specific to the office domain. Windows provide a tool which is suit-
able for handling the usual multiple-context operations of an office
worker, while forms take advantage of already familiar office models.
Natural language has the potential to capitalize on a user’s existing
dialogue skills.

Conventional command-driven interactive computer interface

The conventional interface to interactive systems employs com-
mands issued by the user. The system is a passive slave awaiting
orders; no attempt is made to guide or help the user explicitly. Once
received, it carries out the order and then awaits the next command.
We are all very familiar with this kind of interface. Originally
designed for teletype terminals, it hasn’t changed much since. We will
use Unix as an example since it is a fairly sophisticated system within
the genre (Ritchie and Thompson 1974).

Despite the existence of some screen-based programs (typically
editors), the basic command interface, called ‘shell’ in Unix, is tele-
type-like. No use is made of the cursor control features provided on
most VDUs. With the single exception of the character-erase and
line-erase characters, the screen is treated as a long roll of paper.

User interfaces for office systems 75

Figure 1 represents a typical command screen after log-in. In this se-
quential dialogue, the user asks for the current date, requests a listing
of files, and checks for mail. Further commands would scroll this in-
formation off the screen irretrievably.

This interface has particular problems in its handling of full-du-
plex interfaces and multiple asynchronous processes. For example, if
the user types ahead, it would make sense to suppress any prompts
for input he has already typed. This is hardly ever done (it raises diffi-
cult questions of division of responsibility between applications pro-
grams and the operating system). Moreover, it is hard to know how
to handle asynchronous output. Unix write (/) may interrupt the
user while he is part way through typing a line; whereas the csh Unix
command interpreter (Joy 1979) waits for the user to type return
before informing him that background processes have terminated
normally. Neither of these seem particularly satisfactory. If the user
had typed the Is command in Figure 1 at the same time as a mail no-
tification message was sent, the output of both would be jumbled
together as a consequence. More sophisticated interfaces partition a
screen so that user commands, normal output, and asynchronous
messages can be placed in separate areas (see ‘Window systems’).
However, this reduces the available screen space for each.

There have been some, but not many, improvements in command
interpreters over the years. For example, one breakthrough in the
design of operating system interfaces was to eliminate all differences
" between invoking a system program and a user program. This seems
so obvious and natural now that it usually goes unnoticed. It is sig-
nificant because it allows you to tailor a system to individual needs
simply by writing utility programs and putting them in the right
place, without having to alter the innards of the system in any way.
Earlier operating systems had separate commands for running user

Unix: date

Sun Jul 22 20:40:01 MDT 1984

Unix: /s

Figures abstract introduction
main-body

Unix; mas/

No mail
nix:

Fig. 1. A Unix command screen, showing user-typed commands in italics

76

I. H. Witten and S. Greenberg

and system programs—after all, they were kept on separate areas of
disk! However, this flexibility has drawbacks. It encourages users to
build and share extensive libraries of commands, causing difficulty
with the naming of different programs and multiple versions of pro-
grams. Others may have come to rely on programs in a personal li-
brary without the owner’s knowledge, in the erroneous belief that
they were ‘standard’ utilities.

In spite of these problems, Unix is extremely popular with com-
puter experts, precisely because its terseness and power offer them a
well-determined dialogue. Norman (1981) considers Unix to be a
disaster for the casual user, for the same reasons. Is the command-
driven interface a suitable one for the office worker? Its richness of
commands and terse dialogue is probably underdetermined for the
very occasional user, especially if his needs are simple. But it may be
well-determined for the trained office person who must do many di-
verse and unintegrated tasks quickly and efficiently. Table 1 sum-
marizes the advantages and disadvantages of the conventional ‘glass
teletype’ interactive command interface.

Menu systems

Menus attempt to solve the dour and unforthcoming nature of com-
mand-driven interfaces by explicitly revealing all possible options to
the user, by analogy to a restaurant which presents the diner with a
list of choices. Command-driven interfaces, in contrast, are like res-
taurants with no menus; the casual customer can order standard
dishes, while exotic offerings are known only to local ‘experts’. The
menu paradigm is an old one in graphical interaction, and has served
well in a variety of interfaces to drawing, painting, and drafting sys-

“tems. It has also been used as the interface to many other interactive

systems (such as database retrieval systems).

Menus exemplify the oft-cited ‘what you see is what you get’
touchstone. Smith (1975) regards a display as a working area for our
short-term memory, to be operated on by conscious thought. A well-
designed menu system fits this conception, for it shows all currently
possible choices, and thereby constrains the user. There is no need to
‘remember’ across displays—only the presented items can be chosen.

There are many different ways of arranging menus. Two of the
most popular are fixed menus, which present all possible choices on
a single display, and taxonomic menus, which classify the domain
hierarchically and allow the user to navigate through it.

The automated teller in Figure 2 illustrates a fixed menu. The one-
line message area provides concise directions and feedback to the
user. Only sensible menu choices are enabled. For example, when the
machine requests an account type (the black keys in the Figure) it ig-
nores all keys not relevant to that context. The success of this par-
ticular menu is evident from the large number of automated tellers
appearing throughout the western world. With it, the user can inter-

User interfaces for office systems 77

Table 1. Advantages and disadvantages of command-driven inter-
faces

Advantages

e simple

o terse

o does not constrain applications programs in any way

e casy to add commands which appear like new system commands

Disadvantages

minimal feedback of the system state

encourages a jumble of applications programs with different interfaces
cannot deal elegantly with asynchronous events

impossible to refer to information displayed on previous screens, even
though it may be related to the current context

is overly secretive (underdetermined) for most naive and casual users
and to ‘experts’ stepping out of the bounds of their knowledge

act easily with a complex database, although his interactions are
highly restricted. The dialogue is well-determined for almost anyone,
for ‘experts’ can ignore the message area and rapidly enter their
transactions. The limitations of the automated teller are clear: only
the choices on the fixed menu are possible. But for clients it remains
well-determined, for they expect access to a human intermediary
(such as the bank teller) for non-routine tasks.

Jade Bank - Calgary Branch

(Please insert card to begin transaction J
1][z][3
baterce | [ooment] =l [4][5][6

,» 7]{e](e]]

(CarSlot —) (Cash Out)

)

(Deposits in (Receipts Out

Fig. 2. The Automated Teller.

78

I. H. Witten and S. Greenberg

Most information systems are too complex for a single-page dis-
play. Videotex systems are intended to allow casual users access to a
large volume of information. A taxonomic menu is used, and menu
items are selected on a restricted keyboard. The database may be ex-
tensive, possibly including up to 1 million pages of text and graphics
(Wilkinson 1980). The user navigates through the hierarchy,
attempting to focus in on the desired information by refining the
category which is currently displayed. Figure 3 illustrates a user
navigating the category of entertainment in a quest for current plays.

A command interface to an office or operating system can be built
using the same kind of taxonomic structure. A recent project at Bell
Laboratories, called Menunix, shows how an extensive and flexible
operating system interface can be implemented with menus (Perl-
man 1984). It allows access to the Unix system by displaying two
menus from which users can make selections: the file menu which lists
the current working directory, and the program menu which lists the
programs currently available. Figure 4 shows an example display.
(The boxes around each Menunix component are for illustrative pur-
poses only; they do not actually appear on the display.) One conse-

Mlain Menu:
1. News and Weather
2. Entertainment
3. Theater

4. Nightclubs

tertainment:

Today's TU
Today's Radio
Theater

Nightclubs

pUN=

1. Plays
2. Dance

3. Music

Othelio
at Shake's Theater,

7:00 p.m. §S - 15.
Cats

at Off Broadways,
8:00 p.m. *sold out*

Fig. 3. Retrieving information through a hierarchical menu.

User interfaces for office systems 79

——Program Menu \ Eile Meny=———"""
{writing Aids) /user/saul/office-paper (VA
a Analyze styie (styte) 1 Figures/ 243 drwxr-xr--
¢ «=Count words & lines (wc) 2 abstract Y -rw-r--r--
d Oecode/Encode (crypt) 3 introduction 2 -rw-r--r--
e Edit a file (Seditor) 4 mein-body 61 -rw-r--r--
! Look up word in dict. {look) \ —/
s Spelling error finder (spell)
w Wordy sentence finder tdiction)] ———Feedback
New mail for saul has arrived
LMon Jul 30 11:28
\, — s
—~ Command History \
$1 emacs abstract
$2 spell abstract
$3 style abstract
L $4 diction abstract)
e Line Editor ‘
COMMAND: wc {files}
| Rdding text: quit with ESC, select files with "~)

Fig. 4. A Menunix workbench.

quence of menu access to Unix programs is that the vast selection of
utilities must be structured somehow into reasonably small subsets;
otherwise the menu would become unmanageable. These ‘work-
benches’ provide a useful way of viewing the activity of working with
such a system.

