
GSI DEMO: Multiuser Gesture / Speech Interaction over
Digital Tables by Wrapping Single User Applications

Edward Tse1,2, Saul Greenberg1, Chia Shen2
1University of Calgary, 2Mitsubishi Electric Research Laboratories

12500 University Dr. N.W, Calgary, Alberta, Canada, T2N 1N4
2201 Broadway, Cambridge, Massachusetts, USA, 02139

1(403) 210-9502, 2(617) 621-7500
[tsee, saul]@cpsc.ucalgary.ca, shen@merl.com

ABSTRACT
Most commercial software applications are designed for a single
user using a keyboard/mouse over an upright monitor. Our
interest is exploiting these systems so they work over a digital
table. Mirroring what people do when working over traditional
tables, we want to allow multiple people to interact naturally with
the tabletop application and with each other via rich speech and
hand gestures. In previous papers, we illustrated multi-user
gesture and speech interaction on a digital table for geospatial
applications – Google Earth, Warcraft III and The Sims. In this
paper, we describe our underlying architecture: GSI DEMO. First,
GSI DEMO creates a run-time wrapper around existing single user
applications: it accepts and translates speech and gestures from
multiple people into a single stream of keyboard and mouse
inputs recognized by the application. Second, it lets people use
multimodal demonstration – instead of programming – to quickly
map their own speech and gestures to these keyboard/mouse
inputs. For example, continuous gestures are trained by saying
“Computer, when I do [one finger gesture], you do [mouse drag]”.
Similarly, discrete speech commands can be trained by saying
“Computer, when I say [layer bars], you do [keyboard and mouse
macro]”. The end result is that end users can rapidly transform
single user commercial applications into a multi-user, multimodal
digital tabletop system.

Categories and Subject Descriptors
H5.2 [Information interfaces and presentation]: User
Interfaces. – Interaction Styles.
General Terms: Algorithms, Human Factors.
Keywords: Digital tables, multimodal input, programming by
demonstration.

1. INTRODUCTION
A burgeoning research area in human computer interaction is
digital table design, where natural table interaction is recreated
and extended in ways that let multiple people work together
fluidly over digital information.

We already know that the traditional desktop computer is
unsatisfying for highly collaborative situations involving multiple
co-located people exploring and problem-solving over rich spatial
information, e.g., [3]. These systems inhibit people’s natural

speech and gesture interaction over paper-based tabletop
information such as maps (e.g., Figure 1) [3][10]. A critical factor
is that most digital systems are designed within single-user
constraints. Only one person can easily see and interact at any
given time. While another person can work with it through turn-
taking, the system is blind to this fact. Even if a large high
resolution display is available, one person’s standard
window/icon/mouse interaction – optimized for small screens and
individual performance – becomes awkward and hard to see and
comprehend by others involved in the collaboration [8].

In our previous work, we illustrated how we could enable
interaction with single user applications through speech and
gesture over a multi-user digital table, e.g., as illustrated in
Figures 2 and 3. In particular, we offered a set of behavioural
foundations motivating collaborative multimodal interaction over
digital tables [12]. We then presented several case studies, listed
below, that illustrate how we could leverage the power of
commercial single user applications to the digital table.
• Maps. We used Google Earth (earth.google.com) as an exemplar

of how people could collaboratively search, navigate,
bookmark, and annotate satellite imagery (Figure 2).
Collaborators could use gestures to continuously zoom and
pan the digital map to adjust the focal area. Using speech,
they could jump to discrete locations by saying “fly to
[location]”, and could rapidly overlay geospatial information
by the “layer [information]” speech command [12].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICMI'06, November 2–4, 2006, Alberta, Canada.
Copyright 2006 ACM 1-59593-541-X/06/0011...$5.00.

Figure 1. People interacting over a paper map on a tabletop

Saul
Text Box
Tse, E., Greenberg, S. and Shen, C. (2006)
GSI DEMO: Multiuser Gesture / Speech Interaction over Digital Tables by Wrapping Single User Applications. Proc Eighth International Conference on Multimodal Interfaces (ICMI’06), (Nov 2-4, Banff, Canada). ACM Press.

• Command and Control. We transformed Blizzard’s Warcraft
real time strategy game (www.blizzard.com/war3) into a form that
illustrated how collaborators could use gesture and speech to
control actions of troops over a geospatial landscape, e.g.,
“move here [point]” (Figure 3) [12][13].

• Simulation. We repurposed Electronic Arts’ The Sims
(thesims.ea.com) to let collaborators use gesture and speech to
navigate a virtual home, to create, reposition and manipulate
objects within that home, and to enable simulation in how the
virtual people live within it [13].

