THE UNIVERSITY OF CALGARY

USER MODELING

IN INTERACTIVE COMPUTER SYSTEMS

by

SAUL GREENBERG

A THESIS
SUBMITTED TO THE FACULTY OF GRADUATE STUDIES
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE

OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE
CALGARY, ALBERTA

FEBRUARY, 1984

© SAUL GREENBERG, 1984

Abstract

This thesis discusses user modeling In adaptive interfaces in detail; presents a taxonomy of
user modeling; identifies the dominant issues; describes an application amenable to adaptation;
and investigates, through human factors experiments, the viability of adaptive systems.

The term “user modeling” Is examined first. A framework for characterizing adaptive
interfaces Is proposed, first through the presentation of two posslible system architecctures, and
then through a taxonomy which classifies modeling into three types. The literature on
fundamental issues in adaptive interfaces Is then surveyed, but little Is found in the way of
empirical studles. In particular, the most fundamcntal Issue — whether or not adaptive user
modeling is a viable alternative to non-adaptive systems — remained unanswered.

Repetitively accessed data bascs, an application area amenable to personalization, are
defined and cxamined through case studies. A personalized telephone directory system, built on
an alphabetically-ordered menu interface, Is constructed following guidelines derived from this
work. The directory system is used as a test bed for examining the viability of adaptive
interfaces. ‘The results suggest that adaptive systems — at least in the personalized directory
— can be far superior to non-adaptive Interfaces, thus refuting many of the arguments found in
the literature against personalization.

Acknowledgements

A thesis Is rarely the work of one person, and this one is no exception. There are many
friends and colleagues, too numerous to mention, who supported me with their ideas, time and
patience. But I must give very special thanks to lan Witten for being more than I could ask for
in a supervisor, to David Hill for his contagious enthusiasm in the man/machine interface field,
to Barb Gosling, Bruce Dunn, Geoff Powter and Don Chandler for opening the back door of
experimental psychology, to Blob for forcing me to put aside my work for the sake of the
mountains, and, of course, to Judy, who makes it all worthwhile.

Table g)f Contents

Abstract
Acknowledgements
List of T'ables

List of Figures

1. What is User MoOdelINg? i irrricetrecetnssecsessnsassrcsecassnasnssrnssssnsnses 1
1.1 AIm and Scope of the ThesiS coieivveiiciciiieniitcciiiitiieeiteeratancensensracceonans 2

1.2 Architecture of Modeling SYSteImMS .oieiciiiiiiiiiiiiceireeeccrencrnccecsensenes 3

1.3 A Taxonomy of User MOdelING ccceivreiiiiciiiiiiiiiiiiiieioracisnencrseessosencsnne 6
1.3.1 Canonical modeling — Designer models the user ceeveeeene.s 6

1.3.2 Explicit modeling — User models himself cooovieriivieeeneens 8

1.3.3 Automatic modeling — System models USCT ...cicvvveveieniinnrennns 10

2. Examples of User Modeling SYStems iviviiieiinceiniiciiiiciinnisimiceiriees 13
2.1 Explicit Modeling — the Unix Alias System cociiiiiiiiniciecerniiiieennens 13

2.2 Explicit Modcling — the Unix Emacs Environment ...ieninniininiinen 14

2.3 Automatic Modceling — the Predict Terminal Interfaceceenenneee 17

2.4 Combination Modeling — the Unix History System ...ccooeveereereereannns 18

2.5 Combination Modeling — What, Where and Whenecee in Videotex ... 20

3. Why Modcl Users? — A Selected Literature Rcﬁcw eeveeeeeteearareneaeaaeaentans 23

3.1 The Desirability of Modeling oot srrcreseencsessseneanenas 23
3.1.1 Variations in User exXpertise ...cccovviciiiiiriiiiicoinieneiicconcsorense 24

3.1.2 [EVOIVINE USCE MECAS cvveeeeeeeeeeeeeesteestssesousessesssssassnesseneenessssnsons 24
3.1.3 Dialogue determinatlon ...ccveiiieiiiiiiiiiectiiirerereeteresnecensocencrnnns 25
3.1.4 Uscr/designer confliCtS .ooeeecirirmmriiiiciniciieriennenicorneeimnnmmeesssesnns 26

3.2 Criticisms of User Modeling c.ceceinirciiiiiiiicicirecicrt i censactessncrercasrescnnes 26
3.2.1 Dynamics of user/system concurrent modeling cccoveeeees 26

3.2.2 Difficulty of Implementalion ..ot ceeereeennenns 27

3.2.3 [Evaluation of DENEMts .ccrvreviiiiiiiiiicirecrrrcecereiierenseesnsesseenocses 28

3.2.4 Dialogue determinancy revisited ..ccooviiiiiiiiiiiiiiiicire e 28

3.2.5 Inaccuracies of model constructioncccoiiiiiiiiiciiicincnnincenenens 29

3.3 CONCIUSIONS ciriierrrrirenieiiieeectesenerarresssssessessesasensesssassesssessassenssnssssnasesnsee 30
4. Repetitively Accessed Data BASES ccciiciiiiiiiieiceietetieirstnieetectssesesssecsnssnssnsses 31
4.1 The Data Base SPECITUITI .eciiiiciiiiiiciireetieereirncacterensacnssansassesrascanranseans 31
4.1.1 A definition of repetitively accessed data basescccvcveeereennen 33

4.2 A Case Study of the Unix Man Systemciciiiiiiiiinieeiiornccesinecrnsancraes 34
4.2.1 Previous studies of Man USA8E ..ccceiecienirncercricncresscnnssnscssonsans 34

4.2.2 Data collection and analysis — a population studyccc...... 35

4.2.3 Data analysis — a2 sample SLUAY coorriiiiiieiiiiierrerrcenraceeeaes 35

L B

4.3 Conclusions and Suggestions eeeserstennerenene tesseesresassenseansaseasrestensane 36

5. A Casc Study of Automatic User Modeling ...cccvvvvciveiiiiiiciniciiniciieenecnnencanine 40
5.1 Telephone Usage — A Limited Study .ccorvvveiiniicnncenccanens creresecrsennsrene 141
5.1.1 Previous studies and exIstIng unitscoccivvveccrcniiscrenceccriennne . 41

5.1.2 A samplc study of sclected telephone USCTS .vcecvcccvmeeccrncrinnaes 42

5.2 The Personalizable DIF€CLOTY .ooeceerivevevernnieirirrnrerimnnaccsrinssisssnssssinnnes 44
5.2.1 An example of a personalized directoryccccccvececirvemsrernnicrences 45

5.2.2 Uniform selection ceesesteessentene reeeesenerssrrnsaransetnsssrennsnne 16

5.2.3 Bimodal SclectiOn ccceciireiiiieiiecireicnniinnienstensetissesssisssssassosesenes 47

5.2.4 Menu-splitting algorithmscccvieicireniirenrincecnienrisscsnccesseessccenns 50

5.2.5 Algorithms for updating probabilitiesccccoireiervciitieciincinnnnn. 51

5.2.6 Summary and the NEXL SUED .ieviceierreiirieieeeerieeseessssssrncsssarassanes 52

5.3 Comparison of Personalized / Non-personalized Directory Systems . 53
5.3.1 MeELREOG o iiiieriiernirrnieeereenssruesasresttnnsssesssssassesssassnnsarnnss 54

5.3.2 Results cocveeveeirniciinnnns eeeereetesrnenesnetoetnens Cerecessreccsnsitesressennsensaane 56

5.3.3 Discussioncccovveninne cecnssesnans resersessenanas terrenciesacttennsesrensassanarsrsns 60

5.3.4 CoNCIUSION i i eetietercraesttestecsesassestonssaacsnsoressnssesans 60

6. SUMBIALY ceeienteccnctosnscrnesssrsscestossassesssssossssoss eeeesresenteucietatassressnessrssnnssestaatniance 62
B D O A D Y ciiiiiiiccceicrectettrectnersteecnerecraerseseraertasenrassasanssssessesssssesssnnsonsssnsnnsns 66
ADPENAIX A coriiiiiiiiiiiectieititoreatreasereenssireturseeeansssasmnssssssnssseeasssssarantteisssasaneranaaann 70
A.1 Alternative menu diSplays cicriieiiiinircciniiiiiesiiiicsnsossirrscsssrencssasncsas 70

A2 MeELIOA coiriiiiitciirricrtrereiietsersieseeecsasssssssesressetsesasssrnnsssssssssassnrasesnorens 74

A3 RRESUILS ittt caiciriereeseaetsnracassnsrsansnssesassstesssssssnassssaaransane 76
A3.1 Scanning Speed ... rccccerteesrneeeaes ieseresencranrenee 76

A.3.2 Brror Raleceeviiinvionennnas Heeememsesercsccasnenescenssrensatststnstacesarsnsnne 76

A DISCUSSION ceriviiiiiiiiiiiiiciriieiiitecteniiesucsatotsansestestosssrassassassssossessossnssasanss 78
AD CONCIUSIONS ciiciririiiriiriiiriettertreresreseteesnsesissenessessnsssnsnssesssssessosnensansrnes 79
ADPPENAIX B it iiririntnteiitcetcineterenseecnirassecnssnsassssssnnssasssessassnnsonsassssassnsssonas 83
B.1 Instructions for Comparison of Six Menu Displayscccccviiiinccinnennnen 83

B.2 Instructions for Comparison of Directory Systemsc.ccceerveceenicanenes 86

List of Tables

Table
1.1 Types of user INVOIVEMEN .oiviiiiiiiiiiiiiiiiiin e nterer e rersists s csateene
2.1 History list containing six commands ..o

4.1 Single uscr averages of man USAZE ...t e
4.2 Repetitive rate analysis for users with 17-19 valid selections
Telephone usSage SLAtISLICS .oiiiiiiiiiiiiiiiiiieier ittt e
First tevel menu for FIgUre 5.3 .ot cenasennsees

&
—

o

Suggestions for personalization of rads ...ceiciinini
Anova summary table for all dependent variables ...
Cell means of significant main effects and their levels ...,
Degree of improvement (static to dynamic) ..o
Full range dellMILET .orveneniiciiiiiin ittt rene s ssese s s e naas s es s et aes
A-2 Lower range delMILEr oot erticennrransaa ettt ss s aasessaennes
A-3 Upper range delimiter ... e
A-1 Wide and NArrow mMENU SPAMS ccceiivveiiercesresssscrssersressssacsasersoritasesssessasassss
A-5 Anova summary table — Scanning speedcoovviiiimiiiniincc
A-6 Difference of range delimiter means (Scconds) .eevevieniieniinniiiiiiienineneien..
A-7 Ccll means of sfgnificant main effects and their levels ...
A-8 Anova summary table — EFTOr rate ..coooiviiiiiiiiiiiiicrieninrcrnienaees

P

ST Wt S W
bl Pl

-
-

-

P
TN

Figure
1.1 AD architCeluTe OVEFVIEW .ooiiiiiiiieieieiiiininiraieiescesrreraesarsnssnssastonsstnsnsanens
1.2 Architecture detail (Edmonds, 1982) .ccccoviiiiuiiimmeiirimiinenirieiiinccaeennnn

1.3 The self-adaptive user interface (Innocent, 1983) ..oveeeviiriiiinninnnceneeianann, ‘

2.1 Four sequential vidcoteXt PAZES ..iiiieriiiiiiniiiiiiniirc
2.2 Whence LOUCR CONLTOIS iuiiiiiriciieiireiasiriasriresutasusttierensmmaseasieressesassssessnsnns
4.1 %% Repetition vs. COIrect USES/PETSON .iiiiviiiieerierrrersiossionrasassissnsiessensensens
4.2 Distribution of rcpetitive rates across USCIS .iiiiiiiiiiieeereiinttierernetniraieaneans
4.3 Commonality of command ACCESSccoiiuiiriiiniiiiiiriiriraiarineeeierrnsscaoceones
5.1 Rclation between repetitive rate and number of phone calls
5.2 sample distributions of personal telephone usage, compared with Zipf ..
5.3 Menu trec gencrated by uniform division oo
5.4 Menu tree reflecting popularity of itcms
5.5 Lxample first-level menu, M==16 . .cooiiiiiiiiicrn e
" 5.6 Retrieval and update algorithms ..o e
5.7 Mixed factor ANOVA deSigN .cociiiiiiiiiiiciiiiriiiiiisiiiisisenssnaarsesasensensns
5.8 Order/Adaption intcraction (Trials): Scanning speed vs Adaption type

5.9 Order/Adaption interaction (Menus): Scanning spced vs Adaption type

6.1 The personalized Rolidex directory ..o,
A-1 Mixed factor ANOVA deSIZN ..oiiiiiiiiiiiiiiireiinicenecrertnsasaessnsanes
A-2 Truncation/Span interaction — Scanning speed vs Span ...,
A-3 Range/Expericnce Interaction — lirror rate vs Range delimiters
A-1 Range/Span Interaction — Error rate vs Span

..