Menunix uses a single keystroke to select an item from either of
these menus. The file menu displays at most 9 filenames, accessed
with keys 1-9 (you can leaf through larger directories using the ‘+’
and ‘—’ keys). When a file menu entry is selected, Menunix tries to do
something sensible with the selected file. If it is a directory file, the
current working directory is changed. If it is an executable file, it is
run (after arguments are requested). If it is a text file, the user’s pre-
ferred editor is called on it. Thus users are able to edit files and
change directories with just the file menu commands.

Programs are structured into workbenches, and the program
menu displays brief (half-lin¢) descriptions of the programs in the
current workbench (Figure 4). The descriptions are identified by
their initial letter (when a workbench is constructed none of its des-
criptors may begin with the same letter). Workbenches are organized
hierarchically. For example, there is a programming workbench that
contains sub-workbenches for general programming and specific
programming languages. Figure 4 illustrates one workbench which
gathers together writing tools; other workbenches may deal with
mail, specific applications, and so on. When a program menu entry is
selected, arguments are requested and the program is executed. In

80

I. H. Witten and S. Greenberg

order to implement the hierarchy, an entry in a workbench may
point to another workbench (in the same way that an entry in a di-
rectory may point to another directory in the file hierarchy). Select-
ing one of these entries will replace the current program menu
accordingly. Unfortunately, not all programs fall neatly into the
workbench paradigm; some tools may not be in the location in
which the user expects them. For example, the crypt program in
Figure 4 may be a useful tool for one author who requires secure text -
files, while to another it unnecessarily clutters his workspace.

In some circumstances it is not necessary for a menu to remain
visible on the display screen for long. One important way of display-
ing a menu is by ‘popping it up’ on the screen for just as long as is
needed. Frequently employed in window systems, a pop-up menu (or
the very similar pull-down menu) is painted on the screen near the
cursor or other focus of attention. Typically a mouse button is de-
pressed to call the pop-up menu, and when the button is released the
menu disappears and the hole left by the menu is repaired. Menu
selection is achieved by pointing at the desired item with the mouse,
and indicated visually by shading that menu item. (A pull-down
menu is illustrated in the screen in Figure 5 in the next section.) The
pop-up menu is a convenient way to keep frequently used commands
close by without occupying space on the screen. Different menu con-
tents can be generated depending on the state of the user’s interac-
tion, in such a way that it is almost impossible for him to make a
syntactic error in the interaction. In addition, pop-up menus do not
normally consume screen space. To their disadvantage, their imple-
mentation is complex because the damaged area must be saved and
repainted.

Menus are a useful medium for users, particularly naive and
casual ones, to communicate commands to computers (Cuff 1980).
An assortment of other examples of menu-based systems can be
found in Martin (1973). General advantages and disadvantages of
menu-based interaction are detailed in Table 2.

The popularity of hierarchical taxonomic menus and the market
potential of videotex has stimulated research into their suitability for
naive or casual users. Several serious drawbacks to such schemes
have been identified:

e Users may be uncertain about the content of a menu category
(Latremouille and Lee 1981) and will have to probe the hier-
archy repeatedly in order to retrieve the desired information.

e Retrieval will fail if the sought-after information does not exist
in the database.

e Even if the information does exist, retrieval may fail because the
user is unable to select the proper categories.

o As databases grow in size, it becomes harder to locate specific
items (Martin 1980). This is particularly disconcerting when
one considers that Prestel, a British videotex system, is aiming

User interfaces for office systems 81

Table 2. Advantages and disadvantages of menus

Advantages

e requires only a standard VDU

e a restricted keyboard or positional pointer can be used

e actions allowable in the current context need not be remembered since
they are continually available for review

e no typing ability is required

e requires little user training

Disadvantages

e extremely inflexible

e only a small number of items can be displayed on a menu
e experienced users may undergo considerable frustration
e discourages typing ahead

o users have problems navigating large hierarchies

for one million pages of information by the mid-1980s (Wilkin-
son 1980).

e User confusion and spatial disorientation in a large menu hier-
archy is likely to occur as a result of the problems just noted
(Engel et al. 1983; Mantei 1982).

o Difficulty in remembering the choice path used to arrive at the
current location causes erratic searches on successive probes
(Engel et al. 1983).

Dumais and Landauer (1982) note that most schemes provide only a
single access route to a given item, and suggest that some of the
above faults probably arise from this unnecessary inflexibility. Sys-
tem designers invent word meanings and categorization schemes
which may not match those of the end user. In an experimental study
of design defects in a menu-driven database, Whalen and Mason
(1981) found that miscategorization of information was the most
serious defect. Whalen and Latremouille (1981) examined retrieval
failure in Telidon through experimentation, and concluded that
people are very likely to stop looking for information rather than
undertake extensive searches. Fitter (1979) remarks that for a user to
feel in control, it is vital that he recollects where he has been in the
database. These investigations support the drawbacks which are
identified above.

Although studies have indicated that menus are initially well
determined for naive users, continued practice quickly renders the
dialogue overdetermined. Geller and Lesk (1981) have run experi-
ments comparing menus and command retrieval systems, and their
results seriously undermine the premise that novices prefer menu-
oriented systems with keyboard selection. Choice by menu selection
is by nature slow and tedious. It is particularly likely to be overdeter-
mined in more complex environments where diverse tasks are under-

82

I. H. Witten and S. Greenberg

taken, and in activities which involve context switching, which
imposes a high overhead in navigating menu hierarchies.

Window systems

The primary purpose of a window system is to provide the user
with a variable number of virtual views into an information struc-
ture, all mapped to a single physical screen. If the views are regarded
as virtual output devices, this allows one to communicate with differ-
ent, asynchronous, processes in different windows—solving one of
the problems of conventional terminal interfaces. A standard use of
windows in editors and file systems is to allow multiple viewports
into one or more documents. They can also be used in general com-
puter systems by having command, input, output, and system state
(feedback) windows. In general, windows can be opened, moved

" around, and closed, to reflect the demands of the task. Like a conven-

tional VDU, a window system constitutes an outer shell within
which other user interfaces can operate.

Existing window systems implement only rectangular windows
aligned parallel with screen boundaries; there seems to be no good
reason to extend this to arbitrary shapes and orientations. Many sys-
tems (e.g. Apple’s Macintosh) allow windows to overlap (Figure 5);
some (e.g. emacs; Stallman 1981) do not (Figure 6). This is a crucial
design decision. Overlaps create considerable complications because
they require the overlap area to be saved somewhere. In general
there may be multiple overlaps, so that a tree structure of saved por-
tions is needed. At some extra cost in storage, it may be easier to save

l“ file edit view special

About the finder...

0ffice paper

Scrapbook
Alarm clock
Note pad
Caiculator
Key caps
tontrol panel

270K in disk 130K available

]

=
Abstract Introduction Main-body Figures

(]

System foider

()

Empty folder

TEE TR T R P T R BT

Fig. 5. A screen with two overlapping windows and a pull-down menu.

User interfaces for office systems

.sh "fbstract”

PP

This paper surveys recent developments in the "top-level”
interfoce for interacling with office information systems.
This is the level at which users initially make contact with

N

>

File window
viewing the
file "abstract"

83

: write-file abstroct

the system, and from which they invoke subsystems for
specific tasks such as text manipulation, mail, database
access, and so on.

abstract = abstract INormall y,
. N
Unin: date “shell” windou
sun Jul 22 20:42:09 MDT 1984 > allowing Unix
Unin: _ commands to
be executed
shell = none (Notmal) Bottom Y.

Emacs
¢4 command and

message area

Fig. 6. A screen with tiled window: no overlapping allowed.

complete windows instead of overlapped fragments. However, then
it will take longer to redraw when the window pile is altered, and
redrawing time is usually a critical resource. We know of no pub-
lished work which assesses the costs and benefits of overlapped win-
dows in real applications; overlaps seem to be fashionable rather
than provably beneficial. It has been observed that some users
expend considerable energy in making their overlap displays re-
semble the tiled screen illustrated in Figure 6.