• Games. While we used Warcraft and the Sims as ‘toy’
examples of purposeful applications, they also illustrate how
single user games can be easily repurposed for multiplayer
multimodal play over a tabletop display [13].

In this paper, we focus on the underlying architecture of our
system, which we call GSI DEMO - Gesture and Speech
Infrastructure created by Demonstration. GSI DEMO offers (1)
multimodal programming by demonstration, and (2) a multi-user
speech and gesture input wrapper around existing
mouse/keyboard applications. A key research contribution of GSI
DEMO is to enable people to use multimodal by demonstration –
instead of programming – to quickly map their own speech and
gestures to these keyboard/mouse inputs. One trains the system by
demonstrating the gestures and speech actions it should recognize,
and then performing the appropriate keyboard and mouse events it
should play back. The result is that end users can quickly and
easily transform single user commercial applications into a
multimodal digital tabletop system. This multimodal
programming by demonstration relies on a run-time wrapper
around existing single user applications. This wrapper accepts
speech and gestures from multiple people working over the table,
compares them to a list of allowable actions, accepts the ones that
have a reasonable match, and then translates these into a single
stream of keyboard and mouse inputs recognized by the
application. While some parts of the architecture of this wrapper
were described in [12], what is presented here is much more
detailed, and is more generalizable as it can immediately
repurpose a broad variety of applications.

We begin with a high level overview of the GSI DEMO
architecture. This is followed by a description of our gesture /
speech recognizer and unifier. We then show how people map
gesture and speech to application actions by demonstration, and

how these are invoked after recognition. We close with a brief
discussion of the strengths and limitations of our approach.

2. GSI DEMO OVERVIEW
As mentioned, GSI DEMO is designed to allow end users to
rapidly create, instrument and use their own multimodal
gesture/speech input wrappers over existing single user
applications [12][13]. However, it is not a generic gesture engine
or speech recognizer. Its main capabilites are summarized below.

Gesture recognition. GSI DEMO focuses on gestures that model
the basic everyday acts seen in tabletop use, e.g., [3][10][12].
Examples include one-finger pointing for selection, dragging and
panning, two-handed multiple object selection by surrounding an
area with upright hands [14], two finger stretching to zoom in and
out of a region, fist stamping to create new objects, palm-down
wiping to delete objects. These gestures have to be easily
understood by others, as they also serve as communicative acts
[12]. Consequently, GSI DEMO does not readily support complex
and arbitrary gestures that act as abstract command surrogates,
e.g., a D-shaped gesture over an object to indicate ‘Delete’.

Speech recognition. GSI DEMO emphasizes recognizing simple
discrete speech utterances that match a fixed vocabulary of
commands (e.g., ‘fly to Boston’, ‘stop’…). Continuous speech is
monitored for occurrence of these utterances.

Speech in tandem with gestures: GSI DEMO recognizes
combinations of speech and gestures, where gestures can qualify a
person’s speech acts. For example, a speech command ‘Create a
tree’ can be followed by a [point] gesture that indicates where that
tree should be created.

Floor control. GSI DEMO also recognizes that near-simultaneous
gestures and speech performed by multiple people may be
combined, interleaved and / or blocked. It does this by supplying
a set of appropriate floor control mechanisms that mediate how
the system should interpret turn-taking.

Input surfaces. GSI DEMO is constructed in a way that handles
multiple types of touch surfaces. Our current version handles the
DiamondTouch Surface and the DViT Smart Board. Each device
offers different input capabilities, thus allowing different (and not
necessarily compatible) types of gestures. They also differ in how
inputs from multiple people are disambiguated.

Figure 2. Two people using a digital map on a table

Figure 3. People using gesture and speech to play Warcraft III

Multimodal training. People teach the system by
demonstration, where they map their own speech and
gestures to keyboard/mouse inputs recognized by the
single user application.

As seen in Figure 4, GSI DEMO is roughly composed of
three layers. The first layer contains all of the low level
gesture and speech recognition systems. Each GSI Speech
Client, one per person, recognizes speech commands
spoken by each individual working over the table. The
MERL DiamondTouch and the Smart DViT Gesture
Engines recognize hand gestures done atop two different
types of touch surfaces. The speech and gesture
commands of multiple people are combined (with
appropriate floor control mechanisms to mitigate
problems arising from overlapping actions) in the GSI
Gesture/Speech Unifier and converted into unique
commands that will be used to activate the keyboard and
mouse mappings. The second layer defines the actual
mapping of speech/gesture commands to actions
understood by the single user application. Through the
GSI Recorder, end users demonstrate multimodal speech
and gestural acts, and then demonstrate the corresponding
mouse and keyboard commands that should then be performed
over that application. The Recorder generalizes these actions, and
maps them together as a command. It then saves all that
information to an application mapping file, where files can be
created for different applications. For a given application, the GSI
Player loads these mappings from the appropriate file. It then
performs the corresponding keyboard and mouse commands when
a speech or gesture command has been recognized by clients in
Layer 1. Finally, the third layer is the single user commercial
application that is oblivious to the recording and playback of
multimodal speech and gesture actions of multiple people on the
table top. From its perspective, it just receives mouse and
keyboard input events as if they were entered by a single person.