.......................................

First lovel monu fOr FIZUTE 5.4 weveeeiveeeriveiiieeesresireetiesecsissasssnasssssssssssess '

8

1. What is User Modeling?

The reasonable man adapts himself to the world: the unreasonable one persists in
trying to adapt the world to himself. Therefore all progress depends on the
unreasonable man.

(George Bernard Shaw 1856 — 1950)

I’cople are diffcrent. Each one of us has idiosyncrasics, preferences, dislikes and a myriad
of habits which characterize our personalitics. We drive distinctive cars, wear conservative to
outlandish clothes, have varied tastes in friends and believe in highly personal philosophies. Yet
we deal readily with this variety. We know what bchavior is generally acceptable and we
interpret individuals® actions according to our own perceptions and past expericnce.

The complex dynamics of human interaction are taken for granted by most of us. We are
continuously involved in communication, whether it Is the subtle intermingling of voice,
intonation and body actions of face-to-face conversation or the passive absorption of onc-way
broadcasts, such as television. Considering the diversity of our backgrounds and makeup, it Is
surprising that communication does succeed.

Simplistically, we comprehend one another because we make a model based on how we
perceive the other person’s behavior, and then try to interpret his actions according to that
modcl. For example, we immediately greet and freely exchange information with a friend, for
our model of him includes trust. Yet communication with a business competitor is guarded, for
our model warns us that ulterior motives may exist. Indecd, entire classes of spcaking styles
exist, ranging from the formal language of strangers to the jargon of peer groups to the intimate
interchange between lovers.

The computer, on the other hand, mimics human bechavior. [t carrics on two-way
conversations, often flavored with the “personality” of the system designer. 'As such, it elicils
highly personal responses from its users, which are not reciprocated. The computer interprets
human actions in a well-defined, highly rigid manncr, and reacts uniformly to all users.

How do people converse with computers? lnitially; the only mental model we have of the
machine is that supplied through instructions, preconceptions and by our previous experience.
As our familiarity with the computer grows, we build a working model of what personal
behavior the system requires of us, and an expectation of how the machine should respond. If
all goes well, the final model will closely match the system’s capabilitics. However, the
computer Is a general purpose machine, often running systems designed for diverse objectives
with minimal commonality. The model we have for one computer task may be totally
inappropriate for another, even though the physical interface, such as the terminal, is identical.
Thus we learn to adapt to diflcrent computer systems as we lecarn to adapt to different
personalities.

IS SR AL Bt S S W

The modeling task, however, is rarely reciprocated. A machine has no capacity for
understanding human variability. The computer usually employs a single algorithmic model
which reacts to any user. The onus Is then on the user to understand that inflexible and
probably Inadcquate model. User frustration and/or fatlure at this chore may causc him to
ccase further interaction.

User modeling ts defined as a sct of rules, formulated by the system designer, which the
system follows to determine its reaction to a user. In other words, it is the computer’s model of
the user. A simple program may respond to given input in a manner specified by the model by
recognizing an Input string as a user’'s command. Unfortunately, computer systems normally
include a highly constrained, non-adaptable model of the user, which each user must fit if
successful interaction is to occur.

This thesis speculates that the user model can be adaptable. Within limits, the computer
can examine the communication channel — such as the user’s input — and build or modify a
modc! founded on rule-based inferences. It can then use this model to predict what the uscr is
likely to do and alter the interaction with the aim of easing the uscr’s labor. The computer
becomes adaptive, in that its "behavior” towards the user changes as the user model is
constructed. Ideally, the computer’'s behavior change not only cases the uscr task, but also
remains consistent with the model the user has of the computer.

1.1 Aim and Scope of the Thesis

User modeling in interactive systems is ill-defined and seldom studied. This iIs not due to
any serious conceptual barriers but rather to the infancy of the subject. The main objective of
this thesis is to determine the viability of an adaptive interface In an intecractive computer
system, thus providing a concrete refutation of objecctions raised by certain authors (to be
discusscd in Chapter Three). More specifically, it has four objectives. TFirst, it attempts to
define user modeling in categorical terms independent of the underlying support theory. The
system built upon finite automata principles, artificial intelligence techniques, or experimental
psychology's recommendations should all find a niche In the taxonomy, for the ultimate
objective in all cases is the improvement of the man/machine interface. The sccond objective is
to discuss gencral Issues In user modeling through a brief literature review. This not only
highlights the controversy surrounding user modeling, but also illuminates the lack of empirical
support for the various points of view. Thirdly, a specific application field amenable to adaptive
techniques Is considered and analyzed for tentative guidelines to facilitate personalization. The
final objective Is to examine the effectiveness of modeling through experimental evaluation of a
system constructed according to the guidelines.

The remainder of this chapter introduces two adaptive system architectures, followed by
the deseription of a modeling taxonomy. The architectures provide physical categorizations of
the modeling interface, in which the user, computer and designer are seen as system
components; whereas the taxonomy examines the ways these three components interact.

Chapter Two presents five case studies of selected systems that illustrate the concepts
presented in the fundamental modeling taxonomy. Although the chapter focuses on specific
applications, the related criticisms are usually fundamental to the modeling type chosen.

Chapter Three examines general Issues associated with adaptive systems. Why model the
user? Is there any gain from doing so? The opinions are as diverse as the authors, for there arc
few quantitative studies avallable to support or disprove the various viewpoints. The taxonomy
of Chapter One and the case studles of Chapter Two supply a framework for critically
examining cach point presented. The most fundamental question left unanswered hy the
literature is whether or not adaptive systems can actually ease the user’s task.

The remainder of the thesis attempts to answer this question, first by studying user habits
in a spcetfie application domain and then by proposing and testing an adaptive system based on
these findings. The overall goal is to support the viability of the user modeling idea by
constructing a successful system. Although this does not guarantee the success of all adaptive
systems, it doecs allow a definite rebuttal of general criticisms concerning user modcling as a
whole.

Chapter Four introduces the concept of repetitively accessed data bases, an Information
system ripe for automatic modeling techniques. A specific data base of this type Is analyzed for
users’ access characteristies, upon which specific modeling guidelines are based.

Finally, Chapter Five examines the effectiveness of automatic user modeling in facllitating
transactions bctween users and computer-driven telephone auto-dialers. An adaptive system is
proposed, based on the guidelines of Chapter Four. Human factor experiments then compare
subjects’ use of the adaptive and non-adaptive systems. The final results suggest specific
application guldclines as well as supplying empirical evidence to support the user modeling
concept.

1.2 Architecture of Modeling Systems

There is, as yet, no consensus of what actually makes up an adaptive system. Subtly
different viewpoints may give rise to systems with basic conceptual differences. For example, a
human factors specialist may design a system incorporating numerous psychological principles,
an artificial intclligence disciple can consider it an expert system problem, whereas a theoretician
may view the man/computer interaction as a state machine. Even peers within a discipline
describe their ideas with dissimilar jargon and architecture. Two different models of adaptive
systems are reviewed in this section (Edmonds, 1982; Innocent, 1982), making broad and specific
comparisons between two authors’ concepts.

The study of man/machine systeins regards the user and the computer as two physical
components of a total system. However, the computer operates in electrical engineering or
technical computing terms, whereas a user's operations are incompletely described by
psychological theory. An Interface which acts as a “mediating component”™ is obviously
nceessary to allow the two to interact in a meaningful way. Simply stated, it must discover
what task the user wishes to accomplish and pass this information on to the computer for
exccution. Converscly, data received from the computer must be transformed into a form
understandable and relevant to the user. However, the mediating component is much more
than a simple input/output channel. Considerable processing may take place in the conversion
of input/output — such as speech or natural language — to or from an intermediate machine
form, followed by its analysis for secondary information.

.4.

Two authors, Edmonds (1982) and Innocent (1982), support these principles. Edmonds
(1982) describes the mediating component as an snierface processor between the user and the
background processor (Le. the functional machine), whereas Innocent (1082) calls It a facade
which lIsolates the user from the system (Figure 1.1). It appears from the Figure that each is
using different jargon to describe an identical architecture. However, further breakdown of the
medlating component reveals fundamental differences in the construction of the user model.
Edmonds (1982) conslders the mediating component to be general-purpose, In which the
designer, user or the system can modify the user model. Innocent (1982) describes It as self-
adaptive, in which the system automatically changes the interface according to Its perception of
the user state. The conceptual differences between these two architectures are described below.

Edmonds (1982) views the system components as processors, implying that all actions may
be performed in parallel. The mediating component Is called an tnterface processor, while the
remaining system Is termed a background processor (Figure 1.1). The Interface processor is
made up of i/o processors performing mechanical transformations of the input and output, and
a dynamics processor which determines the action to be performed based on internal model
parameters (Figure 1.2). Adaptation of this internal model Is permitted through the use of a
monitor processor. Its usual role Is to record information found In the interface processor. The
designer/evaluator may modify the interface himself using this information or the monitor may
alter the dynamles processor's parameters. The rich Interconnection between the task hlerarchy
and the isolation of the processors such as Input/output, performed action, and an "external”
monltor Is shown in Figure 1.2. Of primary Interest here Is the Isolation of the background
processor from any other system component — including the designer — through the interface

processor. The centralization of the interface processor makes It the keystone of the system
architecture.

Innocent’s viewpoint (1982) envisions the mediating component as a facade, defined as the
system as It appecars to the user (Figure 1.1). A "hard” facade cannot be altered, whereas a
“soft” facade can be easily tallored by the designer, user or system. Whereas Edmonds’ design
deals with all types of system adaptation, Innocent (1982) proposes a network specific to self-

~ adapting interfaces (Figure 1.3). Innocent’s self-adaptive user interface contalns several

components within the facade architecture. An i/o module within the soft facade processes
input and output into an appropriate intermediate form. The monitor module sifts, processes
and transports any rclevant information to the ezpert modifier, which recognizes the significant
information and recommends changes to optimize the facade. The control module accepts these

Facade System

: > _—>
€< €

Interface Background
Processor Processor

Figure 1.1: An architecture overview

Designer/evaluator Monitor

S 1S

| we !
. — || — |8

interface Background -

Figure 1.2: Architecture detall (Edmonds, 1982)

user <€ | €—D> Soft focode MHW

N

S

Bypet modiier

Figure 1.3: The self-adaptive user interface (Innocent, 1982)

recommendations and updates the actual facade.

The key difference between the two architectures is that the monitor is an integrated part
of Innocent’s (1982) sclf-adaptive user interface. This Implics that all changes to the user model
are exccuted without any direct uscr/designer control. The system is in complete charge of
updating the modecl.

In summary, the examination of two architectures of adaptive interfaces shows that
although differcnces do exist, similarities in overall components are found, particularly in the
isolation of task-oriented Interface units.

1.3 A Taxonomy of User Modeling

A system which adapts Is one that changes to fit the current model of the user. But
which system component is the one responsible for actually modeling the user? The dynamics of
man/machine interaction Is subtle and ill-defined on the user side but extremely precise for the
machine. A person rarely looks at a system in isolation. Rather, he views it through a
collection of rclated experlences in an attempt to understand it. The machine, on the other
hand, both prescents itself and Interprets outside actions through the stringent rules laid down
by the designer. The interplay of the user, machine and designer suggests different methods of
implementing user modeling.

This scction will present a taxonomy of adaptive systems, in which the emphasis of the
modeling task is placed upon either the designer, the user(s), or the machine. Each has
advantages and constraints. The designer’s model creates a general machine for the general user
with little malleabllity for adapting to individual needs. A user's model Is highly personal and
effective, but suffers from requiring explicit construction. ‘A machine’s model is also personal,
but it must construct the model by the limited rules laid down by a designer. Although the
taxonomy will describe each in detail, it must be understood that the boundaries are hazy. A
well-designed system will likely use combinations of different modeling techniques to present the
best adaptive system.

1.8.1 Canonical modeling — Designer models the user

The term canonical is defined as "conforming to the general rule” (Merriam & Webster,
1964). A canonical moilel is the model of the single, "typical” user which attempts to represent
the general population”. The design and application of canonical models is explored in this
section.