Windows can also be used to provide direct manipulation of ob-
jects on the screen. For example, it seems more ‘natural’ to transfer a
chunk of text from one place to another by literally moving it
between windows on the screen than by editing it out of the source
document, saving it somewhere, reinvoking the editor, retrieving it,
and placing it in the target. Imagine, for instance, moving an address
from an address list to a letterhead. Unfortunately, as this example
illustrates, what is often required is a copy rather than a move: this
introduces some inconsistency with the cut and paste illusion.

Operations on windows are generally performed using a pointing
device (such as a mouse), both to indicate positions to place windows
on the physical screen and to denote a particular window to be
manipulated. Typical operations include creating a window, binding
it to a particular process, moving and resizing it, activating and des-
troying it, and shuffling the order of windows in a pile. The last is
relevant only to systems which permit windows to overlap, and is
usually implemented as an operation which brings a particular win-
dow to the top. If windows are identified by pointing at them, it is
also necessary to be able to bury a window in case it completely ob-
scures one below.

A primary concern of window systems is to allow convenient and

84

I. H. Witten and S. Greenberg

dynamic management of screen ‘real estate’™—a most valuable
resource. Although normal windows remain on the screen until
explicitly removed (by user or program), temporary pop-up or pull-
down windows are useful for displaying transient information
(Figure 5). These are typically invoked by pressing a button on the
mouse, and persist until the button is released. They are particularly
appropriate for menus, to clarify options, or to show help informa-
tion. The pull-down menu in Figure 5 is one such example; access to
normally hidden system functions are consistently available at any
time.

A very important user interface design issue with window systems
is who has the ability to create and destroy windows. At one extreme,
it may be felt desirable to give the user complete control of his screen,
so that he—and he alone—has the power to create and manipulate
windows. This means that a program which needs a window must re-
quest that one be created and assigned to a suitable process. This
runs the risk of causing the user considerable bother in doing simple
things—another overdetermined scenario. At the other extreme, the
user may have no direct control over the creation, placement, and
destruction of windows. If a program wants a window, it creates it
(and presumably the window system makes an attempt to place it
sensibly on the screen). This will work best with non-overlapping
windows. Of course, the user still has indirect control because it is he
who invoked the program.

Many compromises between these two extremes are possible. One
which seems attactive is to allow programs to call the window system
to create subwindows within any windows that are allocated to it. At
its simplest, this could involve dividing windows into non-overlap-
ping ‘panes’. However, for the sake of uniformity it may be preferable
if the same window format and overlap possibilities are available to a
program within its window as the user has within his screen. This
raises the issue of whether a user is allowed to move a program-
created window outside its parent window, and whether so doing
changes its status as being under control of the program that created
it (for the purposes of enlargement, deletion, and so on).

An important difference from conventional VDU systems is that
programs executed within a window system do not know the size of
their output device until run time (and even then it may change!).
This causes difficulty because the best output format may vary sub-
stantially with radically different page sizes. For example, the new
generation of hand-held computers use their very small displays in
quite a different fashion to normal-screen personal computers. Some
window systems allow the user to pan across a normal-width text
buffer. Zoom would be nice but is somewhat impractical with cur-
rent display technology (at least for text). However, viewing your
text through a peephole makes it hard to scan easily. An alternative
is to wrap lines when they reach the window boundary; but breaking
lines at arbitrary points within words compromises readability. A

User interfaces for office systems 85

better (but computation-intensive) plan is to reformat all text
dynamically into the current window size. This implies that pro-
grams should output structured ‘document descriptions’ instead of
plain text.

The main advantages and disadvantages of window systems are
outlined in Table 3. User reaction to such systems is extremely
favourable, and a large number have become available recently. The
Xerox Star (Smith et al. 1982), and Apple’s Lisa and Macintosh (Wil-
liams 1983, 1984) are widely used systems which are aimed at the of-
fice and home market. Leading home computer software houses are
now marketing window systems (e.g. Microsoft’s Windows and Visi-
Corp’s VisiON). Several window systems have been developed in re-
search laboratories for use in a general programming environment;
examples which are on the market are the Sun workstation; the
Xerox Dandelion, Dolphin, and Dorado; and the Lisp Machines
from LMI and Symbolics. Packages such as the Maryland (Wood
1982) and NUnix (Test 1982) window systems offer the programmer
high-level subroutines for window manipulation within the Unix
operating system. All of the above systems implement overlapping
windows. Several tiling systems are also available, including the
CMU Network Window Manager (Gosling and Rosenthal 1983)
and the Waterloo Port user interface (Malcolm and Dyment 1983).
These are particularly appropriate for use on ASCII terminals, es-
pecially in editors (e.g. emacs; Stallman 1981).

In view of the growing popularity of windows, there has been sur-
prisingly little human-factors research on their use. There seems to
be no experimental data on which to base fundamental design de-
cisions such as whether windows should overlap, or whether only the
user should be capable of creating them. Such research as has been

Table 3. Advantages and disadvantages of windows

Advantages

e have a nice feel

e effective use can be made of pop-up windows to provide selective help
and advice

o ideal for controlling and monitoring asynchronous events

e can realistically simulate real-life cut-and-paste operations

Disadvantages

e complexity

need a graphical display

e difficult to format program output into arbitrary-sized windows

e the user has to cope with a new meta-level of control decision-making

e no obvious way of allocating control over windows between user and
computer

e program creation of windows may be underdetermined for some, while
explicit window creation may be overdetermined for others

86

I. H. Witten and S. Greenberg

done addresses technical questions of implementation (e.g. Pike
1983, Rosenthal 1982) rather than usage.

In the office setting, the success of window systems hinges on the
need for viewing or interacting with many different contexts simulta-
neously, and the need to suspend one context temporarily while
dealing with a more urgent interruption. The extra degree of meta-
control required for window manipulation may create an under-
determined interface for the untrained or occasional user.

Forms

Paper forms are widely used tools for structuring information in con-
ventional offices. It is natural to consider the use of forms as an inte-
grating medium for office computer systems. A paper business form
is a template which, when filled in, becomes a text document. Either
it can be viewed as a document in itself, or the filled slots can be
viewed as a collection of entries in a database. This dual nature gives
the form an important advantage over other ways of recording the
information.

A conventional paper form can play any or all of the following
four roles:

e display of information, as a structured and stereotyped docu-
ment

e collection of information (and its modification)

e storage and retrieval of information as records in a database

e transfer of information as messages.

Each of these can be expanded somewhat within a computer-based
office forms systems. Firstly, the medium in which a form is pre-
sented is not necessarily restricted to paper. Viewed as a document, a
form can be reproduced on a VDU screen or on paper, typed or
typeset, or (perhaps) spoken over the telephone. Different text tem-
plates can be used to present different views of the same information,
or subsets of it. In addition, only the necessary portion of a form is
disclosed to the viewer. An office worker requisitioning supplies need
not concern himself with blank (or restricted) fields filled in later by
the purchasing department. Secondly, a similar variety of media is
possible for collection of information: hand-printing on a tablet,
VDU interaction, speech input, off-line keyboarding. Thirdly, the
relational model of databases is the most natural for storage of the
information contained in forms. Each instance of the form expresses
a single tuple of a relation. Viewed in this way, implicit references
may be made to other database entries so that fields may be filled in
automatically (e.g. to fill the address field, look up the address asso-
ciated with the name field). Or fields may be defined to contain the
result of operations on other fields (e.g. a ‘total’ line}—such entries
must be manually calculated for paper forms (recall your income tax
form). Finally, mailing of forms may be expedited by transmitting

User interfaces for office systems 87

only the form identification and the contents of the fields; the text
template can be regenerated by the recipient from his master copy.
This is not feasible with paper forms.

In essence, a ‘form’ comprises both a structured data type, which
specifies what lexical objects may occupy each field; and mappings
(typically involving text templates) which make an instance of that
data type into a message. The first part may be more than just a type
definition. It may include specifications of fields which must be filled
in by the system (e.g. today’s date), optional fields, and default values
for fields. If security is an issue, it may include classification levels for
who is allowed to fill certain fields (e.g. signatures). Certain action
may need to be taken when fields are filled in a certain way. In
general, the form may comprise a data type encapsulated with speci-
fied procedures for syntax and security checking of each field—a
Simula class, a Smalltalk object, or an Ada package. As for mapping
from data-type instances into messages, there may be several map-
pings associated with a single form data type, to present (subsets of)
the same information in different ways. The mappings may involve
more than simple templates because calculations may be necessary
to fill in totals and so on. These also would fit naturally into a pack-
age- or object-based programming structure.