3. SPEECH / GESTURE ENGINE
This section describes how the various components in Layer 1
work and interact.

3.1 GSI Speech Client
The GSI Speech client is responsible for speech recognition. As
described below, it separates conversational speech from
computer commands, disambiguates speech from multiple people,
and has a few simple strategies for dealing with noise. Its output
is a command, which is the best match of the spoken utterance
against a list of possible computer commands.
Input hardware. Our speech recognition hardware uses a
combination of high quality wired lavaliere microphones along
with several wireless Bluetooth microphones. Microphones are
noise-cancelling, so that only the speech of the person closest to
the microphone is heard. Wireless microphones are definitely
preferred, as this lets people walk around the table.

Speech recognition software. We use an existing off-the-shelf
speech recognition system: the Microsoft Speech Application
Programmers' Interface (Microsoft SAPI). However, SAPI and
other similar off-the-shelf speech recognizers are designed to
support one person using a computer in a relatively quiet
environment. Co-located tabletop environments differs in 3 ways.

1. The aural environment is noisy: multiple people may speak at
the same time, and the constant actions of people around the
table introduce additional sounds.

2. Not all utterances are directed at the computer: most of the
speech is actually normal conversation between participants.

3. Multiple people may be trying to direct the computer: we need
to recognize and disambiguate speech from multiple people.

In light of these circumstances, we designed a specialized
application around the Microsoft SAPI system called the GSI
Speech Client, whose graphical interface is shown in Figure 5. Its
job is to manage speech recognition gathered from multiple
people working on the table display, where it delivers possible
commands that these people are trying to invoke over the single
user application.
First, we simplify recognition issues in the presence of noise by
giving each person a separate microphone headset; people select
the microphone they are using from the Input Device list (Figure
5, bottom left). When a person speaks, the client matches that
person’s speech utterances against a dynamically reconfigurable
list – a menu – of speech commands that should be understood (as
described in the Application Mapping File, see §GSI Recorder).
This list is visible in Figure 5, top half. If the match is good, it
offers that menu command as a working hypothesis of what the
person has said. In contrast to free speech recognition, this simple
matching of utterance to a list element is considerably more
reliable in the presence of noise, and suits our purpose of
matching speech to simple commands that can then be invoked.
Second, we disambiguate natural conversations from speech
commands directed to the computer in three ways. Our first
strategy uses microphones containing a switch; people turn it on
when commanding the computer, and off when talking to each
other. This is problematic because people forget, and because
switching actions interfere with people’s ability to gesture atop
the table. Our second strategy is based on observations that people
speak louder and clearer when issuing speech commands to a
computer as compared to when they are speaking to each other
across the table [9]. We leverage this by providing a user-
modifiable Minimum Volume Threshold (Figure 5 middle, current

Layer 2

GSI SpeechGSI Speech
ClientClient

Application Mapping FilesApplication Mapping Files

MERL MERL DiamondTouchDiamondTouch
Gesture EngineGesture Engine

Smart Smart DViTDViT
Gesture EngineGesture Engine

GSI Player GSI Player GSI Recorder GSI Recorder

Single UserSingle User
ApplicationApplication

GSI Gesture/Speech Unifier GSI Gesture/Speech Unifier
& Floor Control& Floor Control

Save to File Load from File

Layer 1

Layer 3

GSI SpeechGSI Speech
ClientClient

Layer 2

GSI SpeechGSI Speech
ClientClient

Application Mapping FilesApplication Mapping Files

MERL MERL DiamondTouchDiamondTouch
Gesture EngineGesture Engine

Smart Smart DViTDViT
Gesture EngineGesture Engine

GSI Player GSI Player GSI Player GSI Player GSI Recorder GSI Recorder GSI Recorder GSI Recorder

Single UserSingle User
ApplicationApplication

GSI Gesture/Speech Unifier GSI Gesture/Speech Unifier
& Floor Control& Floor Control