The first principle, and perhaps the golden rule of man-machine interface design, is to
"know the user”, first stated by Hansen (1971) and echoed by myriads of other authors (Pew &
Rollins, 1975; Maguire, 1982; Gaines & Shaw, 1983). Authors of human factors guidelines
usually interpret this as indicating a need for the designer to form a profile of the user for whom
the system is intended to scerve (Maguire, 1982), which is continually updated through a three-
part dialogue between the dialogue engincer, the user and the computer as an intermediary
(Gaines & Shaw, 1983). Although these authors accept that the ideal user profile is generated
for the individual, most designers settle for fashioning a single canonical framework representing
all users.

T .
The term canonical model was coined by Rich (1983).

e A

The first and still the most prevalent method of constructing a canonical model is through
Intuition. In early systems, the maxim of design was: "what kind of interface would I like to
see?”. The result was often a dlalogue the designer loved and others Just tolerated. A typical
example of problems that occur through this approach Is in vocabulary usage. For example, an
empirical study of natural command names in text-editors found that novice users do not use
the same language as system designers to describe text editing tasks (L.andauer et al, 1983).
Furthermore, the Investigation concluded that intuitive guesses by designers for "common” and
“natural” command names are likely to be hazardous. Further difficulties arise in other
domains. For cxample, the designer may personify the system with aspects of his own
personality — such as insults In error messages — which are not appreciated by tired and
overworked opcrators. 'That systems do succced is not really a measure of system desligners’
insight, rather it is an indication that users are able to adapt even to very ill-concelved
dialogues.

A sccond method of canonical model building is through analysis of the users: their needs,
usage patterns, vocabulary, and surrounding environment. Shneiderman (1979) succinctly states
that: '

System developers are inecreasingly aware that ad hoc design processes, based on
intuition and limited experience, may have been adequate for early programming
languages and applications but are Insufficlent for interactive systems which will be
uscd by millions of diverse people.

The conscientious designer will usually follow the myriad of avatlable dialogue guidelines to
build the typical population profile. Constant feedback from users will occur during the design
and installation phase. He will realize that user needs do not remain static and will thus follow
Gaines’ & Shaw's (1983) recommendation that "design never ceases”. A three way dialogue will
constantly take place, possibly through use of a mail system, through logging of activities or
through dircet conversation with the population or its representative. This view is illustrated
graphically in the previous section by the inclusion of a monitor in the Edmond’s (1982)
interface architecture (Figure 1.2).

The designer must be cautious in following a prescribed set of guidelines — especially if
they attempt to be universal — for they may not be suited to the intended system users or
application. Current literature is now attempting to suggest characteristics of certain target
populations and system types. For example, computer experience is considered a measure in
defining user group names such as naive, casual, novice, regular, secondary, expert and system
designers. Although the actual boundarics between these groups are ill-defined, they do provide
a rough scheme for user taxonomy. Cufl (1980) explores characteristics of the casual user and
provides loose recommendations on what features the dialogue should provide. Kennedy (1975)
looks at some bchavioral factors aflecting the training of natve users. User and task
specification combined with human factors experimentation may eventually furnish a framework
for combining good canonical models with good system design, although certain issues (to be
described in Section 3.1.1) must be addressed.

In the final method of canonical model building, the system implementor relinquishes
control over the design process by allowing a higher degree of user involvement. Eason &
Damodaran (1979) distinguish five different levels of user involvement in the design process,
ranging from system-centered to user-centered design (Table 1.1). Of course, problems do exist
with user Involvement. Both designers and users require the ability, tools, sympathy and

et et A At . T g b g g A A 5, TR SR

System-centered design — None
— Communication, consultation & tralning
— User representatives
— Participative design

User-centered design — Users deslgn, experts advise

Table 1.1 Types of user involvement

motivation to interact. User demands may also lead to so many compromises in attempts to
appease Individual desires that the final modecl will consist of a smorgasbord of personalities
rather than a proper canonical representation, thus jeopardising its effectiveness. However, user
involvement is usually viewed as an asset to the system design, providing that the interaction
process is effectively controlled.

Canonical modeling will have great importance In the design process for years to come.
The techniques of building these models are currently being refined through user involvement
and the experimental process. Formal methods of syst,emi design which include the user as part
of the system speeification may eventually replace the ad hoe processes of the past.

1.8.2 Explicit modeling — User models himself

Liberty means responsibility. That is why most men dread it.
(George Bernard Shaw, 1856 — 1950)

. Canonical modeling was seen to encompass the' frequently used strategy of having a
system designer interact with the user population and adjust the system to fit the current need.
Unfortunately, its view of the user as "typical” cannot be accurate for a highly heterogeneous
community (Rich, 1983). Edmonds (1982) suggests that our knowledge of human behavior is
inadequate to portray correctly a canonical user, especially one whose needs will change over
time. An alternate "personalized” outlook shifts the design focus away from the canonical view
towards a collection of models of -Individual users. Explicit modeling 1s one possibility;
automatic modeling — considered in the next section — is another.

Ezplicit modeling 1s defined as the ability of a user to provide explicitly a limited model of
characteristics and/or actions the system is to follow in a defined situation. It is not feasible for
the designer to mould a complete model of each user, especially If it is to evolve over time.
However, the designer can distinguish, through consultation with the user group, the areas of
the system model that should retain canonical attributes from those controlled by the
individual's model.

It must be stressed that a "model” of a user Is not a simulation of a person. Rather, it is
mercly a set of very limited guidelines which the system will follow. The mode! complexity can
range from simple definitions found In an abbreviation table to the more sophisticated
Interactive eliciting of personal constructs (Shaw, 1980) which may formalize the madeling
process (Gaines and Shaw, 1983). Architecturally, the interface detall described in Section 1.2
(Figure 1.2) would have a strong, two-way link between the monltor and the user, lessening the
role of the system designer as an intermediary.

Any cxplicit adaptation of a system by the user provides an example of the user modeling
himscif. Specifically, the advent of interactive systems forced users to adapt to the designer’s
concept of a good Interface. The mechanical and often confining nature of this Interface caused
programmers to write utilities to perform tasks specific to their own nceds. In time, the newer
gencration of "user-friendly” operating systems provided personalization facilities: for instance,
user-defined abbreviations, start-up profiles executed upon logging in, and the abllity to change
system parameters — such as the prompt — at any ‘time. Unfortunately the progression has, in
some cascs, introduced a new complexity of problems. The sub-systems created for facilitating
the user’s construction of a model may be complex systems in their own right, possibly negating
any benefits.

A typleal explicit modeling sequence usually consists of three phases; an idle phase, a setup
phase, and a quasi-stable phase. Initially, a new user goes through an Idle phase when learning
the task-specific portion of the system. During this period, the system follows a default
canonical modcel provided by the designer. After gaining some confidence in the application, the
user will enter the setup phase, in which he explicitly fashions a model to replace the default.
Finally, a quasi-stable period is reached, in which minor adjustments to the model detail are
performed, usually reflecting task changes and the user's increased sophistication. Application
of the model is performed during all three processes, either explicitly by the user or
automatically by the system.

Each phase is now examined for its own particular attributes. The idle phase is a
particularly secnsitive period, for the uscr is at the mercy of the default model. Ideally, a
sensible canonical model — as deseribed in the previous section — Is provided by the designer.
Unfortunately, this Is rarely the case. The user must therefore struggle through the system
without the benefits of an explicit model at a time when he most needs it".

The setup phase usually begins after a user has gained a certain level of proficiency In the
application task. Usually, he discovers through documentation or other users that the default
model can be altered. The user will then attempt to fabricate a profile by taking time out from
the application task to learn the syntax and semantics of the explicit modeling protocol.
Conversely, he may just dabble at it through trial and error mecthods. A scvere disadvantage of
explicit. modeling is lluminated; the user has an overhead of extra time taken in the setup
process which detracts from the actual application. Rich (1983) warns that ”pcople do not want
to stop and answer questions before they can get on with whatever they are trying to use the
system to do”. Because of this, some users never even enter the setup period. In a well thought

The Unix system has a "$” as a default prompt which can be changed at any time to a
more meaningful phrase, such as the machine name Le. "Vax" or thc system name i.c.
"Unix" But what does the default "$" signify? Novice users are often disoriented in their
location when switehing between the editor and operating system. A new user may even
think he has to enter the amount of money he has available for accounting purposes!

e s e

out system, this time may be minimized; perhaps by eliciting the model through interactive
means and thus eliminating the need to learn syntax. Another problem with certain systems is
that the default model Is disregarded once any explicit model entry has been made, thus making
it impossible for the user to create the explicit model plecemeal .

The final quasi-stable phase usually lasts for the lifetime of system use. It is a "stable”
period in the sense that the primary model is already In existence; it Is "quasi” because the
model is usually in a state of flux. When user needs and sophistication change, so must the
details of his model. As with the setup period, time must be taken out from the application
task to exccute these changes, an overhead that may be too great for short term needs.

Consultation of a defined model may be explicit or implicit. An example of explicit use is
an abbreviation facility, where the user must remember the abbreviation and its meaning in
order to use it. An example of implicitly consulting a model Is a profile that Is executed upon
an action recognizable to both the default and the modeled environment. Unfortunately, this
can surprise the user who has forgotten the altered way the system will react to a given action.

An attempt to outline the explicit modeling process was made by defining three phases.
However, no sharp boundary exists between these phases; and the flow through them is not
necessarily scquential, for the user may discard or totally overhaul the model at any time. The
presence of any of the three phases depends on the particular system design, which may
climinate any of them or construct the system in a transparent manner. Specific illustrations
are prescnted in the next chapter to provide examples of certain modollng techniques and the

advantages and disadvantages that characterize them.

1.8.8 Automatic Modeling — System models user

"It’s a poor sort of memory that only works backwards,” the Queen remarked ...
(Through the Looking Glass — Lewis Carroll)

In explicit modeling, a user requires time and effort, extra to the primary task, in order to
create or change the model the systcm Is to follow. Automatic user modcling eliminates this
secondary task by having the system automatically form the user model.

Automatic modeling is defined in two stages. First, it is the ability of a system to build a
limited model of a user’s characteristics continuously. Secondly, this profile is consulted by the
computer at the appropriate time. Although there is a rough analogy in these stages to explicit
modeling phases, significant differences do exist, especially in the dependence of the model on
high probability guesses it makes of user habits.

lOne editor called emacs (Stallman, 1980) has a highly sophisticated startup profile which
controls virtually every component of the editing task. However, once the user creates his
own startup, the default one is ignored. The hurdle of adapting to the following pcriod of
system unpredictability causes many users to avoid the setup process.

-1t -

Modcl construction is based on the systemn monitoring some aspect of the man/machine
dialogue. A hypothetical system configuration was shown in Innocent’s (1982) sclf-adaptive user
interface (Figure 1.3). All user/machine interactions are directed through this interface, which
monitors events and updates the user model based upon its “knowledge” of human behavior
(Innocent, 1982). The model may be fashioned from scratch, using the inferences as building
blocks. Alternatively, the system Inferences may catcgorize a user into stereotypes, facilitating
mode! choice from a supplied range of defaults.

Stereotypes allow the system to predict many user characteristics based on minimal
Iinformation. For example, a systemn may have dialogue models avallable on a continuum from
novice to expert users. The malin problem lies in discovering the user’s current experience level.
Primitive forms of deducing user classification may use total login hours and time between
sessions as a rudimentary measure. Alternatively, terminal location can furnish the clues: an
advanced dialogue has a higher probability of occurring in a system designer's office than on a
public terminal. A more precise approach would monitor the dlalogue and rank the user based
on the sophistication of his/her queries. However, some mechanism must exist to resolve
placement conflicts due to competing inferences, and to correct model inaccuracies that exist in
the stereotypes supplied (Rich, 1983). A pilot system called Grundy, butit by Rich (1983), has
the ability to stereotype its users according to book preference. Grundy's task Is to recommend
novels to people, based on Its Internal data deseribing books, and its collection of stereotypes
containing facets relating to people’s taste in books. Grundy’s recommendations were found to
be significantly better (p< 10'9) when using stereotypes than without them.