As an example, consider the filled-out form shown in Figure 7,
being used to add new information into a database. An office worker
may complete the blank form using a keyboard, moving from field to
field with (say) the tab key or a pointing device. Perhaps default
values are given to some fields, such as City. If this is a new form, the
File Number and Date may be added automatically. A database may
be consulted to simplify the form-filling task; for example, the Ad-
dress may be added automatically once the Name is known. After
completion, the form becomes part of a database. Its contents may
be accessed through a query language, perhaps also in the shape of a
form. For instance the same form can retrieve suppliers of pencils by
selecting the query database option and entering that item under
Supplies.

The act of entering a form may cause other, more indirect, side
effects. Completion of a ‘mailing’ form may cause mail to be sent.
Completion of a ‘reminder’ form may set a trigger which will be fired
at some future time. The form in Figure 7 may be sent automatically
to the purchasing department for action and the inventory updated
when the appropriate triggers are chosen on the ‘trigger menu’. It is
through generalizations such as these that forms can play a potent
role as office system interfaces.

There are presently few widely known general forms systems.
However, some special cases illustrate the possibilities. Spreadsheet
calculators (for an example see Williams 1982) provide an excellent
example of the utility of the simple idea of computational dependen-
cies between items in a single form. However, they are restricted to
matrix-like forms with no text template. QBE (Zloof 1977) shows

88

I. H. Witten and S. Greenberg

‘text-less’ forms working towards another purpose; namely provid-
ing a casual-user interface to a relational database. The experimental
Officetalk-D (Ellis and Bernal 1982) is one of the first to try to inte-
grate completely an office information system through the forms
paradigm. Through it users view all system activity, manipulate
transactions, and browse through databases. Database inference
languages such as Prolog (Clocksin and Mellish 1981) offer attrac-
tive features for implementing forms systems.

Consider the potential of using a form to represent directly some
aspect of the internal operation of a system. Altering fields of the
form has an immediate and easily understood effect on the system.
Editing is such a pervasive operation in all interactive computer sys-
tems that it is attractive to combine it with the structuring imposed
by a form and extend it to manipulate more general objects within an
interactive system. In fact, editing means examining and modifying
data, and there is no reason why the concept should not be extended
to types of data other than plain text. For example, utilities that de-
lete and rename files edit directories; those that send mail edit mail-
boxes. Duplicating command languages for these conceptually
similar operations is unnecessary and frustrates casual users.

As an example, Fraser (1980) discusses the possibility of editing
directories. Having invoked on Unix edit {directory-name), the user
may see a display set as a form similar to that of Figure 8. At this
point he could delete the first line (effectively removing a file), create
files and more importantly directories, copy files, change the file per-
missions in the left column, or change the owner’s name. These five
operations account for 16 per cent of all command accesses on Unix
(Fraser 1980).

As this example illustrates, computer-based forms can differ con-
siderably from conventional paper forms—some refer to them as

Supplies
File Number: C(C-9/11/84 Date: Sept. 11,1984
Name: Paper Ltd.
Address: 2109 £lm St. City: Calgary
Contact: Mary Rbram
Supplies: paper clips $2.3?2/500
pencils $5.00/ 20
erasers $200/ 10
Update database @ O Send to Purchasing
Query database O 0O Update Inventory

Fig. 7. A filled-out form.

User interfaces for office systems 89

‘smart’ forms rather than ‘dumb’ ones. Their strong and weak points
as an office system interface are summarized in Table 4. A well-
designed forms system can provide a well-determined interface for
naive users, for it is simple and based upon a familiar model. It capi-
talizes both upon existing skills in text editing or word processing,
and upon familiarity with the use of forms as tools for structuring
data. The power available in extended and active forms suggests that
even experts may find them attractive.

Natural language interfaces

It seems ideal to be able to express your wishes and ideas in natural
language, as you would to a colleague or secretary. However, despite
the existence of some sophisticated example systems, natural
language has not yet achieved the maturity of the other techniques
discussed here.

Some of this is due to the difficulty of handling the knowledge
which is needed to decode the input text and understand what is
being said. Barrow (1979) puts it nicely:

In current attempts to handle natural language, the need to use knowledge
about the subject matter of the conversation, and not just grammatical nice-
ties, is recognized—it is now believed that reliable translation is not possible
without such knowledge. It is essential to find the best interpretation of what
is uttered that is consistent with all sources of knowledge—Ilexical, gram-
matical, semantic (meaning), topical, and contextual.

While it is perfectly possible to build systems to ‘understand’ (i.e.
react appropriately to) natural language for certain tasks domains,
all current systems are limited to rather specific and narrow do-
mains. There are natural language interfaces for moving objects in a
toy world (Winograd 1972), investigating the properties of electrical
circuits (Brown and Burton 1975), database retrieval for a variety of
databases (Woods 1973; Waltz 1975; Harris 1977; Hendrix et al.

- 3 o R

MISSION OIINER EILENAME
~-frw-r--r-- ian abstract
drwxr-xr-x ian figures
-rw-r--r-- saul introduction
“rw-r--r-- ian] main-body
“rw=--~---~ ien paper.latest
“-Twx--X--X ian print-paper

%
Fig. 8. A display ready for generalized editing.

90

1. H. Witten and S. Greenberg

Table 4. Advantages and disadvantages of forms

Advantages

o familiarity

e provide a ‘natural’ interface to databases

e encourages strong type-checking on data entry

e can be extended in several ways over paper forms

Disadvantages

e emotional overtones (everyone hates forms)
e extensions must be carefully thought out because they conflict with the

basic metaphor

1978), giving advice to medical diagnosis programs on highly con-
strained topics (Davis and Lenat 1982) ... the list goes on and on
(see Gevarter 1983 for an excellent survey). Each system works in a
tightly constrained environment. Although you could build a natural
language command interface for a highly circumscribed office-sys-
tem interface, current technology cannot cope with a rich, varied ar-
ray of topics and interactions.

Understandable communication in English is highly dependent on
many factors, such as inaccuracies in simple logical relationships
within a sentence and a need for metacomments for clarification.
Although relationships of various kinds are normally required in
programming languages, people are imprecise in using logical con-
nectives and quantifiers in natural language (Thomas and Carroll .
1981). The first three examples in Figure 9 illustrate this ambiguity—
each sentence can have multiple meanings. Metacomments—mess-
ages about the communication itself—provide a higher-level com-
munication structure (Thomas and Carroll 1981). They may direct
the conversation, adjust its speed, or reflect the internal state of the
communicator (Thomas 1978). A metacomment would clarify the
dialogue context in the final example in the Figure (‘I'm talking
about office supplies’). In all these cases, the role of a clarification
dialogue between user and computer is important to ensure that
communication is effective. For example, the ROBOT system
responds to ambiguous queries by presenting the possible inter-
pretations to the user (in a formal database language) and asking
him to choose the correct one (Harris 1977). Artificial languages are
not normally associated with this ambiguity. One advantage of not
using natural language is that the ‘special notation of a precise con-
cise artificial language can be a helpful tool in guiding thought pro-
cesses’ (Shneiderman 1980), thus avoiding some of the pitfalis
mentioned above.

Another part of the problem is the complexity of a natural
language interface. It is hard to build, unwieldy, slow, difficult to
maintain, and consumes a great deal of resources.

Simple

Sentence

Get the suppliers of the

User interfaces for office systems

Meanings? ' I

ea single binder is red

logical red and green binders, and green
connectives ered gr green binders
are wanted
Quantifier Find files for Smith and sGet both their files for the
Jones for 1983 and 1984. years 1983 and 1984
sGet Smith's file for 1983
and Jones' file for 1984
Relations supply-oll Inc. refuses to eSupply-all has financial
within a supply Nopay Ltd because difficulty
sentence they have financial .Nopay Ltd hes financisl
difficuity. difficulty
Context Tell me about rulers. *A measuring device in an
dependency office supply context

91

*f leader in a political
database context

Fig. 9. Examples of ambiguous natural language sentences.

But even if the technical problems were solved, would you want to
use natural language anyway? A lot of typing is needed to express
complex thoughts precisely on paper. Although speaking natural
language is a much more attractive possibility for the user than typ-
ing, existing speech recognition systems are still highly limited re-
search projects. And to what extent should the system forgive lapses
of grammar, misspelling, use of slang, ellipsis?—and what effect will
forgiveness have on the precision of the communication? Inevitably,
only a subset of natural language will be understood, and the user
will have to learn this subset by trial and error. It’s very hard to con-
strain your word and syntax usage according to pre-specified rules
(Shneiderman, 1980).