Save to File Load from File

Layer 1

Layer 3

GSI SpeechGSI Speech
ClientClient

Figure 4. The GSI DEMO Infrastructure

volume level is shown atop of the
adjustable trackbar). Any talk below this
threshold is considered interpersonal
conversation, while talk above this
threshold activates an attempt to
recognize the current utterance as a
command. Our third strategy is inspired
from Star Trek, where actors direct
commands to the computer by prefixing
it with the key speech phrase
‘Computer’. In GSI Speech, this phrase
is configurable, although we too use the
‘Computer’ prefix. Thus ‘Computer:
Label as Unit One’ is considered a
speech command, while ‘Label as Unit
One’ is conversation. Regardless of the
strategy, the computer indicates
recognition by highlighting the item on
the list in Figure 5, and by playing a
short sound; this audio feedback suffices
to let people know that the computer has
attempted to interpret their speech. In
practice, the number of false speech
command recognition errors is
significantly reduced when a speech
command prefix is used.
Third, we manage multiple people by supplying multiple
independent speech recognizers. Most ‘out of the box’ speech
recognizers operate as single-user systems, i.e., one cannot easily
plug in multiple microphones and expect the speech recognizer to
disambiguate between them. We have two strategies for managing
this. One option is to use multiple computers, one per person,
where each operates its own independent SAPI speech recognizer.
The GSI Speech Client also runs on each computer, and collects
all audio volume, hypothesis and speech recognition information.
It posts this information to a distributed data structure seen by the
main GSI DEMO client. The second option creates multiple speech
recognizers on a single machine, where particular microphones
are directed to particular speech recognizers. As before,
information collected by each process is posted to a distributed
data structure. The tradeoff between these options is CPU load
(when multiple recognizers run on a single machine) vs. the
complexity and cost of having multiple computers. The GSI
Speech Client is flexible enough so that one can mix and match.
Regardless of the method chosen, the client lets a person select
their custom speech profile previously created using Microsoft
SAPI (Figure 5, bottom right).
As mentioned, each speech recognition results in information
posted to a distributed data structure. We use the GroupLab
Collabrary to manage this sharing of information between
processes and across multiple machines [1]. Each client posts the
following information for every utterance it recognizes:

/{ClientId}/Menu = "unit one, label as unit one, ..."
/{ClientId}/SpeechEnabled = true
/{ClientId}/AudioLevel = 0 (min) to 100 (max)
/{ClientId}/Recognition = 1

The ClientID is a 32 bit integer dynamically defined at the
beginning of program operation, which disambiguates who has
spoken. Thus if there are three people using the table, there will
be three different Client IDs. Menu is the complete command list;

the system is restricted to matching an
utterance against an element on this list. An
important feature is that this command list
can be dynamically changed at run time to
load new command sets from the appropriate
Application Mapping file (Figure 4). Thus
once a Speech Client has been started, it does
not need to be restarted to work with other
applications and / or application modes. The
AudioLevel gives a relative volume;
decisions can then be made on whether to
ignore speech uttered below a certain
threshold. Finally, the client indicates what
command it believes the person has said
through the Recognition field; this is an
index into the Menu command list. That is,
the Recognition index of ‘1’ in this example
means that ‘label as unit one’ has been
recognized. Finally, SpeechEnabled is
true if that speech should be recognized. This
could be toggled by an individual (as in
Figure 5), or by a floor control policy
(discussed later).

3.2 GSI Gesture Clients
Our system uses simple gesture recognition to
interpret people’s inputs on various touch

surfaces. Currently, we use two different table input technologies:
the MERL DiamondTouch and the DViT Smart Board. Because
each input device has different characteristics that affect what can
be recognized, we create specialized clients for each of them
(Figure 4, bottom right). However, recognition is delivered to
other components of GSI DEMO in a way that hides whether
gestures are originating from a MERL Diamond Touch or a DViT
Smart Board. Regardless of the technology used, recognition
occurs by first training the system (see §GSI Recorder), and then
by matching the gesture against this generalized training set. For
this later recognition step, we statistically analyze a gesture to
produce a set of features, and then compare these features to those
defining the different postures produced by GSI Recorder. If a
good match is supplied, that posture is recognized and an event is
raised. Details specific to each client are described below.

The MERL DiamondTouch Gesture Client. The MERL
DiamondTouch, from Mitshubishi Electric Research Laboratories,
affords multi-people, multipoint touches [6]. It uses an array of
antennas embedded in a touch surface, each which transmits a
unique signal. This technology provides an X and Y signal of
each user’s multi-point contact with the Diamond Touch surface.
This produces a projection where the contact gradient provides
useful recognition information. For example, Figure 6 graphically
illustrates the signals generated by two people: the left bounding
box and the top/side signals was generated by one person’s 5-
finger table touch, while the right was generated by another
person’s arm on the table. As each user generates a separate
signal, the surface distinguishes between their simultaneous
touches. For multiple touches by one person, there is ambiguity of
which corners of a bounding box are actually selected. Currently,
the DiamondTouch surface can handle up to four people
simultaneously at 30 frames per second. Computer displays are
projected atop this surface, and touch positions are calibrated to
the computer display’s coordinate system.