The sccond modeling approach constructs, rather than scleets, a user model based on his
system interaction. One example is a simple model of a menu-based system ranking menu items
by each uscr’'s sclection frequency. The frequently chosen items are then preferentially
displayed before all others. A second example is Teircsias, a complex expert system which
facilitates the changing of its knowledge base intcractively when an error or inconsistency in the
rule-based model is discovered (Davis, 1979). The primary difference between these two
examples is that the first is constantly and continuously trying to maintain an accurate view of
heterogencous and dynamic users, whereas the goal of the second is to build a quasi-static model
of an expert in a given field, a model destined to be non-adaptive for the end user.

The important impliéabion derived from cither method of automatic model building is that
the information contained In the model will be guesses (Rich, 1983). Bccause of this, some
mechanism must exist which ranks all components in order to update the model as new
information comes in. For example, an Initial period of high instability may exist upon first
contact between the user and the sclf-adaptive interface. At first, a system adapting to user
interaction will base much of its model on minimal input. As new information arrives, the
“uncertain” model will change radically. Due to this, the user may envision the virgin system as
unstable at a time when stability is crucial to the acceptance of the system. A monttor and
ezpert modifier must exist to arbitrate the probability of model Inaccuracy with modecl
application. Yet another problem is the incorporation of a user's errors into the model. Unless
the monitor can identify a scgment of the dialoguec as being a user error, the system will think
that it is part of the user’s normal procedure. Cheeks and balances must therefore be
performed continuously, in which low-probability "facts™ arc discarded.

- Aonenbo bW i e A g

-12-

The second stage in automatic modeling is model consultation at appropriate times. This
may be totally or partially automatie, elther case resulting in an actlon visible to the user. For
example, cursor location next to the most frequently chosen menu ltems is a totally automatic
consultation of the model. A partlally automatic system example querles the user for
acceptance of auto-completed strings modeled on previous input. Elther way, serious problems
can occur when an actlon Is performed at an inappropriate time, for negative effects on the
user’s view of the system may arise.

In summary, model construction and consultation were described as two usually distinct
phases occurring in adaptive systems. Inferences of user activity can trigger the selection and
update of model stereotypes. Alternatively, the inferences are used to continuously modify the
system’s current knowledge base of the user's characteristics. Rigorous checks and balances in
model modification and consultation are necessary for a system to appear consistent and
sensible to the user.

A varlation of automatic modeling Is combination modecling, a eomposite of explieit and
automatic modeling techniques. It attempts to bridge the hazy categorization differcnces that
will likely exist in actual implementations. Modeling gencrally consists of two distinct phases;
model formation and model use, with explicit systems placing the onus of activating both phascs
on the user while automatic systems usually execute these stages implicitly. Combination
modecling removes these limitations by allowing a fusion of both techniques.

Combination modeling, in its most realistic form, fashions the environment automatically
and adaptively, yet remalns passive untll the user explicitly requests its use. This
»combination” minimizes the user's setup overhead and inappropriate model invocation by the
system, two severe disadvantages present in explicit and automatic systems respectively. The
well-designed system will likely use combination modeling to minimize problems in adaptive
systems. Issues such as user control, model accuracy, and the user’s perception of the system
will determine the proportion of explicit/automatic techniques in the composite system.

- 13-

2. Examples of User Modeling Systems

A taxonomy of user modeling methodology was introduced in the previous chapter.
Examples of sclected systems embodying these concepts are now presented to illustrate some of
the techniques used to Implement these user modeling ideas. Where possible, the system s
analyzed Informally for the user benefits and drawbacks that accompany the modeling
technique.

Six examples in all are offered; two on both explicit and combination modeling, and two on
automatic modeling, where the second is proposed and discussed in detail in Chapter Five. The
reader should already be familiar with canonical systems, as the overwhelming majority of
present-day computer packages are canonical by default — no examples of this type are given.
In contrast, automatic systems are a rarity; it Is difficult to find enough examples to allow
comparison of salient features.

These are sclected examples. The emphasis is towards non-intricate systems; we attempt
to avoid thosc with features that obscure the modeling focus. Where possible, a simple example
of a particular modeling type will precede a more complex one.

2.1 Explicit Modeling — the Unix Alias System

Abbreviations are available on most operating systems in either user-defined or designer-
defined forms. Practically all current command driven operating systems have designer-defined
abbreviations for command names, although some allow only the short form to be used. Human
factor guldelines for abbreviation methodology have already been proposed in the literature by
Ehrenreich (1981), who mentions important issues such as truncation versus contraction,
mnemonic meaningfulness, and length of abbreviation versus length of command. The
avallability of user-defined abbreviations is a common explicit modeling technique found on
many of the so-called "user-friendly” operating systems (such as Unix and Multics). The
abbreviation facility in Unix is briefly examined as an example of an expert-oriented system
containing explicit abbreviation techniques, with user comments illustrating some advantages
and disadvantages of sclf-defined abbreviations'.

The Unix command-line Interpreter has two facilities for allowing command abbreviations
to take place; the exccution of a shell file which contains an arbitrary set of commands, and the
use of altas, an explicit mechanism for creating abbreviations. Altas will be the method
discussed, as it Is more specific to the abbreviation task than shell files. The altas mechanism is
used:

I' al . . - .
I'he Unix system described in this thesis uses the ¢sh (also ealled C-shell) command-line in-
terpreter.

-14-

... to provide short names for commands, to provide default arguments, and to define
new short commands in terms of other commands. It Is also possible to define
aliases which contain multiple commands or pipelines, showing where the arguments
to the original command are to be substituted.

(Joy, 1980)

The applications of alias are diverse. It can be used to create synonyms to commands for
users preferring their own mnemonies. For example, negative transfer across operating systems
can be partially avoided by aliasing a single command name to identical actions. Alies also
provides default arguments on frequently used commands. An illustrative task is a user who
regularly scnds mail to the same group of people. He may create an abbreviation called mymail
which invokes mail Bob Bill Janet Harry George. A third use of alias is as a macro combining a
group of commands into one package. For example, an alias entitled whatsup may be a macro
of four commands which when Invoked tells the user the current date, who is on the system, his
mail status and lists his daily memos. Another use of alias Is to request at any time an
alphabctically sorted list of all the abbreviations and their corresponding long forms.

Many positive and negative criticisms have been raised by Unix users in the Department
of Computer Science at the University of Calgary. Some users use it rarely or not at all, on the
grounds thalt too many abbreviations are not only confusing but difficult to transfer across
systems. In addition, many Unix commands are terse and rarely need shortening. Another
problem is the unavailability of abbreviated commands or the surprise effect of unknowingly
typing an alias when working in another user’s environment. Alias usually works only at the
beginning of a line, with in-line expansion done only in exceptional cases. It Is also insensitive
to context, in that the user must take care to invoke an alias only at appropriate times. Some
users report that they cannot be bothered with the overhead of setting up abbreviation tables
or with learning the more exotle features of alias. Despite the criticisms, accolades are gencrally
given for the casc of use for the tasks mentioned above, particularly in the abllity to supply a
shorthand notation for long command lines.

Alias was found to have both benefits and problems. It illustrates how even a very simple
explicit modeling technique can lead to a diversity of user opinion.

2.2 Explicit Modeling — the Unix Emacs Environment

An cxample of an sophisticated explicit modeling technique is a tool allowing the creation
or tailoring of the working environment. In its most primitive instance an expert user may
write a program to exccute a task which is not normally part of the system library. Many
systems do not even allow this limited talloring to take place easily. For example, the TOI’S-10
machine has different commands for executing system routines and user-defined routines. 1In its
more advanced form, some "user friendly” operating systems, such as Unix and Multles, offer a
high degree of flexibility in user definitions of his working space. Environment talloring may be
done through command scripts invoked by shell files, resulting in mini systems which nced not
resemble the opcrating system at all. Proponcnts of explicit modeling may indicate that full
environment tailoring and the unlimited power it supplics to the user is the best method of
personalization. An editor named emacs is examined to illustrate some of the issues that can
arisc when this occurs.

-15-

Emacs is an extensible, customizable self-documenting display editor developed at the
Massachusetts Institute of Technology. The claims of the original emacs designers sound
promising:

Users are not limited by the decislons made by the emacs implementors. What we
deeide 1s not worthwhile to add, the user can provide for himself. He can just as
easily provide his own alternative to a feature if he does not like the way it works In
a standard system.

(Stallman, 1981)

Unix emacs is a powerful and highly sophisticated window editor bullt for the Unix
operating system by Gosling (1981) on the foundations of other emacs editors (Stallman, 1981).
Although a complcte description of emacs is far beyond the scope of this thesls, some detall will
be provided to deseribe the explicit modeling tools avallable within this editor. A brief survey
of actual usage patterns and its associated problems will follow the system portrayal.

Emacs contains two levels of opcration; an editing level which provides the tools to do all
cditing tasks, and an environment icvel which allows the user to modifly the emacs working
cnvironment to his particular needs. The editing level supplies the user with a wide range of
commands and packages. Many specialized commands are available, the most popular bcing
bound to keys prefixed by control or escape characters. Complete cursor control, multiple
windows, buffers and file management, spell packages, and compilation features which allow
viewing of crror messages and their source location are just a few of the features present in
emacs. Unfortunately, there is a price to be paid for this sophistication — emacs Is quite
diflicult to learn in its entirety and is usually used only by Unix experts. However, the learning
of emacs subscts has been found comparable in difficulty to other editors (Roberts and Moran,
1982). Coffee room discussions are frequent in the Department of Computer Seience between
pcople cxpounding the virtues of emacs and others criticizing it due to the hardship of acquiring
proficicney in the large emacs command sct.

The environment level of emacs provides facilities for the user to tailor the editing
environment explicitly to his general and specific needs. These facilities are abbreviation modes,
‘the sctting of key-bindings to specific commands, and command extensibility via both macros
and a built-in Lisp-like programming language called Mock Lisp. Abbreviations in emacs are
more versatile than the previously described alias facility. They are expanded in-line after the
person has typed the contraction, supplying the user with immediate feedback of the full
expansion of the entered term. The user can also define abbreviations specific to any context he

desires by creating abbreviation tables global or local to specific buffers, file types and
directories.

Alteration of key-bindings is a simple way of dictating which commands arc to be
executed when a particular button or sequence of buttons on a keyboard is struck. It can be
used to avoid negative transfer between different editors by rctaining similar bindings, Lo set up
function kcys for specific tasks, to assign common meanings to cursor keys across different
terminals, and to bind commands to keys according to the personal quirks of the user.

- 16 -

Macros repeat a series of actions. It js possible for emacs to remember a set of sequentlal
commands and keystrokes as a macro and then execute that set as If the user had typed it in
again. Macros are usually useful for highly repectitive localized tasks.

The most complex arca of emacs environment taitloring is the programming feature. The
original implementation of emacs uses Lisp as the editor programming language, because an
extensible interactive system requires an interpreter and the ability for programs to access the
interpreter's data structures (Stallman, 1981). Gosling (1981) created Mock Lisp — a pseudo
Lisp subsct — to satisfy the above programming language criteria. Mock Lisp allows a user to
write almost any desired function specific to an emacs editing task. For example, there are
functions which automatically format text and indicate errors when the user Is writing a
program in a programming language such as C, Pascal or Lisp. Other functions specialize in
Nrofl document preparation and editing directories. The scope Is almost unlimited. With Mock
Lisp, the user can create functions and bind them to keys In a manner which could radically
differ from the default version of emaes. Unfortunately, it also burdens the user with the
learning of an additional programming language.

Emacs is perhaps the most extensive explicit modeling system the author has encountered.
Yet, its very power is its weakness. As previously mentioned, many people find even the editing
level of emacs too diflicult to learn. A quick survey of selected emacs uscrs in the Department
of Computer Science has found that only a few users, usually Unix experts, have been able to or
have bothered to learn the features that allow for explieit tailoring of their environment.

Seventeen frequent users of emacs (where emacs was the primary editor used at least 50%
of the time) were surveyed as to their opinion on emacs. Of these, five gave themsclves ratings
as expert users, one as a novice and the remaining eleven as just adequate in knowledge. All
but one have a “profile” which overrides the default emacs environment. However, of the
sixteen who had a tailored profile, only three wrote it themsclves while the rest had copied it,
sometimes third or fourth hand, from another source. Of these thirteen who had copled prolfiles,
nine had modificd some aspects of it. Twelve of the seventeen users reported changing the key
bindings to different commands. The surveyed users were then asked about their knowledge of
Mock Lisp. Eleven of the seventeen indicated that they had little or no Mock Lisp expertisc.