Even then, there will be a temptation to ascribe unreasonable
powers to the machine—it’s easy to forget its limitations if it appears
to ‘understand’ (Weizenbaum 1976). Some argue that forcing
machines into the mold of natural language discourse will not be
useful, regardless of improvements in the technology.

One possible role of natural language is to use short phrases in
conjunction with another scheme like menu selection. For example,
in a personnel database you could type ‘less than $30000’, or ‘at least
as much as the average of employees in his Department’ against the
‘salary’ item in a menu. Using fragments like these overcomes some
of the human problems associated with typed natural language (Cuff
1982).

92 |. H. Witten and S. Greenberg

Integration—the final
package

~ssionm

Table 5 summarizes some of the advantages and disadvantages of
natural language interfaces. In the distant future, it may be that natu-
ral language speech interfaces will provide an alternative to more
artificial present-day techniques. The role of the dialogue will be
paramount in clarifying for the system what it is the user wants to do.
However, the social consequences of anthropomorphizing machines
by mimicking human conversation are unknown and may have far-
reaching effects on the viability of such systems.

Manufacturer’s descriptions of office automation systems frequently
make much of their ‘integrated’ nature. Along with ‘user friendly’ and
‘intelligent’, this has become a buzzword which often means little.
The standard dictionary definition is ‘to form into a whole: unite’.
This could be fleshed out in the context of an office information sys-
tem as one which is united by a common interface used both between
and within applications. Let us see how it could apply to the inter-
faces introduced in the last section.

The command-driven interface, exemplified by Unix, is somewhat
integrated at a shallow level. System utilities are reached through
commands. Options are signalled by flags. Pipelines and input/out-
put redirection are normally available. Descriptive manual entries
are in a standard format. (See Kernighan and Mashey, 1981, for a de-
scription of integration within the Unix programming environment.)
However, Unix is far from integrated at the apphcatlon level, for
each application program is created independently. For exg_mple
one would expest that a document preparation language and a text
editor would be closely associated. This is not hie casain Unix. The -
editor knows nothing about the document-language constructs and
shares no common commands. As an alternative command interface,

-~ Table S. Ad-vantagé-s and disadvantages of natural languages

Advantages

o ‘natural’ for the user
e requires no learning (except the trial and error necessary to determine
what subset is actually implemented)

Disadvantages

complexity; excessive use of resources

typing is a nuisance

it is hard to make the system forgiving of errors and yet retain precision
may present false image of capabilities to the user

context and semantics of the natural language may not be known to the
user

system will never be complete

e clarification dialogues are required to ensure accurate communication.

User interfaces for office systems 93

the Menunix system provides greater integration by using the work-
bench metaphor to unify the user’s view of the system. Unfortu-
nately, this is just a patch job; the software subsystems remain
unchanged.

Windows constitute an outer shell of the interface, giving a set of
‘virtual’ views into the system. A window system provides inte-
gration only at that level. Together with a universal editing interface,
both forms and natural language offer some potential as a common
interface between and within applications.

Menus, forms, and window systems are by no means mutually
exclusive, and successful systems will doubtless use them together.
There are now some highly interactive programming environments
which combine many interface styles to allow power in program
creation, testing, debugging and documentation. One example is the
display-oriented programmer’s assistant for Interlisp, which success-
fully uses windows and pop-up menus to provide easy switching of
tasks and contexts (Teitelman 1979). An extension of the program-
mer’s assistant is the Smalltalk-80 system browser which helps in the
structuring, navigating and editing of Smalltalk ‘objects’ (Goldberg
1984). This browser binds taxonomic menus to four ‘subviews’
drawn in window panes—each representing a different contextual
level of the language—which determine what text is visible in a main
subview. Pop-up menus normally provide context-specific com-
mands for each pane. Outside the programming domain, the Small-
talk-80 browser shows promise in viewing structured documents
(Weyer 1982).

The above systems are integrated by the programming environ-
ment they are meant to support, a model ill-suited for our office
worker. Thus different higher-level concepts are needed to support
integration. One cornerstone of system integration in modern user
interfaces is direct manipulation through metaphors. This section de-
scribes these terms and reviews two examples: desktop simulations
and soft machines.

The direct manipulation paradigm and metaphors

Piaget [the child psychologist] has hypothesized that infants first learn
about causation by realizing that they can directly manipulate objects
around them—pull off their blankets, throw their bottles, drop toys. .. Such
direct manipulations, even on the part of infants, involve certain shared
features that characterize the notion of direct causation that is so integral a
part of our constant everyday functioning in our environment—as when we

flip light switches, button our shirts, open doors, etc.
Lakoff and Johnson 1980

Shneiderman (1983) has identified an attribute which is common
to most systems which generates enthusiasm amongst their users. He
defines a ‘direct manipulation’ interface as one which behaves as
though the interaction was with a real-world object rather than with
an abstract system. Most good video games are certainly direct

94

I. H. Witten and S. Greenberg

manipulation interfaces, and—with increasing stretching of the
imagination—so are forms and window manipulation. Even menu
selection can be viewed in this light. The simulated realization of
familiar concrete systems is an important general idea which de-
serves consideration in its own right.

The central ideas in direct manipulation ‘seem to be visibility of
the object of interest; rapid, reversible, incremental actions; and re-
placement of complex language syntax by direct manipulation of the
object of interest’ (Shneiderman 1983). They generate ‘glowing
enthusiasm amongst users—in marked contrast with the more com-
mon reaction of grudging acceptance or outright hostility’. Shneider-
man gives several examples, such as

e display editors

e spreadsheet calculators

e spatial data management (e.g. the put-that-there system: see
Bolt, 1980)

e video games

e interactive CAD/CAM systems;

as well as several less familiar or suggested ones:

e Plato CAI lessons which allow you to manipulate simulated
chemical apparatus

e asimulated Rolodex card file index for addresses

e asimulated check book for financial records

e bibliographic searching based on a catalog in simulated index
drawers

e airline reservation using map, calendar, clock, and seating plan.

The most striking semiotic difference between conventional com-
mand-driven computer interfaces and direct manipulation is that the
former emphasize verbs (or actions), while the latter emphasize nouns
(actors, or objects). Conventional computer commands begin with
an action like ‘copy’, ‘move’, ‘edit’; and continue with specifications
of the actors. Since it is difficult to represent the verb in any way
other than as a word, the interaction is composed of textual com-
mands. By turning the emphasis around and concentrating on ob-
jects as the primary entities, communication can be made more
concrete because the objects can be represented pictorially rather
than linguistically. Then the action can be specified by indicating
movement directly (e.g. with a mouse), or for more complicated ac-
tions by selecting a verb from a (perhaps pop-up) menu. By altering
the menu so that only appropriate actions are included, errors of
syntax can be avoided altogether. Although not all applications are
amenable to this object-oriented approach, the clerical office, with its
concrete tasks, is well suited to direct manipulation paradigms.

Direct manipulation systems map the interface structure on to
some facet of the real world, and then proceed to simulate this. Not
all aspects of the ‘real world’ model need be simulated, of course, but

User interfaces for office systems 95

only those relevant to the operation of the interface. The mapping is
a ‘metaphor’ in a sense close to the dictionary definition:

metaphor, n. Application of name or descriptive term to an object to which
it is not literally applicable.
' Concise Oxford Dictionary

_Carroll and Thomas (1982) approach this metaphor-based
method of designing interfaces from the viewpoint of the naive user
learning how to interact with the system. They make several recom-
mendations for the interface designer, which are worth quoting in
full.

1. Find and use appropriate metaphors in teaching the naive user a com-
puter system.

2. Given a choice between two metaphors, choose the one which is most
congruent with the way the system really works. The more aspects of the
system that can be ‘covered’ by a single metaphor, the better.

3. Take care to ensure that the emotional tone of the metaphor is conducive
to the desired emotional attitude of the user.

4. When it is necessary to use more than one metaphor for a system, choose
metaphors drawn from a single real-world task domain (i.e. similar
enough) but do not choose objects or procedures which are exclusive
alternatives from within that domain (i.e. not too similar).