Figure 5. The GSI: Speech Client GUI

Similar to [14], we use this signal
information to extract features, and to
match these to different whole hand
postures for any given instant in time,
(e.g., a finger, the side of a hand, a fist).
We then detect gestures: these are
posture movements over time. Example
gestures are two fingers spreading apart,
or one hand moving left.
To recognize different gestures from this
signal information, we statistically
analyze the information to generate a list
of 25 unique features (e.g., bounding
box size, average signal value, total
signal values above a particular
threshold, etc). Different values of these
features characterize a variety of different possible hand postures.
When a hand posture is trained (see §GSI Recorder), the average
value of each feature along with a numerical variation estimate is
computed and saved. During gesture recognition, the closest
matching posture is determined. If it is within the numerical
variation limits, a gesture recognition event is generated. If it
closely matches two postures or is below a ‘confidence’
threshold, an unknown gesture event is raised. For ease of use a
default gesture set is included that recognizes: one finger, two
fingers, five fingers, one hand, one hand side (a chop), one fist
and one arm. In practice, this clustering technique has proved to
be quite effective across different hand sizes and levels of skin
conductivity.

Smart Board DViT Gesture Client. The DViT Smart Board, from
Smart Technologies Inc., uses four infrared cameras placed in
each corner of the display. This technology is capable of detecting
up to two points of contact along with their respective point sizes.
Infrared cameras produce a binary signal (on/off) as opposed to
the signal gradient provided by the MERL Diamond Touch. Thus
it is somewhat more difficult to recognize particular hand postures
(e.g., hand vs. chop vs. fist). Currently, the technology does not
distinguish between different users.
In practice, the point size returned by the DViT can be used to
determine the difference between a pen tip, a finger, a hand and a
whole arm. However, similarly sized hand postures (e.g., one
hand, one fist, one chop) currently cannot reliably be
distinguished on the DViT. As well, we cannot identify which
person is doing the touch. For now, our DViT Gesture Client
recognizes a subset of the Diamond Touch Gesture Engine
Events, and all gestures appear as if they are originating from a
single person.

3.3 GSI Gesture/Speech Unifier
The next step is to integrate speech and gestural acts. This is done
through the GSI Gesture Speech Unifier (Figure 4, Layer 1).

All speech and gesture recognition events are sent to a speech and
gesture unifier that is composed of two parts: a single user speech
and gesture unifier and a multi-user floor control unifier.

Single user speech and gesture unifier. In our system, speech
and gestures can be independent of one another, e.g., when each
directly invokes and action. Examples are ‘Fly to Boston’ to
Google Earth, which directs the system to navigate and zoom into
a particular city, or a wiping gesture that immediately erases

marks underneath the palm. Speech and
gesture can also interact as a multimodal
command. For example, a person may
say ‘Create a table’ in The Sims, and
then touch the spot where the table
should be created. In this later case, the
gesture/speech unifier must create and
deliver a well-formed command to the
single-user application from the
combined gesture and speech elements.

Our unifier uses Cohen’s unification
based multimodal integration [13]. If the
speech component of a multimodal
command is recognized, it must be
matched to an appropriate gesture within

a certain time threshold, or else the command is treated as a false
recognition. In this way it is possible for multimodal speech and
gesture to provide more reliable input than speech or gesture
alone [11]. The multimodal unification time threshold can be
dynamically adjusted by the end user to suit their multimodal
preferences. In practice, a threshold of a second or two suffices.

Floor control. Contention results when multiple people interact
simultaneously over current single user commercial applications,
where each supplies conflicting commands and/or command
fragments. For example, if two people try to move an application
window simultaneously the window will continuously jump from
the hand position of the first user to the hand position of the
second user. To mitigate these circumstances, the Gesture/Speech
unifier contains various multi-user floor control policies to
mediate turn-taking and how people’s actions are interleaved with
one another.

The output of each single user speech and gesture unifier is
delivered to the current multi-user floor control policy module.
This module collects and filters the output based on a particular
set of rules. The simplest policy is free for all, where the system
tries to interpret all speech and gestures into well-formed
commands. Contention avoidance is left up to the group’s social
practice. The advantage is that people can interleave their actions,
while the disadvantage is that accidental overlap introduces
confusion and/or undesired application responses. Other policies
balance contention avoidance with social practice. In the case of
competing gestures, the last gesture and last speech wins policy
only listens to the person who had the most recent gesture down
event, ignoring the overlapping speech and gesture movements of
other users. Our micro turn-taking floor control policy adds to this
by letting one’s gesture acts complete the multimodal speech
command of another person. For example, one person can say
‘Create a tree’, and others can indicate where it should be created.
This allows the group to distribute the decision making process to
all seated around the table. Other policies (e.g., last gesture and
last speech) enforce stricter turn-taking, where others are blocked
until the current person has completed a well-formed
gesture/speech command.