The survey above Is not statistically accurate as the sampling technique was biased
towards hecavy uscrs of emacs. However, certain trends and comments were noted which
indicate scrious problems with the powerful explicit modcling tools available in emacs:

e Learning the explicit modeling techniques such as Mock Lisp was an overhead to the
editing task most users could not or would not undertake.

e Use of Mock Lisp was generally restricted to copying and modifying an expert’'s Mock
Lisp profile. Thus the most powerful of emacs featurcs was almost turned into a
designer modeling technique — the real experts in emacs were the ones deciding upon
the best environment.

e Almost all users report some degree of difficulty when using a non-familiar version of
emacs. This happens regularly when people are working together or when one is giving
over the shoulder advice to another about the text being edited (such as a program or
a document). The main problems indicated were the unavailability of certain
commands and surprises that occurred when key-bindings were non-standard. Many
users suggested a need for standardization of key-bindings or a way of restoring the
emacs default state.

-17-

Use of the complete emacs command set was restricted to experts only. Very few others
were able Lo use effectively the sophisticated environment tailoring tools that are avallable.
Thus the power given to users to model emacs explicltly after their own needs was necutralized
in most cases — users had elther to use the default environment or to ask the system experts.
This dircctly contradicts the previously-mentioned claims made by the designers. In addition,
confusion arose when using different versions of the emacs environment. Emacs clearly
demonstrates the problems and false expectations that arise when too much power is given to
the user, '

2.3 Automatic Modeling — the Predict Terminal Interface

Few methods currently exist for modeling the user automatically. One technique makes
use of repetitive patterns or inherent redundaney in uscr input to forecast what he will do next.

Predict (Witten, 1982) attempts to determine via frequency counts what tokens
(characters, words or strings) the user is about to type. Its predictlons are based on the
assumption that a great decal of redundancy is found in most tasks, such as repctition of
command strings in the command level of an opcrating system, limited vocabulary of keywords
and variables in a programming environment and the natural repetition of characters and text
occurring in documents. The interface to predict is fairly straightforward — predictions appear
in reverse video in front of the current cursor location. The user may then decide to accept part
or all of a prediction or he may ignore it altogether by continuing his typing.

Predict is supposed to replace the more common abbreviation facilities, which suffer the
disadvantage of the user having to know in advance what terms he will be using frequently
(Witten, 1982). Predict also provides automatic complction of what would otherwise be
truncated abbreviations of command names, supplying immediate fcedback to the user. Finally,
the tedium of typing oft-repeated large strings Is reduced.

It Is easy to make criticisms of predict. Predictions appearing and disappearing on the
screen can be quite annoying. Touch typists rarely look at the VDU, and will not notice
predictions. Speced typists seem to be slowed down by the cognitive decision necessary to accept
or reject predictions. However, predict may still be used to an advantage by certaln groups.
For example, 2 handicapped person whose cognitive skills far surpass his physical typing speed
will probably use predict productively.

The man/machine Interface to predict is not necessarily fixed to the mechanism described
above. Witten, Cleary and Darragh (1983) have deseribed the reactive keyboard, a text entry
device based upon the adaptive techniques found in predict. Whereas predict only displays the
most likely prediction, the reactive keyboard would display a welght-ordered menu of prediction
strings in a separate window. The user would then use a two-dimensional pointing device, such
as a mouse, to indicate the partial or complete string desired for text entry. If the desired string
or portion thercof did not appecar on the first menu, the user would have the option of asking
for another menu of predictions. Simulation studies have shown that the probability of the
correct prediction ocecurring on the first menu lie between 0.69 and 0.998, depending on how the
system was primed.

SRR

- 18 -

An unpublished human factors pilot study of predict was made by the author and others.
Results indicated that predict did speed up certain typing tasks, such as entering a Cobol
program, and slowed down others, such as entering English text. However, most subjects were
under the illusion that their productivity had actually Increased and generally expressed
satisfaction with predict. Thus there Is a fine line between productivity measures and user
satisfaction; some users may be willing to reduce overall typing speed If the task tedjum is
reduced. 1t becomes difficult to forecast the viability of predict in the real world. More
extensive human factor tests must be done. Alternatively, the system could be placed in the

public domain to undergo the primitive but perhaps more realistic sclection process of the
markctplace.

2.4 Combination Modeling — the Unix History System

Combination modeling can minimize certain inherent problems found In systems that are
solely adaptive or explicit. Both emacs and alias have an overhead of explicit system state
sctup which discourage full system utilization by some users. Predict users suffer the lack of
control over unwanted predictions flashing on the screen. A combination system could eliminate
both these problems by fashioning the environment automatically and adaptively, and yet
remaining passive until the user explicitly requested its use. A simple example of a combination
modeling technique Is the Unix history mechanism.

History is run as a transparent front end to the Unix command interpreter.

The history mechanism ... allows previous (Unix) commands to be repcated, possibly
after modification to correct typing mistakes or to change the meaning of the
command. The shell has a history list where these commands are kept, and a history
variable which controls how large this list is.

(Joy, 1980)

History automatically maintains a history list of a predefined length on all user-invoked
commands in the current login session. Partial or complete command strings can then be re-
uscd by the user when forming a new command.

An example will llustrate how history works. Let us say a user has typed in six
commands since logging In. The automatically formed history list may look like the one found
in Table 2.1. The number prefixing each command is its position in the history list. The user
can now invoke history in a variety of ways:

e Typing history displays the list in the Figure.

e Typing !! repeats the last command (mail smith).

e Typing !'w repecats the last command starting with a 'w' (who).

e Typing 12 repeats the second command in the history list (alias e emacs).

e Typing !$ repcats the last argument in the previous command (write 8 is the same as
write smith).

e Typing !5:2 repeats the second argument of the fifth entry in the history list (print
15:2 is the same as print file2).

e Typing “smith smythe repeats the last command replacing smythe for smith (mazl
smythe).

-19-

Position Command Meaning

i who " {who is on the system)

2 allas e emacs (abbreviate ‘e’ for ‘emacs’)
3 roff filet (display filel as a document)
4 rm filel (destroy filel)

5 e filel file2 (edit filel and file2)

6 mall smith (send mall to smith)

Table 2.1 History list containing six commands

Most of the basic features of history are illustrated in the above list.

Like other systems, history has its problems. Although the user does not have to set up
the history list explicitly, he must still learn the arcane syntax necessary for its invocation, a
syntax which is not analogous to anything else in Unix. Thus, the notation rapidly becomes
quite cryptie, especially when using a mixture of arguments and commands. For this reason,
many uscrs commonly restrict themselves to simple uses of history, such as repeating one of
their Jast few commands or correcting spelling errors. Another history drawback is its reliance
on the undependable nature of human memory. The sequence supplied In Table 2.1 will
Hlustrate an example. The user has displayed a file, destroyed it and edited a new one of the
same name (positions 3 — 5). After completing the editing task and sending some mail
(positions 5 and 6), he may wish to display the file again via the roff command. History is
invoked by typing !r. Unfortunately, the user has forgotten that the rm command has been
subsequently used, and his newly created file is destroyed.

Thirteen expert Unix users were questioned concerning their history usage. Of these, only
one rated himself as "expert” in knowledge of history, while four made full use of all the history
functions. The rest invoked subsets of the simpler features, with most not even being aware of
history's more sophisticated aspects. In general, those asked indicated satisfaction with history,
espeeially In its ability to save time and tediousness of typing. Criticisms usually concerned the
painful syntax, lack of documentation, and system limitations and bugs.

History illustrates how certain portions of a modeling task can be done automatically and
transparently, while avolding unpleasant side effects by providing explicit control to the user in
other areas. Some existing problems — such as its notation — are design faults, and can
probably be overcome at the individual system level. Other areas — such as incorrect
invocations due to the imprecise nature of human memory — are perhaps more indigenous to
the combination modeling philosophy as a whole.

2.5 Combination Modeling — What, Where and Whence in Videotext

Previous examples highlighted modeling as a system enhancement of the man/machine
Interface. However, modeling 1s not merely a refinement; it may also solve serlous problems
found In the dialogue. This sectlon Is concerned with examining videotezt In this context.

Videotext 1s a computer systemm which provides the user a potentially high level of
Interaction with a data base through a television screen. Users typically select and display
pages of Information and perform computer-based actlvities such as electronic mall, electronic
shopping and games (Fortin, 1981). These actlvities are normally accessed via 8 menu selection
dialogue which traverses a hilerarchical tree structure, where each menu category represents
entries or subdivisions of "fields of knowledge” (Tompa, 1982). Figure 2.1 llustrates four
scquential vidcotext pages, each numbered by the concatenation of menu sclections leading to
that page. Page O represcnts the first-level menu containing the primary fields of knowledge.
Further menu sclections narrow the category range to culture (page 3), local entertainment

Page O Page 3
Main menu: ~ Culture:
1) News _ 1) City Entertainment
2) Sports . 2) Out of Town
8) Culture : —_— S; Arts News
4) Food . 4) Literature
5) Business ’
8) T.V. Listings
Selectw 3 Selectw 1
Page 31 Page 314
City Entertainment.: - Live Dance:
1) Cinemas 1; Ballet Jazz
2) Live Theater 2) Denise Clark
8) Live Music 8) Hawaii Lives!
4) Live Dance R 4) Chicken Dance
5) At The Restaurants
8) At The Bars
Selectw 4 ' Selectw

Figure 2.1 Four Secquential Videotext Pages

-21 -

(page 31), and finally the live dance menu (page 314). A continuation of thls process would
eventually reveal a data page, such as the location, time, and cost of a particular dance
performance. Perhaps electronic booking of reservations Is offered. The user may then navigate
through another field of knowledge after returning to the primary menu.

Serious drawbacks to this simple menu access scheme are identified by several authors.
Sclected criticisms are described below.

1) The user may be uncertain about the content of a menu category (Latremouille and Lee,
1981) and will repeatedly probe the hierarchy before retrieving the desired Information.

2) Information retrieval may fail for two reasons: the user is unable Lo select the proper
categorles, or the informatton does not exist in the data base.

3) As data bases grow in size, It becomes harder to locate specific items (Martin, 1980). This is
particularly disconcerting when one considers that Prestel, a British videotext system, is
alming for one milllon pages of information by the mid-1980's (Wilkinson, 1980).

4) User confusion and spatial disorientation in a large menu hicrarchy will likely occur as a
result of the problems Just noted (Engel et al, 1983).

5) Difficulty in remembering the choice path used to arrive at the current location causecs
erratic scarches on successive probes (Engel et al, 1983).

Dumais and Landauer (1982) suggest that some of the menu faults probably arise from
inflexibility imposed by most schemes which allow only a single access route to a given item. In
addition, system designers invent word meanings and categorization schemes which may not
match those of the end user. The latter suggestion is verified in an experimental study of design
defects in a menu-driven data base by Whalen and Mason (1981), who found that
miscategorization of information was the most serious. Whalen and Latremouille (1981)
examined retricval fallure in Telidon menus (see point 2 above) through experimentation. They
concluded that pcople are very likely to stop secarching for existing information rather than
undertaking extensive searches. Fitter (1979) regards uscr recollection of where he has been (sce
point 5) as vital to his feeling of overall system control. Engel et al (1983) propose an
improvement to data access which minimizes some of the previously mentioned problems. This
improvement is what, where and whence in videotext.

There are three conceptual components, using two graphics display screens, in what, where
and whence. The what screen presents the primary information the user Is attempting to
retriecve. The where screen displays secondary access information, such as a symbolic textual
and graphical map of portions of the data base. These two components attempt to resolve
problems one through four listed above, for the uscr can visualize a greater portion of the
information structure. Whence deals specifically with problem 5; a history list stores the
temporal order of a user’s successive choices and touch controls allow him to backtrack at any
time. Whence will be explored from a combination modeling perspective.

Whence is a temporal model created through implicit and explicit technlques. Each
sequential step is recorded automatically. Whence also allows explicit page marking, for it
recognizes that a user may desire to return to selected key pages. Thus, the system keeps track
of the complete access path, while the user indicates the subjectively important pages.

- 44 -

Mode! ellcitatlon Is under complete user control through the use of six touch controls
(Figure 2.2). The "FL" and "NFL" buttons allow the user to add or delete respectively a flag
from the current page. The symbols " <" and " >" perform single steps backward and farward
through the automatlcally formed history list, while "< <™ and "> >" perform multiple steps
backward and forward through user-flagged pages.