5. Consider the probable consequences to users and system designers of the
metaphor.

6. When introducing a metaphor, explicitly point out to the user that it is
not a perfect representation of the underlying system and point toward
the limits of the metaphor.

7. Keep in mind from the beginning that any metaphors presented to the
user are to give an overview of the system and that there may be a time, at
least for the continual user, that the metaphor is no longer useful.

8. Provide the user with exciting metaphors for routine work and eventually
present the user with a variety of scenarios which represent different views
and different actions but whose underlying structure is identical.

Carroll and Thomas 1982

As noted, many of the interface paradigms sketched earlier can be
viewed as examples of direct manipulation systems. These recom-
mendations draw attention to the fact that the designer must make
an analogy with some real-world structures. This requires a good
deal of imagination and creativity, and considerable sensitivity in
selecting the metaphor (not, for example, laboring the analogy too
far). It is vital to recognize that the user will inevitably import other,
unwanted, aspects of the metaphor which may interfere with his con-
ceptualization of the interface.

Desktop simulations

What is an appropriate metaphor for the office worker? When the
‘paper’ office is examined, the desktop is found to be the main work-
ing area. Information is contained in documents (which includes
memos and letters), while management of these documents is
through in/out trays, folders and filing cabinets. This paper office can
be realized by simulating a desktop on a VDU screen.

96 I. H. Witten and S. Greenberg

The desktop metaphor was pioneered commercially in the Xerox
Star (Smith et al. 1982) and popularized by the Apple Lisa and
Macintosh (Williams 1983, 1984). The Star is a Cadillac personal of-
fice computer, with a fast processor, high-resolution bit-mapped dis-
play with mouse, substantial fast main and local disk memory, and a
network connection. Although the mouse had been used previously
for several years as a pointing device in Xerox research computers,
the Star was the first commercial end-user system to incorporate it.
Lisa is less powerful, with a standard 16-bit microprocessor
(M68000), medium bit-mapped display with mouse, a lesser amount
of main memory, and a hard disk with floppies for archiving and
external communication; Macintosh is less powerful yet (but
cheaper!). The most significant difference is that the Star display has
much higher resolution, with three times the number of pixels. The
general design of Lisa’s top-level interface is similar to that of the
Star, although it lacks some advanced features.

The Star screen simulates a desktop with icons (or pictograms)
that represent familiar office objects:

e in baskets

e out baskets

e file folders

e documents

e calculators

e printers

e blank forms for letters and memos.

There is a small number of universal commands that can be used
throughout the system, and on any object. They are move, copy, de-
lete, show properties, again, undo, and help; all available on the key-
board. Each performs the same way regardless of the type of object
selected. For example, you can move text in a document or move a
document in a folder. As is common in window-based interaction,
the shape of the cursor changes to indicate to the user what is hap-
pening. This provides very natural feedback since attention is gener-
ally focused on the cursor. For example, the Star cursor distinguishes
move mode, copy mode, graphics mode, menu-selecting mode, and so
on.

Data structures called property sheets are readily available at all
times when interacting with the Star. The property sheet is a pop-up
form, alterable by the user, which describes the physical qualities of
the current context. Within a document, for example, a property
sheet indicates font, line spacing, and margins, as shown in Figure 10.
In a graphical context, the property sheet may indicate fill type and
line style. Even though the attributes of the forms differ, the property
sheet presents a consistent aud integrated interface to any context.

The Star is an excellent example of integration across all appli-
cations. Commands are universal. Consistent feedback on the cur-

User interfaces for office systems 97

—

N AN A0V
AN T A A T T A A A T T T T T

N £ Example folder JDemo 1

The Star Desktop

An office-based system using a desk-top
metaphor offers mony asdvantages over
the paper office. For example, many
items can have properties.

s s s 2 4 2 8P 2 88 4 s
DAY

11111111

Fhe properties of this paragroaph ate shown|

on the property sheet un the lower

right of thhs figure Peragraph spacing
and marqins are just a few of the user-
selected vptions avatlable

aaaaaaa

Display {Char JRq)

Note: This figure is notl an actual snap

A) t el Cent. d | Rwght Justifed
shot of & Star screen. The real screen gnment e CenteredRoont] [Justifed] ;L
would have better resolution and more argims Lot [0)] mighe[t0)] 17
room. 1ne Hewght BIGT] 135 [Double] Triple[Other |

efore Pan[qule[l)gMTnpblOmor]
After Para [Singie][135 [DOURIq Tripie]Other]

(| - |

AGECRG0OGGIONIGoODGaGY NG
AN N ~ ~ VT

Fig. 10. The Star desktop and keyboard.

rent operation is provided by the shape of the cursor. Property
sheets are always available, and have a consistent format.

In the Star user interface, every action has a visible effect on the
screen. The designers note that ‘a subtle thing happens when every-
thing is visible: the display becomes reality. The user model becomes
identical with what is on the screen. Objects can be understood
purely in terms of their visual characteristics. Actions can be under-
stood in terms of their effects on the screen.’ (Smith et al. 1982.) Each
action has an obvious effect even if you have not tried it on that kind

of object before.
It is most important to note that the success of this strategy

depends on the fact that intuitively reasonable actions can be per-
formed on objects at any time. Once the system has gained his trust, a
user should feel secure in this environment. He knows that moving a
page of a document is like moving a memo to a file or an address to a
letterhead. He knows that paper files don’t just disappear or become
garbled by themselves, so by analogy it’s ‘impossible’ for this to hap-
pen on his screen. But woe betide the applications program designer
who ever betrays this trust!

The word-processor touchstone ‘what you see is what you get’ is
virtually attained by the Star. Although the screen resolution of 72

98

I. H. Witten and S. Greenberg

dots per inch does not approach that of a typesetter (typically 400-
1000 dots per inch), it is still enough to make clear distinctions
between different font styles and sizes. Star makes 2'® characters
available (enough for 512 different 128-character alphabets). Input
of obscure symbols is handled by keyboard interpretation maps
generated on the screen.

Another consequence of the desktop object-based dialogue is the
altering of the user’s view of the computer. Traditional computer
concepts include text and graphics files, binary application pro-
grams, directories for organizing files, local and centralized disk stor-
age, and physical visual display units to work on. Within the
Macintosh desktop, these are transformed. A file is a generic name
for a container of information, which can be a document (user-gener-
ated information), or a tool (which manipulates documents). Folders
contain files or other folders. A desktop is the working environment
that uses windows to present and interpret all information (Espinosa
and Hoffman, 1983). The Xerox Star extends this view: folders are
local repositories of files, whereas filing cabinets are centralized stor-
age repositories. In this new manner of visualizing the computer, it is
the office application domain which is dominant in thought, not the
machine itself.

The strength of the metaphor in an office context is that the user
interacts with familiar objects just as he would in the physical world.
Unfortunately, this strength is also its weakness. We have moved
from commanding the general-purpose computer to do office tasks
to a specific office machine, which disallows ‘normal’ computer func-
tions. The greatest loss is that of programming. The usual office
metaphor is excellent at manipulating normal and routine office pro-
cedures, but is very poor at dealing with procedural specification.
How, for example, does an office worker tell the system to notify him
of mail from his superior and no one else? And how about more
complex procedures, such as asking the system to process all audit
reports on the second week of the month by mailing a copy to
accounting and the archives and then deleting the report from the
desktop? Although these procedures could easily be programmed on
a general-purpose machine, the specific office machine would not
allow it, unless it was predicted beforehand. Some user-oriented pro-
gramming languages do exist (Martin 1984), but they depart sharply
from the desktop metaphor. Programming by example, in which the
system infers a procedure after observing examples of its execution
by the user, is a topic of current research. Some success has been
achieved, but only in very limited applications. Although more com-
plex abstractions such as generalizations, conditionals and iterations
are possible (Halbert, 1981; Gaines, 1976; Witten, 1981), it will be
some time before full procedural specification arrives in the office
marketplace.

To summarize, the advantages and disadvantages of the desktop
simulation are presented in Table 6. Considering their infancy, desk-

-

User interfaces for office systems 99

Table 6. Advantages and disadvantages of desktop metaphors

Advantages

e has a nice feel, creates enthusiasm, etc.
e reduces the learning effort

e is predictable

e concrete rather than abstract

Disadvantages

e complexity

e needs a graphical display

e difficult to design

e user imports unforeseen expectations

e concrete metaphors may not be applicable to all office tasks
o difficult for user to ‘program’ routine tasks

e extension of metaphor may conflict with the user’s model

top systems have been remarkably successful. Although certain
interface issues still need resolving (e.g. continual switching between
mouse and keyboard), the fervor of most users—including computer
novices and experts—indicates a dialogue that is well-determined for
a wide spread of people. However, this success is predicated upon a
close fit between the desktop model and the needs and expectations
of the user. Such a system quickly becomes overdetermined when
users try to break out of the confines of its metaphor. Conversely,
users may lose control if the task has been distorted unnaturally to fit
the desktop model.