The organization of the GSI Speech/Gesture Unifier makes it easy
to create new floor control policies. Programmers of such policies
only deal with high level speech and gesture recognition events
rather than low level speech and gesture APIs. They do not need
to know if events are generated by the DiamondTouch, the DViT,
or even other technologies that could be added in the future.

Figure 6. DiamondTouch signal, 2 people

4. SPEECH/GESTURE BY DEMONSTRATION
For GSI DEMO to work with single user applications, it needs to
somehow map speech and gestures into actions understood by that
application. That is, it needs to know:
• the command set: what commands and arguments should be

understood;
• the speech and gesture commands: what gestures and speech

correspond to those commands and their arguments;
• the keyboard and mouse acts: how to invoke application

actions when a command is invoked (e.g., mouse
down/move/up, menu or palette selections, keyboard entry).

While this information could be hard-wired into the application
(as was done in our previously reported versions of our system
[12][13]), GSI DEMO lets all this to be configured on the fly by
demonstration (Figure 4, layer 2). The idea is that people use the
GSI Recorder module to perform a speech / gestural action, and
then follow this with the corresponding action on the single user
application. The system generalizes the sequence, and packages
this up as a macro. When a speech / gesture is recognized, that
macro is invoked by the GSI Playback module. While simple, the
result is that end-users can quickly repurpose single user
applications for multi-user, multimodal digital tabletops. The
sections below describe how this is achieved.

4.1 GSI Recorder
The GSI Recorder, shown in Figure 7, lets end-users train the
system on how to map speech, postures and gestures to actions
understood by the single user application.

However, before the Recorder is started, it must have two things.
First, speech recognition needs a speech profile customized for
each person; we use the Microsoft SAPI system to generate these
individual profiles. Second, a set of possible postures is needed,
as people’s gestures will be matched to this set. To train a posture,
a person places a posture (e.g., a fist) on the surface, and then
moves it around to various positions and angles over the surface
for a short time. Instances of this posture are generated 30 times a
second. As mentioned previously, statistics are performed over
the raw signal or point information defining each instance to
convert them into a number of features (e.g., the average signal in
the bounding box surrounding the posture). Features across these
instances are them generalized using a univariate Gaussian
clustering algorithm to produce a description of the posture, saved
to a file, and later used by the Recorder.

Training. Three different types of speech/gesture to
keyboard/mouse mappings are supported by the Recorder:
continuous gesture commands (e.g., a one hand pan is remapped
onto a mouse drag), discrete speech commands (e.g., “fly to
Boston” is remapped onto a palette selection and text entry
sequence) and multimodal speech and gesture commands (e.g.,
“move here [pointing gesture]” is remapped onto a command
sequence and mouse click).

Continuous gesture commands are trained by saying “Computer,
when I do [gesture] you do [mouse sequence] okay”. To break
this down, GSI Recorder will attempt to recognize a hand gesture
after the person says “Computer, when I do”. If it does, it
provides visual and feedback (Figure 7 top left). The person
continues by saying “you do” and then performs the
keyboard/mouse sequence over the single user commercial

application. Because the application is live, the person receives
instantaneous feedback about the status of the mouse sequence;
abstracted actions are also displayed graphically (Figure 7 top
left). The person says ‘okay’ to end the keyboard and mouse
sequence. After the gesture is recorded, people can instantly test
what was learnt by performing the appropriate gesture on the
tabletop. If it is wrong, they delete it (the ‘Remove Selection’
button) and try again.

Discrete speech commands are trained similarly. The person says
“Computer, when I say [speech command] you do [keyboard and
mouse sequence] okay”. Speech commands are typed in rather
than spoken; later, the speech recognizer will parse spoken speech
– regardless of who said it – to see if it matches the textual string.
This is important, as it means that one person can train the system
and others can use it. As before, discrete commands can be played
back by saying the recently recorded speech command.

Multimodal speech and gesture mappings are created by saying
“Computer, when I say [speech] [gesture] you do [keyboard and
mouse sequence] okay”. Gesture can also precede speech if
desired. Again, speech commands can be quickly played back by
performing the appropriate sequence of events.

Each successful mapping is recorded to a list box (Figure 7, right)
that stores all successful commands. Clicking on a command
reveals the recorded gesture and its corresponding keyboard and
mouse sequence (Figure 7, left). The ‘Save Commands’ button
stores the entire command set and its mapping between
speech/gesture and keyboard/mouse actions to an Application
Mapping File (Figure 4). The GSI Player will later load and use
this file.