It Is immecediately apparent that many of the drawbacks found in the Unix history
mechanism are climinated In whence. Confusing syntax Is all but eliminated through use of
touch controls. Additionally, it Is difficult to make catastrophic errors, for the user can simply
mark his current locatlon before exploring the history list, guaranteeing a quick return.
Flagging of Important pages eliminates the necd to remember less important In-between pages.
The Unix history mechanism discussed earlier had no way of flagging Important commands,
exposing the user to the risk of recalling the Incorrect command linc.

Of course, trade-offs exist In the clean history mechanism ol whence. There Is a demand
on the user to remember the flagged pages, especially if he was indiseriminate in flagging them.
In addition, whence keeps recording the user's pathway during its own invocation. iEngel et al
(1983) report that the corresponding new picee of history does not fit the user’s notion of the
actions performed. This problem Is practically eliminated when the recording of page numbers
during history consultation is Inhibited.

Whence addresses the serious human factor problem of a user knowing where he has been
during a videotext access. Engel et al suggest that this is close to daily life practices such as
marking pages in books through dog-caring or book-marks. User confidence and control is

increased by allowing him to flag and return to a known node in the hierarchy when exploring
an uncertain branch.

FL NFL

<< >>

Figure 2.2 Whence touch controls

-93-

3. Why Model Users? — A Selected Literature Review

It is hard to utter common notions in an individual way.
(Horace, 65 — 8 B.C.)

Rules and models destroy genius and art.
(Hazlitt, circa 1800)

Human factor studies in interactive systems form a relatively new topic in computer
science journals. The early "landmark™ papers, e.g. Hansen (1971), Foley and Wallace (1974),
were written mainly within the last decade. The notion of user modeling is even more recent.
It was not until 1982 that a journal such as the International Journal of Man-Machine Studies
devoted part of an issue to this fleld. A researcher must therefore be content at present with
plecing together Isolated articles, asldes and related ideas; for very few concentrated studles
exist.

The current literature is divided into two arcas: general overviews and Implementation-
specilic discoveries. Implementation papers normally concentrate on the techniques, usually
dealing with issucs arising after the fact. Often, the issues are Inextricable from the
implementation and are thus ill-suited for inclusion within this chapter. The general overviews
attack the basic problems of user modeling, although very few address adaptive systems
dircctly. It is this general literature which is of interest here, for the fundamental Issues are
addressed. Unfortunately, it usually presents a scrics of personal views, intuitive feclings,
folkiore guidelines, and implementation ideas rather than concrete data formed from tested
hypotheses. A dcesigner seeking guldance from these authors finds himself immersed in a
quagmire of platitudes and contradictions. This chapter will summarize what was said by
different authors in an attempt to highlight the relevant topics and issues In user modeling.

3.1 The Desirability of Modeling

There are two tragedles in life. One is not to get your heart’s desire. The other is
to get it.

(George Bernard Shaw, 1856 — 1950)

Many authors imply or state outright that system personalization at some level is
desirable. Primary reasons supplied by these authors to justify user modeling are: variations in
user experience, evolving user needs, dialogue determination and uscr/designer conflicts. Each
of these areas is studied in turn in the following sections.

-24-

8.1.1 Variations in user experience

It was previously stated that different canonical models are appropriate for users with
different levels of experience. Unfortunately, it is often difficult to fit a system into a particular
category. Edmonds (1982) writes that users of the same system typically will include both
novices and experts, a concern echoed by other authors. Larson (1982), in an introduction to
end-user facllitles, mentions adaptability as a factor aflfecting the end-user’s perception of a
computer system. He asks:

Does the system adjust to the end user’s level of competence as he becomes more
experlenced? Does the system tallor itsclf to the habits and styles of different users?

James (1980) proposes certain desirable qualities of the user interface, the sccond of which is
adaptability.

We arc concerned here particularly with the ability of the computer system to
provide a dialogue which Is consistent with the user’s previous experience. This
implics that the system is able to learn a “required” pattern of behavior from a
particular user and also to remember and reintroduce this pattern when the same
user is In touch again. There is no way in which a system with a permanently fixed
"level” of response can satisfy a group of users with a very wide range of experience.

All three authors are concerned with variations in user expericnce, and stress the need for
systems that can adjust or be adjusted to a wide range of user ability.

3.1.2 Evolving user needs

Some authors are concerned with the evolving nature of uscer needs as opposed to the
unusually high inertia associated with modilying a computer system. Edmonds (1982) proposes
this argument for adaptive design In man-computer interfaces:

. in a changing world we need to ensure that a system working at a given time
should satisfy the needs of that time rather than those identified at some earllier
stage.

Innocent (1982) supports the idea of the dynamic user even more vigorously when he writes:

The problem for a designer is Lhat, the user is likely to change both within and
between interactive sessions with a computer. Hence, there is a need for a
modification of the model at different times.

Eason and Damodaran (1979) expand this idea in a paper discussing procedures for including
user involvement in the design process. Although the arguments are directed towards flexibility
in the canonical modeling domaln, they apply to all user modeling aspecets:

The sccond purpose of user support is to promote continued viability of
human/computer interaction. This evolutionary usecr support function is complex
and varied since it is concerned with an evolving computer system applied in a
changing environment through the activitics of a human user who is also changing as

- 25 «

a result of his learning from expericnce. The Importance of supporting an evolving
human/computer relationship les in the fact that unless a given system can continue
to dcvelop and to match the needs of the environment in which It functions, it
ceases to have value. It is therefore essential that the system develops In a way
which is consistent with development of the users’ Interests, needs and skills.

Maguire (1982), In an evaluation of previously published recommendations of man/computer
dialogucs, suggests that "the lifespan of the system can be lengthened by designing it to be
adaptable to the user’s evolving needs”.

Two maln ‘points are brought out by the above authors. First, it is not enough to
recognize that different levels of user expertise are contained in the population. Each user can
also drift from category to category as his experience evolves. Although this evolution Is usually
progressive, a regression of ability may also occur when the system has not been used for a long
interval. Sccondly, any change in the application task will alter the user demands on the
system. Not only may the application needs change globally, but individual users will also have
diffcrent local goals at different times. A rigidly designed system would be ill-equipped to
handle the new demands, thus leading to user frustration due to the complexity of working
around the system constraints.

8.1.8 Dialogue determination

Thimbleby (1980) introduces the term dialogue determination, which is defined as the
degree of control expressed between the system and user. A dialogue is over-determined If the
computer overly restricts the dialogue and under-determined if the user Is at a loss as how to
accomplish a task. Thimbleby concludes:

Whether a uscr is under- or over-determined depends on his expericnee and frame of
mind as well as the implementation. The same dialogue may be under-determined
for one uscr and over-determined for another user, or even the same user at another
time: an Ideal computer system should adapt itself (or should have been adapted In
the design stages) to the specific needs of the users, even on a day-to-day basis,
Perhaps the panacea ... is for users to have personal and idiosyncratic interfaces.

Dialogue determination is often supplied as a characteristic of the user population. Cuff
(1980) reccommends that a dialogue should offer the casual user

. a "constrained choice” interface which exposes a relatively small number of items
to consider at any one time, and implicitly or explicitly guides the user to a solution.

ixpert users would probably resent this constrained dialogue. Shneiderman (1980) notes that
expericnced users should have especially powerful commands available.

The distinction betwecen power and control in determination is subtle. A satisfying system
gives the uscr the sense that he is in control (Shneiderman, 1980). Yet different users will be
supplied with different constraint levels to achieve this goal. It can be argued that the high
variation in dialogue determination levels across the user population is best dealt with in an
adaptive manner.

-926 -

8.1.4 User/destgner conflicts

An additional crlt}clsm of non-adapting systems is the possibility of conflicting views
between user and designer. James (1980) provides this reason for the growing dissatisfaction
with the performance of existing computing systems:

. the systems do not do what is required by the users; there Is a mismatch between
the views of the designers and the users as to what was originally required of the
system.

Groholt, a highly experienced systems manager, Is quoted in Eason and Damodaran (1979) as
saying that

. uscr involvement (in design) has rarcly been successful because neither designers
nor users have access to procedures suitable to this purpose.

One can presumably solve the problem of user/designer conflicts by- providing proper tools for

the interaction. However, even this may have its laults, for the consensus of the many does not

nceessarily provide an ldeal interface. In addition, a good interface based on partially

unprcdiétablc user behavior implies that designers neced sophisticated models of users (Innocent,

1982). There is no guarantee that this model can be successfully fashioned by the uscr/designer
] team.

In summary, successful interaction between user and designer is Inhibited by conflicting
views, lack of dialogue tools and inadequacies of constructed models. The adaptive interfacc
may provide the means of minimizing the conflicts that arise in even the best designer/user
system, for the model will be constantly updated and corrected.

3.2 Criticisms of User Modeling

M
3
!
i
3
!
3

The Injustice done to an individual is somctimes of service to the public.
(Junius, circa 1770)

It has been shown that many authors sec user modeling in adaptive systems as highly
desirable. But it is too simple to present modeling as a solution to a great many ills, for it
introduces associated complexities. Few authors have actually explored adaptive systems Lo any
great. depth, but those who have bring up a sclection of inhcrent problems in the following
arcas: dynamics of user/system concurrent modeling, difficulty of impicmentation, evaluation of

s benelits, questions about dialogue determination, and inaccuracy of model construction. sach of
these arcas are studied in turn.

8.2.1 Dynamics of user/system concurrent modeling

- 27 -

This thesis deals with the possibility of the computer fashioning a model of the uscr for
adaptive purposes. However, this model is not being created in isolation. Galnes and Shaw
(1983) emphasize that the user will also create a model of the system:

People automatically form internal models of their environment [for] the mind is all
the time searching out patterns of cause and effect. The models formed by users
may vary widely and have many connotations that arise from their previous
background experience and bear no direct relation to the system.

Edmonds (1982) supports this ideca when he proposes a definition of the interface as the part of
the systemn that represents the user’s model of it. However, he then mentions:

A problem with this view is that different users may have different models of the
system.

The concurrent effort by the system and the user to create models of each other leads to
inherent diflicultles. Galnes and Shaw (1983) express concerns over the programming of
adaptation to the uscr within the system:

... the user Is not only coming to comprchend the system but (is] also himself
adaptling to it. We have a control-theoretic situation in which two coupled systems
are each attempting to adapt to one another and instability may result.

The instability of concurrent modeling is elaborated on by Innocent (1982):

Stability of the [interface] facade may interact with the stability of the user in terms
of knowledge and experience in such a way that the total man/computer system Is
unstable. That Is, each change to the facade may upset the confidence of the user
who expects a facade to be consistent and uniform rather than adaptive and
changeable. The balance between the need for a consistent and uniform facade and
the nced for change to suit user, task and system environments is a delicate one.
Little is known about the factors affecting this balance and how it affects the easc of
use and learning of an interactive system.

Concurrent modeling Is extremely difficult to design around, for it Is almost impossible to
predict the consequences. However, there is no doubt that people do have the capability to
react favorably to changing circumstances in everyday life. Successful adaptive systems will
probably be those that create an environment in which the changes that do occur are in
themselves percecived as predictable and rational.

3.2.2 Difficulty of tmplementation

Simple systems are easier to implement than complex systems. Thus, designing adaptive
techniques into canonical systems adds a new level of Implementation complexity, at least in the
short termm. Eason and Demoderan (1979) state:

b i

- 928 -

It Is clear that defining design criteria for evolutionary support mechanisms Is far
more difficult than deseribing minimum user support needs.

Galnes and Shaw (1983) cast doubt on the feasibility of automatle adaptive systems:

... the channcl of communlication from person to computer just does not provide a
suflicient, flow of communication for on-line identification of the characteristics of the
person. ... It Is possible to gather specific useful Information about individual users
if this Is designed into the original system, but the time-constant of doing this will
be too long for immediate actlion within the Interactive dialogue.

It is difficult to accept or rcfute these statements due to the absence of hard data on
adaptive systems. Mcasures are needed to explore the above issues, such as the long term cost
of implementation versus the supposed benefits supplied to the user. Case studics of adaptive
systems must be made to demonstrate their feasibility. :

3.2.8 Evaluation of benefits

An adaptive system must somehow be evaluated to verifly that benefits are actually belng
supplied to the user. It Is not clear how to accomplish this evaluation. Innocent (1982) writes:

... there Is a major problem in evaluating interactive systems, in that sultable
unobtrusive methods based on sound statistical principles have to be developed.