Soft machines

Soft machines take the combination of direct manipulation and
metaphors to its logical conclusion. A soft machine is a simulation of
an existing physical machine that it is designed to supplant. One of
the criteria stated previously for choosing a metaphor is that it must
be appropriate. To the extent that it is a metaphor, there is potential
for the illusion to fall. A soft machine removes this possibility by hav-
ing the interface simulate directly all features of a physical machine.
Machines are normally special-purpose. Shape and form suggest
function, and they are operated with controls which have an obvious
one-to-one correspondence with their effects. These attributes make
machines easy to learn and efficient to use, as opposed to the com-
puter (Figure 11). The new user generally benefits from positive
transfer of his experience with other machines. Computers are the
opposite. They are general-purpose, with the controls (normally a
keyboard) giving little clue as to the function of the application pro-
gram. Nakatani and Rohrlich (1983) propose the soft machine as a
way of demystifying the inscrutable computer. They define it as ‘a

100

1. H. Witten and S. Greenberg

imatn] OXTT WO
o [g
mmrE

appeIm
ag@pam
nBaam

Machines Computers
Learning eplay swork
Efficiency especislized egeneral purpose
controls controls
edirect ecircuitous
Transfer seasy eshard

Fig. 11. Machines versus computers (after Nakatani & Rohrlich, 1983).

machine realized through computer generated images of controls . ..
with a touch-sensitive screen for actuating them’. The prime example

-is a simulated calculator used in exactly the same manner as a physi-

cal one (Figure 12). Another instance is the automated teller of
Figure 2 realized on a graphical screen. Aside from the card, cash
and receipt dispensers, a touch screen could easily take the place of
the physical menu buttons. The control panel in Figure 5 is yet
another soft machine using a variety of controls: the sliding bar con-
trols bell volume, while push-buttons adjust reactions of both mouse
and the keyboard. A fourth example is a graphical Rolodex card
catalogue for accessing telephone directories (Shneiderman 1983).

Nakatani and Rohrlich (1983) propose a method of integrating
links between soft machines by analogy with tools in a workshop.
The hierarchy used is a tool bin, which is the entire set of tools, a
workshop, which collects similar tools (as in Menunix), and a work-
bench on which the actual work is done. Obviously, this metaphor is
similar to the desktop one in the Star.

Advantages and disadvantages of soft machines are given in Table
7. Two limitations of hard (physical) machines overcome by soft

’ -

math BB of1 E

Fig. 12. The calculator as a soft machine.

Summary

User interfaces for office systems 101

Table 7. Advantages and disadvantages of soft machines

Advantages

e metaphor extremely close to reality

e allows progressive disclosure and soft labeling of controls

e high positive transfer from the physical world

e application recognizable by its controls

e a body of knowledge already exists on human performance on
machines (ergonomics)

Disadvantages

o highly physical representation may not be feasible for many systems

e needs graphical display

e input devices inadequate for our normal use of controls (e.g. pressure,
tactile feedback)

(simulated) versions are inflexibility and management of complexity.
Hard machine controls cannot be changed or hidden, whereas soft
machines can easily be relabeled, and controls disclosed progres-
sively only when appropriate. For example, many calculators now
have two or three labels attached to each function button. The soft
calculator need only show the labels of the current context. In statis-
tics mode it would show statistics functions, and not, for example,
mathematical labels (Figure 12). Of course, not all applications fit
the soft machine paradigm. But one can take existing office machines
which are already well-determined for the worker and simulate them
on the computer, thereby decreasing the risk of interface failure.

We have looked at many types of user interfaces: command-driven
dialogues, menus, windows, forms and natural language. In all of
them, integration is a concern. Some are amenable to integration via
direct manipulation: through desktop simulation or soft machine
representation. Others do not fit these paradigms easily. The styles
and flavors of the interface also reflect their end use. Command inter-
faces are normally used by computer wizards for their power and
flexibility. Desktop metaphors and soft machines, on the other hand,
reflect a tightly constrained office environment.

But the choice of the ‘best’ interface is not an obvious one. Office
workers will find the very polished desktop window systems inade-
quate for non-routine tasks, for they lack easy-to-use facilities for
specifying procedures. This, of course, is no problem for the com-
puter-oriented dialogue which offers full programming capabilities
along with its unfamiliar interface paradigm. Between these two
extremes are partial solutions. Menus provide a proven interface for
naive users who may need only very casual and predictable access to
applications and/or information. The form metaphor offers a direct

102

I. H. Witten and S. Greenberg

realization of its paper counterpart, with promise of powerful exten-
sions. Natural language, a seemingly desirable interface, is likely to
be of little use outside highly constrained domains; due to uncer-
tainty of language meaning, the limited understanding of language
by computers, and the primitive state of continuous speech recogni-
tion technology. Windows provide a good means of organizing dia-
logue, but they are really a foundation to interfaces rather than an
interface in themselves.

The final solution is still to come. Perhaps it will be a conglomer-
ate of the techniques discussed so far. Or it could be a radically new
way of viewing the office. Undoubtedly it will be integrated in 2 man-
ner both familiar and understandable to the office worker. Whatever
interface style is chosen, it is not enough for the system architect to
have adhered to all the proper interface guidelines during its design.
The manager must strive to match the dialogue determination level
with the needs, training, conceptions, and preconceptions of the

UseErs.

References

Barrow, H. G. (1979). Artificial intelligence: state of the
art. Technical Note 198, SRI International, Menlo
Park, CA.

Bolt, R. A. (1980). Put-That-There: voice and gesture at
the graphics interface. Proc Siggraph. 80, 262-70,
Association for Computing Machinery.

Brown, J. S. and Bruton, R. R. (1975). Multiple rep-
resentations of knowledge for tutorial reasoning. in
Representation of Learning eds D. G. Bobrow and A.
Collins). Academic Press, New York.

Card, S. K., Moran, T. P. and Newell, A (1980). The
keystroke-level model for user performance time with
interactive systems. Communications of the ACM. 23
(7), 396410.

Carroll, J. M., and Thomas, J. C. (1982). Metaphor and
the cognitive representation of computing systems.
IEEE Trans. Systems, Man, and Cybernetics. SMC-12
(2), 107.

Clocksin, W. F., and Mellish, C. S. (1981). Programming
in Prolog. Springer-Verlag, Berlin.

Cuff, R. N. (1980). On casual users. Int. J. Man-
Machine Studies. 12, 163-87.

Cuff, R. N. (1982). Database query using menus and
natural language fragments. Ph.D. Thesis, Man-
Machine Systems Laboratory, Department of Elec-
trical Engineering Science, University of Essex, Col-
chester, Essex, UK.

Davis, R., and Lenat, D. B. (1982). Knowledge-based
systems in artificial intelligence. McGraw-Hill, New
York.

Dumais, S., and Landauer, T. (1982). Psychological
investigations of natural terminology for command
& query languages. In Directions in human/computer

interactions (eds Badre, A., and Shneiderman, B.)
pp. 95-110. Albex Publishing Co., Norwood, New
Jersey.

Eason, K. D.,, and Damodaran, L. (1979). Design pro-
cedures for user involvement and user support. Info-
tech—Man Computer Communications. London.

Ellis, C. A, and Bernal, M. (1982). Officetalk-D: an
experimental office information system. Proceedings
of the 1st ACM SIGOA Conference. 131-40.

Engel F. L., Andriessen J. J, and Schmitz, H. J. R.
(1983). What, where and whence: means for improv-
ing electronic data access. Int. J. Man-Machine
Studies. 18, 145-160.

Espinosa and Hoffman (1983). Macintosh user inter-
face guidelines (2nd edition). In Inside Macintosh.
Apple Computer Inc.

Fitter, M. (1979). “Toward more natural interactive sys-
tems. Int. J. Man—M achine Studies. 11, 339-50.

Foley, J. D., Wallace, V. L., and Chan, P. (1984). The
human factors of computer graphics interaction tech-
niques. [EEE Computer Graphics and Applications. 4
(11), 13-48.