Generalization. Under the covers, GSI Recorder uses the
Microsoft Windows Hook API to listen to the keyboard and
mouse events of all applications while the end user interacts with
the commercial application. However, it would be inappropriate
to just record and playback this literal stream. Some
generalization is needed.

The main generalization is how recognized gestures are translated
into mouse events. For each gesture, the Recorder records its

Figure 7. The GSI: Recorder GUI

‘Gesture Down’ and ‘Gesture Up’ event (along with its
coordinates, posture, bounding box, and so on). It does not record
all intervening ‘Gesture Move’ data. During later replay, it
matches gesture to mouse coordinates by first taking the center of
the posture as the mouse down, then the intermediate gesture
points as the mouse move, and then the final gesture up point as
the mouse up. Of course, this generalization means that complex
gestures cannot be recognized.

We also found that there are times when it is inappropriate for the
direction of a continuous gesture command to directly map onto
the click coordinates of the corresponding mouse command.
When the middle mouse button in some applications is held down
to scroll, moving the mouse down (closer to the user) advances
the document away from the user. In a gestural interface, the
document would appear to be moving in the opposite direction
than expected. GSIRecorder recognizes these cases. If a person
specifies a gesture in one direction, but then moves the mouse in
the opposite direction, it will invert the input appropriately.

Another generalization is that the literal timing information in
keyboard and mouse moves is discarded. During replay, this has
the advantage that long sequences of keyboard/mice actions are
replayed quickly. As well, if sequences raise and then hide
menus, tool palettes or dialog boxes, these pop-up screen
elements may appear as a brief flash, or not at all. This gives the
end users the illusion that the executed keyboard and mouse
sequence is invoked as a single command. For example, the
“layer bars” command in Google Earth is really a complicated
sequence of opening the layer menu, toggling the bars option and
closing the layer menu. This command appears as a brief 0.1
second flicker, with the end result of bars being layered on the
digital map. However, we also recognize that some applications
do need delays between events (e.g., time for a menu to fade
away); in these cases, people can use the ‘Key and Mouse’
trackbar (Figure 7, bottom) to specify particular wait times.

Finally, another generalization considers the screen coordinates of
mouse actions. Mouse events are normally received in absolute
screen coordinates. If the application window is moved, or if
interaction on a popup window is required, or if the screen
resolution changes (thus shifting how some windows are arranged
on the screen), the mapping will not work. One partial solution
lets the user specify that actions are relative to a particular
window by saying: “Computer, relative to window [select
window]”. GSIRecorder then uses the GroupLab.WidgetTap
toolkit [7] to find the string uniquely identifying that window.
When the command is later executed, GSIPlayer will then search
for the appropriate window and then make all coordinates relative
to its top left corner.

4.2 GSI Player
GSI Player loads the set of speech/gesture to keyboard/mouse
mappings from the Application Mapping file (Figure 4), which is
displayed in the Player’s interface (Figure 8, top). Different files
can be loaded for different applications, or even for different
modes within an application. For example, we generated different
mapping configurations for two variations of Google Earth, for
The Sims, and for Warcraft III. When a file is loaded, the
appropriate speech command set is sent to each GSI Speech
Client, and the GSI Gesture/Speech Unifier is set to monitor
appropriate speech and gesture commands as specified in the file.
To the end user it appears as if the system now seamlessly accepts

speech and gesture multimodal
commands from that command
set.

GSI Player lets people set a
variety of other options (lower
half of Figure 8):
• what floor control policy

should be used (via the
‘Multiuser Floor Control
Policy’ dropdown list);

• maximum time that must pass
between speech and gestural
acts if they are to be unified;

• whether a speech command
prefix is to be used to enable
utterance recognition, and if
so what that should be (done
by altering the text in the
‘Speech Prefix’ textbox

• toggle auditory feedback that
happens when a command is
recognized (‘Play Sound on
Speech Recognition’ box).

GSI Player also automatically
supports true multi-user
annotation over the single user application through its ‘Scratch
Pad’ speech command. Using the GroupLab.Collabrary [1], the
GSI Player captures an image of the primary screen, and then
overlays this image on top of the commercial application. To the
end user, it appears as if the application has ‘frozen’. Multiple
users can then simultaneously annotate with different colors per
user using a single finger. Any posture larger than a single finger
is treated as an erasing gesture, where erasure restores the
underlying background image. Saying ‘Scratch Pad’ a second
time returns to the original single user application. The
collaborators see the marks disappear, and the application comes
alive again.