This becomes especially complex when the system is constantly changing, for sound
experimentation should have as few uncontrolled variables as possible. Shneiderman (1980) is a
strong proponent of experimental methods. Even so, he concedes that software quality
measurement is an infant discipline.

As this speciality matures, the ability to measure will develop, but in its youthful
phase, there are conflicting opinions as to what and how software characteristics
should be measured.

It is probable that much work based on very simple adaptive systems will have to be done to
create the foundation of principles necessary for complex system analysis. As Shneiderman
(1980) adds:

Each small result is like a tile inra mosale: a small fragment with clearly discernible
color and shape which contributes to the overall image of programming behavior.

3.2.4 Dialogue determination revisited

It was mentioned previously that dialogue determination is the amount of control
expressed between the system and the user. Gaines and Shaw (1983) warn that, at the present
state of the art, the user should dominate the computer. This conflicts with Thimbleby (1980)
who indicates that the level of determination Is highly dependent on “a user’s expcrience and

-29 -

frame of mind as well as the implementation”.

Explicit modeling provides the user with a high degree of control over certain dialogue
aspects, a control which may be too under-determined for the incxperienced user. This same
control may frustrate the expericnced user due to the tediousness of altering the model for
short-term task needs. Automatic modeling may reverse these problems, for it implies that the
system has greater control. If the automated system prescribes an action which is beyond the
understanding of the uscr, then he will probably experience a loss of dlalogue control. Perhaps
a prime application of user modcling is the aedjustment of the determination level during
dialogue progression, especlally In considering the diverse user experience and thcir evolving
needs.

Dectermination 1s ingrained in user modeling. Although there is controversy in how it
‘should be applied, it is likely that modeling will be used to tailor a determination level to a user.
Again, human factor experiments must be carried out, based on well thought-out designs, to
test the dynamies of user/system control.

3.2.5 Inaccuracies of model construction

Automatic modeling attempts to construct a model by analyzing the user input supplied
through the interface. Howcever, there is a danger that the model that Is being bullt is
inaccurate. Rich (1983) warns:

The thing that all of these [modeling] techniques have in common is that they
involve guesses about the user. These guesses are made by the system on the basis
of its Interaction with the user. As a result, the possibility of error must always be
considered.

Cuff (1980) identified feedback as a two way interchange; not only is the system providing
feedback to the user, but the user is also providing feedback to the system:

... it may be the system which derives such benefit from the user’s actions. This Is
particularly the case for a system with a strong heuristic or model-building element,
where its attempt at resolving an inexact query is based on the uncertaln model of
the questioner which it has at any given time. The user's response to output
resulting from this attempt can strengthen or correct the developing model.

“Both Cuff (1980) and Rich (1983) agree that models generated by the system may be inaccurate.
An cffective system must therefore constantly re-evaluate the probability of correctness of model
aspects and discard any of low probability.

- 30 -

3.3 Conclusions

Are adaptive systems a viable alternative to statlc ones? Clearly, this chapter has not
answered this question. The issues involved are many and do not indicate whether or not user
modeling would benefit users. The remainder of this thesis will concentrate on defining and
exploring an application of interactive computer systems which Is amenable to automatic user
modeling. Emphasis is on demonstrating that such applications actually exist, and in suggesting
specific guldelines for a test system. This test system 1Is then described and Implemented.
Afterwards, a pilot study is undertaken to investigate the effectiveness of the adaptive system
component.

-31-

4. Repetitively Accessed Data Bases

The personality [an Interface] should attempt to project is that of a servant — a
very Dickensian one with wit and intelligence rather than servility ... dedicated to
his master’s ends.

(I3rian Gaines, 1981)

The idcal personalized system iIs reactive to a user’s needs In much the same way as a
Dickensian servant would be. This “servant” can be envisaged as a compassionate
“mentor” /"secretary” composite. The user is the task orchestrator, and his actions are gulded
by the "mentor”. The "secretary”, on the other hand, removes the burden of tedious and
repetitive tasks while predicting and preparing for the user’s next action. Unfortunately, this
ldeal composite "servant” is not yet available In computer systems. Artificial intelligence is still
coming Lo grips with the knowledge-based expert systems fundamental to the mentor deseribed.

Sertainly, immediate real-time responsc Is not yet possible even with the best expert systems
currently avallable. But office automation tools do exist for some secretarial functions. Word
processors, spell and style packages, integrated office systems such as Apple's Lisa (Williams,
1983), and a myriad of other speclalized tools are flooding the market. However, most do little
more than allow the user to become a “"super-seerctary”, as he is still responsible for setting up
and exccuting a desired action. The genecral adaptive system Is still in the future, for all the
individual components have yet to be proposed and analyzed. But a truly reactive system can
be built and studied for specific functions, such as reducing repetition in the user’s task.

This chapter examines the premise that specific data bases are repeatedly accessed for the
same information, and that general access characteristics exist. Guldelines for the design of a
personalized access language which removes task redundancy can then be extracted from a
study of uscrs’ access patterns. The first scction briefly surveys existing data bases and their
access languages, and then supplies a definition of a repetitively aceessed data base. The sccond
section examines, extracts, and formulates characteristics of the repetitively accessed data base.
Finally, guidelines for the design of a reactive data base access language are proposed.

4.1. The Data Base Spectrum

The term data base has no precisely defined meaning. Bradiey (1982) defines a data base
as "a collecction of cross-referenced files”, a description which would exclude any file systems
that did not cross reference each other. Date (1977) describes it as “a collection of stored
operational data used by the application systems of some particular enterprise”, a meaning with
connotations of data bases falling solely in a direct application domain. Both authors go on to
describe the traditional data bases and their query languages — hierarchical, network or
relational architecture accessed via Codasyl, SQL, DSL-alpha, Query-by-example and others.

-32-

Unfortunately, the definitlons and system illustrations given by the above authors neglect
very simple data bases and file systems that are becoming Increasingly useful. For example, help
facilitles are now standard suggestions in virtually all human factors recommendations for man-
machine dialogues (Magulre, 1982; Gaines, 1981). A typical help system may display a serics of
scleeted toxt files desceribing a command. However, this information system cannot traditionally
be considered a data base — it Is disalowed by the first definition for it Is not cross refcrenced,
and the sccond excludes it for being a support package rather than an application system ol an
enterprise. Traditional nomenclature would label help as a file system rather than a data basc.
However, there are systems which do not fall cleanly into either category. Browse, created by
Bramwell (1983), adds to a help-like file system cross-referencing capabllities with minimal
change to the file contents. The gray area separating a data base from a file system and the
increasing public usage of the term data base to cover any and all file systems makes it
necessary to clarify the nomenclature. For the purposes of this thesis, the definition of a data
base Is expanded to include file systems that provide information to users via simple access
languages. ’

Data bascs, thelr query languages and their users are highly interrclated. Somce query
languages are orlented toward end-users — the ones making the original query —— while the
complexity of other languages necessitate an Intermediary, that Is, a middic man between the
machine and the end user . DSL-alpha is a high level non-navigational language which allows
complex retrievals from a relational data base (Bradlcy, 1982). Its users are expected to be
intermediarics, for the retrieval language is solidly based upon set theoretic expressions.
Codasyl, on the other hand, is a low-level navigational language which based upon a network
schema. Its users are expected to be system spceialists with a good knowledge of how the data
basc is actually sct up. The help system previously mentioned may use a very simple access
language, such as a keyword or menu indication to retrieve a text file of information. Such a
system would concern itself primarily with naive to expert end-users. Vidcotex systems, such as
Prestel in Great Britain, provide the gencral public with access to extensive data bases. The
access language Is typically through simple hierarchical menu selections in which the menu
hierarchy maps dircctly on to the data base archiLchure2.

The brief survey described above Indicates that the complexity of a query language usually
increases with the organizational complexity of the data base. With the emphasis in computer
systems shifting toward the casual user, as illustrated by the proliferation of personal
computers, some means must be taken to allow him to gain easy access to data base contents.
Automated tellers are a striking example of how totally untrained users can successfully interact
with a highly complex data base, albeit for limited purposes.

The data base spectrum has been shown to cover a broad range. Analysis of human
factors and suggestions for improvements in information retricval must therefore be to a specific
type of data base, its access language, and Its intended user. To do otherwise would give results
too general for real application.

T . :
{)A brief literature survey of the role of an intermediary is found in Martin (1980).
“An implementation of such a hierarchy in Telidon is found in Abell (1981).

-33-

4.1.1 A definition of repetitively accessed data bases

A rcpetitively accessed data base (rad) is defined as a database In which most usecrs
predominately access items that they have accessed before; that s, they exhibit a repetitive
pattern of accesses. The actual set of items retrieved may be disjoint, overlapping or identical
for different users. The frequency of repeated accesses may also exhibit high varlation across
uscrs, provided that the average frequency is lairly high.

txamples of rad's in the non-computer world can be found. A cookbook has a subset of
recipes referred to repeatedly by a single homemaker. However, usage patterns differ, as not all
people lavor the same recipes. Some cooks prefer tried and true recipes, and will thus use a
small sct of recipes many times. Others desire variety and thus use a large recipe set with little
repetition. A similar analogy may be made to a book of verse, readings in the bible or reference
manuals. Dumais and Landauer (1982) report from M.E. Lesk’s analysis of work logs that up to
70% of the time Boeing engineers had looked for specific things that they had seen before but.
had forgotten (e.g. standards, product manuals). Explicit and implicit modeling also have their
loose analogles in the non-computer context. A cook can explicitly mark his recipes by using
bookmarks, wherecas Implicit modeling takes place by the book naturally opening to highly used
locations through wear of the binding.

Rad's are specilically defined as data bases where most users exhibit a high repetition rate
of queries. The time period can vary according to the usage patterns of the data base. For
example, a very short-term task-intensive data base may have a time period of one login session.
Yet another data base which exhibits long term usage patterns may have a time period equal to
the life of the user on the system. Let us define a unique access as the retricval of a data base
entry that the user has not previously retrieved. A repetitive access is the retrieval of a data
base entry that the user has previously retrieved. Total accesses are the total number of
accesses, unique or otherwise, that the user has made to the data base. A untque access rate
can be denoted as:
unique accesses

unique access rate (%) =
total accesses

X 100%.

The repetitive rate can now be given as:
repetitive rate (76) = 100 - unique access rate.

Rad's promote potential for automatic user modeling because there is opportunity for the
query language to give preferential treatment to a repetitive access. An example is replacing a
static hierarchical menu retrieval system with a dynamic one which places previousiy retrieved
items high up on the tree, thereby reducing the number of menus the user must go through to
retrieve the desired item. A complete description of a system of this type is described in
Chapter Five.

Simple personalization schemes may alleviate spccific data base retrieval problems. Somc
of these schemes are based on the assumption that a data base exhibits a rad profile. However,
the existence of rad's in the computer world has not been discussed In the literature. Therefore
a case study of a data base suspected of manifesting the rad property has been undertaken and
will be deseribed next.

4.2 A Case Study of the Unix Man System

Statistical analysis of a suitable data base is nceded to support the existence of rad's as a
subset of the data base spectrum. The data base to be examined must fulfill certain
requirements for this analysis:

e [Basc of information extraction by the data base user Is necessary. Complex access
mechanisms may Introduce variables that can confound results.

e The data base should be suspected of having a rad profile. As this study aims to
establish the existence of rad’s, biasing the data basc choice will facilitate the search
process.

o It must allow collection of enough raw data over a large population for a sufficient time
period to provide significant results.

The Unix man on-line manual system was inspected as a potential candidate. A brief
description of man is given by Bramwell (1983).

Unix supplies an on-line documentation system which uses a program called man.
The name Is a contracted form of the word "manual”. This allows the user to access
text flles which describe commands, system calls, subroutine libraries etc. The level
ol information provided Is aimed at users with some computing expertise who wish
to make use of the various operating system facilities. Since technieal details of the
interfaces to such facilities are often required on very short notice and are frequently
forgotten, an on-line manual is an ideal way to provide this information.

Man was felt to adequately fulfill all the aforementioned requirements. First, the access
mechanism is straightforward, The user simply types man <keyword>, where the keyword is
the command to be described. Secondly, retrieval is likely to be repetitive, for a user will often
forget the precise Invocations of even frequently used commands. Finally, the university
environment supplies a large user population and relaxed privacy restrictions to allow adequate
raw data collcction.

4.2.1. Previous studies of man usage

A general analysis of data collected over a two month period on the same subject group
has been done by Bramwell (1983). He found that:

e Users were predominantly first year students and thus novices to the Unix system.

e The average man user had an overall failure rate of 25% in man uses, due to a variety
of known and unknown reasons. No difference was found between fallure rates in
nalve or expert Unix users.