Fraser, C. W. (1980). A generalized text editor. Com-
munications of the Association for Computing
Machinery. 23 (1), 27-60.

Gaines, B. R. (1976). Behavior/structure transforma-
tions under uncertainty. Int. J. Man-Machine
Studies. 8, 337-65.

Gaines, B. R., and Facey, P. V. (1975). Some experience
in interactive system development and application.
Proc. Institute of Electrical and Electronic Engineers.
63 (6), 894-911.

Gaines, B., and Shaw, M. L. (1983). Dialog Engineer-

ing. In Designing for human—computer communication
(eds M. E. Sime and M. J. Coombs), pp. 23-53. Aca-
demic Press, London.

Geller, V. J., and Lesk, M. E. (1981). How users search: a
comparison of menu and attribute retrieval systems on
a library catalog. Internal report, Bell Laboratories.

Gevarter, W. B. (1983). An overview of computer-based
natural language processing. NASA Technical
Memorandum 85635, Washington, DC.

Goldberg, A. (1984). The influence of an object-oriented
language on the programming environment. In Inter-
active programming environments (eds Barstow, D. R,
Shrobe, H. E., and Sandewall, E.) pp. 141-74.
McGraw-Hill, New York.

Gosling, J. A, and Rosenthal, D. S. H. (1983). 4
network window-manager. Report, Information Tech-
nology Center, Carnegie-Mellon University, Pitts-
burgh, PA 15213.

Greenberg, S. (1984). User modeling in interactive com-
puter systems. MSc Thesis, Department of Computer
Science, University of Calgary.

Halbert, D. C. (1981). An example of programming by
example. Department of Electrical Engineering
and Computer Science, University of California,
Berkeley.

Hansen, W. J. (1971). User engineering principles for
interactive systems. Proceedings of the Fall Joint
Computer Conference. AFIPS Press, New Jersey.

Harris, L. R. (1977). User oriented data base query with
the ROBOT natural language query system. Int. J.
Man-Machine Studies. 9, 697-713.

Hendrix, G. G,, Sacerdoti, E. D., Sagalowicz, D., and
Slocum, J. (1978). Developing a natural language
interface to complex data. ACM Trans. on Database
Systems. 3 (2).

Innocent, P. R. (1982). Towards self-adaptive interface
systems. Int. J. Man—Machine Studies. 16 (3), 287-99.

Joy, W. (1979). An introduction to the C shell. Computer
Science Division Report, University of California,
Berkeley, California.

Kernighan, B. W., and Mashey, J. R. (1981). The UNIX
programming environment. Computer, 14 (4). 25-34.

Lakoff, G., and Johnson, M. (1980). Metaphors we live
by. University of Chicago Press, Chicago.

Latremouille, S, and Lee, E. (1981). The design of video-
tex tree indexes: the use of descriptors and the en-
hancement of single index pages. Telidon Behavioural
Research. 2, Department of Communications, May.

Maguire, M. (1982). An evaluation of published recom-
mendations on the design of man-computer dia-
logues. Int. J. Man—Machine Studies. 16 (3), 237-61.

Malcolm, M., and Dyment, D. (1983). Experience
designing the Waterloo Port user interface. Proc.
ACM Conference on Personal and Small Computers.
168-75. San Diego, California, December.

Mantei, M. (1982). Disorientation behavior in person-

User interfaces for office systems 103

computer interactions. PhD thesis, University of
Southern California, Los Angeles.

Martin, J. (1973). Design of man—computer dialogues.
Prentice-Hall, Englewood Cliffs, New Jersey.

Martin, J. (1984). Application development without pro-
grammers. Prentice-Hall, Englewood Cliffs, New
Jersey.

Martin, T. (1980). Information retrieval. In Human inter-
action with computers (eds Smith, H. T, and Green,
T.R. G.) pp. 161-75. Academic Press, London.

Nakatani, L. H., and Rohrlich, J. A. (1983). Soft
machines: A philosophy of user-computer interface
design. Proccedings of Human Factors in Computer
Systems. Boston, Mass., December 12-15.

Norman, D. A. (1981). The trouble about Unix. Data-
mation. 27 (12), 139-50.

Perlman, G. (1984). Natural artificial languages: low-
level processes. Int. J. Man—Machine Studies. 20 (4),
373-419.

Pike, R. (1983). Graphics in overlapping bitmap layers.
ACM Trans. Graphics. 2 (2), 135-160.

Rich, E. (1983). Users are individuals: individualizing
user models. Int. J. Man-Machine Studies. 18 (3),
199-214.

Ritchie, D. M., and Thompson, K. (1974). The UNIX
time-sharing system. Communications of the Associa-
tion for Computing Machinery. 17 (7), 365-75.

Rosenthal, D. S. H. (1982). Managing graphical re-
sources. Computer Graphics. 16 (4), 38-45.

Shneiderman, B. (1979). Human factors experiments in
designing interactive systems. Computer. 12(12), 9-
19. December.

Shneiderman, B. (1980). Software psychology. Winth-
rop, Massachusetts.

Shneiderman, B. (1983). Direct manipulation: a step be-
yond programming languages. Computer. 16 (8), 57-
. .

Smith, D. C. (1975). Pygmalion: A computer program to
model and stimulate creative thought. PhD thesis,
Stanford University.

Smith, D. C, Irby, C,, Kimball, R., Verplank, B, and
Harslem, E. (1982). Designing the Star user interface.
Byte, 7 (4) 242-82.

Stallman, R. M. (1981). EMACS the extensible, custom-
izable self-documenting display editor. ACM Sigplan
Notices—Proceedings of the ACM Sigplan SIGOA
Symposium on Text Manipulation. 16 (6), 147-55.
Portland, Oregon, June 8-10.

Taylor, D. W. (1981). Should a software interface adapt
its behavior to the developing expertise of its users?
PhD thesis, University of Houston.

Teitelman, W. (1979). A display oriented programmer’s
assistant. Int. J. Man—Machine Studies. 1 (2), 157-87.

Test, J. A. (1982). The NUnix window system. Internal
report, Laboratory for Computer Science, MIT,
Cambridge, Massachusetts.

104 |. H. Witten and S. Greenberg

Thimbleby, H. (1980). Dialogue determination. Int. J.
Man-Machine Studies. 13 (3), 295-304.

Thomas, J. C. (1978). A design-interpretation analysis
of natural English with applications to man—-computer
interaction. Int. J. Man—Machine Studies. 10, 651-68.

Thomas, J. C., and Carroll, J. M. (1981). Human factors
in communication. IBM System Journal. 20 (2).

Waltz, D. L. (1975). Natural language access to a large
data base. Advance Papers of the International Joint
Conference on Artificial Intelligence. MIT, Cam-
bridge, Mass.

Weizenbaum, J. (1976). Computer power and human
reason. Freeman, San Francisco.

Weyer, S. A. (1982). Searching for information in a dyna-
mic book. PhD Thesis, School of Education, Stanford
University (also Report SCG-82-1, Xerox Parc).

Whalen, T., and Latremouille, S. (1981). The effective-

~ ness of a tree-structured index when the existence of
information is uncertain. Telidon Behavioural Re-
search. 2, Department of Communications, May.

Whalen, T., and Mason, C. (1981). The use of tree-
structured index which contains three types of design
defects. Telidon Behavioural Research. 2, Department
of Communications, May.

Wilkinson, W. (1980). Viewdata: The Prestel System. In
Videotext: the coming revolution in home/office infor-
mation retrieval (ed. E. Sigal), pp. 57-86. Harmony
Books, New York.

Williams, G. (1982). Lotus Development Corporation’s
1-2-3. Byte. 7 (12), 182-97.

Williams, G. (1983). The Lisa computer system. Byte, 8
(2).

Williams, G. (1984). The Apple Macintosh computer.
Byte, 9 (2), 30-54.

Winograd, T. (1972). Understanding natural language.
Academic Press, New York.

Witten, I. H. (1981). Programming by example for the
casual user: a case study. Proc. Canadian Man—-Com-
puter Communication Conference. 105-113. Waterloo,
Ontario, June.

Wood, R. J. (1982). A window based display amangement
system. Internal Report, University of Maryland.

Woods, W. A. (1973). Progress in natural language
understanding—an application to lunar geology.
Proc. National Computer Conference. AFIPS Press,
Montvale, N.J.

Zloof, M. M. (1977). Query-by-example: a data base
language. IBM Systems J. 4, 32443,