-35-

4.2.2. Data collection and analysis — a population study

The following study Is based on raw data of man usage collected over one month — from
February 25 to March 24, 1983. Users were mainly computer science undergraduate and
graduate students, research assistants and professors. Out of a potentlal user population of
1294, 822 actlvely called on the man data base, with only 443 able to get at least onec valld
retrieval. A total of 4978 correct man retricvals was made.

Man usage by single users was surveyed and compiled. Table 4.1 combines the number of
correct total accesscs In man with the average repetitive rate found for that range. Unique
accesses and the unique access rate are supplied as intermediate results. Figure 4.1 Is a
graphical rcpresentation of the results in the table. The dotted line represents the 50%
repetition level. The tabulated data supports the following results. Firstly, the repctitive rate
Increases with greater man usage. Figure 4.1 graphically illustrates that the low 13% repetition
found with less than five man uses quickly approaches 50% when more than ten accesses are
made. Sccondly, many repeat accesses are made by each user on a small subset of the man data
base. FFor cxample, Table 4.1 shows that for 31 — 50 man uses there was a 519 repetitive rate
on an average of approximately 19 unique accesses, a very small subset of man's 426 available
sclections.

4.2.8. Data analysis — a sample study

Number Unique Unique Repetitive
Correct Accesses Rate (%) Rate(%)
Accesses (Average) (Average) (Average)

1- 5 1.8 86.5 , 13.5
6-10 4.9 65.6 34.4
11-15 7.7 57.7 42.3
16-20 9.4 51.3 48.7
21-30 13.3 53.4 46.6
31-50 18.6 48.7 51.3
>50 35.9 47.0 53.0
ALL 6.0 72.5 27.5

Table 4.1: Single uscr averages of man usage

- 36 -

70
ool
% sof~=""="" 22222 =1 oeee
repetition 40
sol
2o}
wf
1=8 €10 11=13 10-20 2130 31-80 >80 ™

fcorrect uses / person

Figure 4.1: % Repctition vs Correct uses / person

1t Is not possible to get a complete picture of man usage through the above statistics.
Unanswered questions remaln, such as:

e What is the degree of varlation present in the repctitive rate between users? The rad
definition provided in section 4.1.1 demanded a high rate, as is shown In man usage.
However, it would be interesting to examine whether or not a high or a low variation
in the average repetitive rate was exhibited across users.

e Are a single user’s repetitive accesses uniformly distributed over his total entries, or are
some cntrics aceessed much more frequently than others?

o [tach uscr uses only a small subset of the man entrles available to him. Are these
subscts disjoint, overlapping or identical across users?

These questions are partially answered by examining a particular group of users: those
who had completed 17 — 19 valld selections. The criteria for selecting this sample are that
users should have retrieved enough entries to be familiar with the system and that the sample
should be large enough for adequate study. The repetitive rate was looked at in detall, giving
results tabulated in Table 4.2 and graphed in Figure 4.2. The histogram 1Is used to illustrate the
distribution of rcpetitive rates across all users. The dotted lines provide a benchmark: they
represent the 50% range of the sample users closest to the mean. A high degree of variation In
the repetitive rate across users is shown numerically in Table 4.2 and graphically in Figure 4.2.
The range, which describes the difference between the users with the highest and lowest rate,
covers almost 809 of the possible spectrum. A closer look at the histogram reveals that about
50% of the sample had a repetitive rate within a 10% range of each other, a high contrast to
the overall range. Although this indlcates that standard repetition patterns do exist, the wide

variation noted over the complete sample cautions agalinst stereotypling this access proflle across
all users,

-37-

Measure Result

Average Repetitive Rate 45.2%
Maximum Repetitive Rate 70.6%
Minimum Repetitive Rate 11.8%
Range (Max - Min) 58.8%
Standard Deviation 17.1

Table 4.2: Repetitive rate analysis for users with 17-19 valid selections

—ISOS:I—

users

- N W OO N

10 20 30 40 50 60 70 80

repetitive rate (%)

Figure 4.2: Distribution of repetitive rates across users

The same sample group was used to investigate commonality of command access, that is,
whether or not the subsets of keywords subjects used were disjoint, overlapping or identical.
All keywords accessed by the sample were tabulated against the actual number of users who
had accessed them, with the results plotted In a histogram (sec Figure 4.3). A total of 88 unique
entries — 20% of the possible 426 avallable entries — were asked for. Of these, 589 were
requested by one user, 19% by two, 129 by 3 , and only 11% by 4 or more users. This was a
rather surprising result, for many of the users were students in the same undergraduate courses
with identical programming assignments to solve and, one would assume, sitnilar needs. The

fact that only minimal commonality of command access was found implies that users had
different needs even for similar tasks.

commands

s 888588

1 SN

1 2 V3 4 8 8 7 85 9 10 11
Unique user accesses

Figure 4.3: Commonality of Command Access

A single user may exhibit a variety of patterns In distributing his repetitlons over the
entries he makes. An example is a user with a total of 20 accesses on 10 keywords and a 50%
rate of repetition. Many distributions can provide these results. Each keyword may have been
accessed twice, 9 keywords may have been accessed uniquely with the remaining one accessed 11
times, and so on. Scores within one standard deviation (669%) of the sample population were
studied qualitatively in an attempt to discover Il any particular distribution patterns
predominated. It was found that only a slight pattern existed. Some users had very high
repetitive rates on relatively few cntries while others had many entrles occurring less frequently.
In genceral, for cach user there was always a portion of the entries which had only one access,
another portion with 2 or 3 accesses performed on each, and a small number with a relatively
high repeat frequency. It must be stressed that there was enough variation away from this
pattern to negate any stereotyping of a typlcal user.

4.3. Conclusions and Suggestions

The Unix man system was studied in order to examine repetitive access patterns by
individual users. A varlety of aspects were investigated, providing the following results:

1) The rcpetitive rate was found to be very high, approaching 50% after relatively few
retrievals. Man can therefore qualify as a rad system as defined in section 4.1.1.

2) Only a very small subset of the data base was accessed by any single user.

3) Marginal commonality was found between user data base subsets, even when user tasks were
similar.

4) The majority of users have similar repetitive rates. However, there was significant variation
away from the norm.

5) The distribution of access repctitions over entrics varied substantially from uscr to user. In
an individual user, no uniform distribution was found — rather, the frequency of access per
cntry also varied substantlally. IHowever, the general trend was Lo access most keywords

-39-

between one to three times with a smaller set being called on at a higher frequency.

in general, one can conclude that access In man iIs highly repetitive, and although 1t is
possible to envisage the characteristics of a typical user, it would be a mistake to create a neat
stercotype.

T'he original intention of this study was to discover the existence of a rad system and to
analyze its characteristics and apply them to the design of personalized access techniques.
These techniques must consider almost all users, for a well designed system should be able to
accommodate 95% of its users, a range that was shown here to contain a high degree of
variation. With this in mind, thc above results can now be used to suggest loose "guidelines”
that a personalized access scheme must meet. It should be stressed that these guidelines are not
absolute - they are mercly better than having no guidclines at all.

1) Access to repeated items must be treated preferentially in terms of ease of access. (50% of
accesses are repeats.)

2) First tlme access to entries must not be noticeably longer than in the unpersonalized system.
(50% of accesses are unique.)

3) Personalization should be done at an individual, rather than system or group level. There Is
not cnough similarity between users to Justify the group approach for easing accesscs over
items that show higher frequency usage on the whole. (Marginal commonality between user
subsets.)

4) I’ersonalization schemes must be able to handle a wide variety of usage patterns, be very
advantageous to users with mecdium to high repetitive rates, and yet transparent and/or
beneficial to Individuals with low rates. (A significant number of users differ from the norm.)

5) The system should be primed to a sensible default state to take advantage of any group
patterns that do exist. However, the worst case use of this state should not differ in access
speed from an unprimed state. (A marginal commonality does exsst.)

6) Individual items with different access frequencies should be graded according to that rate.
An oft-repeated item should have preferential trcatment in terms of ease of access by the
user than a less frequently accessed one. (No uniform access rate for all keywords exists;
patterns vary substantially.)

A rad systemn was discovered and analyzed, and suggestions for personalization were made
based on the results. A system incorporating these recommendations will now be described as
an alternative Lo traditional data base access, thus allowing a human factors pilot study to be
carried out. The study Is necessary to test and discover human factor problems in a
personalized system as opposed to a non-personalized control. The success or fallure of the tests
will allow some verification of the proposed guidelines.

- 40 -

5 A Case Study in Automatic User Modeling

Well, il | called the wrong number, why did you answer the phone?
(James Thurber, 1891 - 1961)

This chapter examines the effectiveness of automatic user modeling in facilitating
transactions with computer-driven telephone auto-dialers. The first section reports a brief study
of the characteristics of normal telephone use, with emphasis on discovering whether telephone
number access follows a rad profile. Previous studies and existing autodialers are also noted.

The sccond scetion examines a menu-driven sclection process for retrieving entries from a
large ordered list such as a telephone directory. Menu-based schemes for retrieving ltems from
the dircctory arc devised and assessed. A key feature of these schemes Is that they
automatically store information about accesses which have been made and so construct o user
profile. This profile is used to provide rapld access to popular entries by minimizing the 1 1imber
of menu pages that must be scanned to retrieve these items. One Important aspect of the
scheme is that it affords the possibility of a device-independent menu-selection system. To
support the dcveloping user model, menu pages must be computed on demand from the
underlying database, rather than being stored explicitly as they are in most menu systerus. The
computiation can therefore take into account the size of the display and selection device at
enquiry time -— an ability that is not possible with pre-stored menu pages. Morcover, the
ability to work with M-way selections for arbitrary M allows for the widely differing nceds of
handicapped people (Raitzer et al, 1976) to be accommodated easily and naturally.
Additionally, the work seems to be particularly timely in view of current trends towards
cconomizing information processing. Storage has become a cheap resource, but the cost of
producing and maintaining individual databases is still high and is increasing. The price of
store filled with data is completely dominated by the expense of preparing that data. Mass-
marketing techniques, which amortize the development of a resource over its many usecrs, are
alrcady beginning to appear in the form of consumer information systems and currcat-affairs
databases. It scems probable that methods for personalizing cheap, mass-marketed d:tabascs
will have a major role to play in the future development of information technology — espccially
if these methods are automatic and require no explicit action by the user.

The aspeet of this study which makes it particularly timely and relevant to current
rescarch problems In human-computer interaction is its provision of a simple and explicit
example of automatic user modeling. The extreme simplicity of the directory task — retrieving
items from an ordered list — makes it possible to study the user modcling problem in a lifelike
situation which is uncluttered by unnecessary detail. Simple human factor pilot studics, to be
described in the third section, can then indicate if automatic user modeling is a help or a
hindrance.

- 41 -

A disclaimer must be made — the personalized directory system described here is not
meant to be ready for marketing. The reader must remember that it is not the intent of this
thesis to produce a production system. Rather, it Is to create a simple but realistic vehicle for
applying the suggested rad guldelines and to test the effectiveness of the automatic adaptive
system.

5.1 Telephone Usage — A Limited Study

The telephone is one of the most frequently used technological instruments in western
society. It is rare to find a home without one. What Is surprising is the relatively primitive
means the public has of accessing the complex switching networks through the dialing of
numbers. It is only recently that micro-computerized auto-dialers — called "teleterminals”™ by
some — have appeared on the market. However, even these are highly limited. Most merely
allow the user to soft-wire a few telephone numbers to buttons, which is then given a mnemonic
— such as a person’s or a firm's name — for identification. This limited and explicit
personalization can certainly be improved upon.

5.1.1 Previous studies and existing units

Current work in teleterminals is minimal and unimaginative, in sharp contrast to the
market potential. Most units either provide full computer facilities, such as qwerty kcyboards
and sccondary data base access, or highly limited services which offer few advantages over
normal tclephones. Bell Labs initiated experiments In 1976 in telephone/computer hybrids
(Hagelbarger and Thompson, 1983). The first unit had very primitive functions which included
a limited ffty-five character display and a full keyboard. The second prototype rescmbled a
business telephone, with a normal touch-tone keyboard and ten electronically-labeled " function
keys”, which selected and auto-dialed the chosen number.

The latest Bell Labs experiment Is a Unix-based prototype offering menu trees to bo