5. DISCUSSION
We prototyped four gesture and speech wrappers over existing
single user applications. Three of these applications (Google
Earth, Warcraft III, and The Sims) had been previously hand
coded as custom multimodal wrappers [12][13], a process that
often took weeks to create and that were difficult to maintain and
alter. By way of contrast, all three wrappers took under an hour to
do by demonstration. As well, we could train by demonstration all
of the interactions used in our previous papers [12][13], where
speech and gestures were recognized and the corresponding single
user commands invoked. Finally, programming by demonstration
meant we could try out gestures, see how they worked, and
discard them for other alternatives if desired.
A new example we instrumented is Virtual Knee Surgery, an
educational tutorial produced by EdHeads.org of the steps
involved with a knee surgery operation. This tutorial puts people
in the role of a surgeon who must select the appropriate tools to
perform the operation. By default, virtual surgery displays a list of
tools on the bottom of the screen (closest to the upright user on
the table). The user must click on one of the tools in order to
select it. While this metaphor works well for a single user over an

Figure 8. The GSI Player GUI

upright display, the fact that the buttons disappear once a
selection has been made makes the action private and unapparent
to other members around the table. For this reason, others cannot
double check one’s actions and provide assistance when
necessary just like they would in a real surgery. To facilitate
double checking and assistance, we implemented tool selection as
a set of verbal alouds in Virtual Surgery, and actions as a series of
gestures. Just as a doctor would ask a nurse for a scalpel,
participants can ask the computer to provide them with the
appropriate tool and then do the action via an understandable
gesture. This verbal aloud serves a double function as a computer
command and as an awareness tool to inform collaborators about
the actions that they are about to take. Different collaborators
could also try out different surgical actions through gestures.
Limitations. GSI DEMO is not perfect. First, it is limited by the
single user applications it wraps. While some multi-user
interaction can be performed by interleaving individual actions,
the underlying application is oblivious to this fact. As well, the
mechanics of invoking certain application actions have side-
effects, e.g., if a speech command invokes a graphical menu
selection, the menu may briefly flash on the display.
Second, GSI DEMO is a crude programming by demonstration
system. It makes many simplifying assumptions on how gestures
should be mapped to application actions, and makes no attempt to
learn across examples as done in other programming by example
systems [5] and even in other gesture recognition systems [2]. For
example, it assumes that there will be a simple mapping between
a gesture (e.g., a whole hand move) and a mouse click/drag.
While this makes it easy to map a hand move to a mouse panning
action, mapping a two finger touch to a double tap is not possible.
Similarly, complex gestural shapes (e.g., drawing a flower) are
not recognized. Of course, an obvious step in this work is to
incorporate techniques forwarded by the machine learning and
programming by demonstration communities [5][2].
Third, multimodal mappings are currently limited. Only a simple
speech + one gesture (e.g., finger, hand) can be mapped to a series
of keyboard commands followed by a mouse click. Mouse click
coordinates are remapped to the center position of the gesture.
This means that complicated multimodal commands that involves
clicking a menu before specifying a location would fail.
Fourth, macros and mappings can be deleted and reconstructed,
but not edited. This means that long sequences would have to be
recreated, even though a small edit would fix it. Again, methods
exist to edit macros, e.g., Halbert’s early SmallStar system [5].
In spite of these technical limitations, we were able to define a
reasonable working set of rich, natural actions atop our single user
applications. Perhaps this is because the actions people want to do
when collaborating over a surface are simple and obvious.
Finally, GSIDemo has not undergone formal evaluation. These
are needed to both discover interface and conceptual weaknesses
and validate basic ideas and workings.

6. CONCLUSION
We contributed GSI DEMO, a tool designed to let digital tabletop
users create their own multi-user multimodal gesture and speech
wrappers around existing single-user commercial applications.
GSI DEMO circumvents the tedious work needed to build gesture
and speech wrappers from scratch. Training the computer is as
easy as saying “Computer, when I do [gesture action] you do

[mouse action]” or “Computer, when I say [speech action] you do
[mouse and keyboard macro]”. This gesture and speech wrapper
infrastructure allows end users to focus on the design of their
wrappers rather than underlying plumbing.
In the future we hope to advance the generalization capabilities of
GSI DEMO such that it would be able to understand and invoke the
semantic meaning of one’s actions (e.g., saving a file) rather than
the primitive and perhaps erroneous mouse and key combinations.
Better generalization would allow the computer to understand
what people are trying to do rather than how they are doing it
[5][2]. We also recognize that GSI DEMO currently supports only
simple speech and gesture mappings. Yet we foresee a new
version that could handle more complex gesture to mouse actions,
and that this would further support end users’ creative freedom in
designing multi user multimodal speech and gesture wrappers
around existing single user commercial applications.
Acknowledgements. Thanks to our sponsors: Alberta Ingenuity,
iCORE, and NSERC.

7. REFERENCES
[1] Boyle, M. and Greenberg, S. Rapidly Prototyping

Multimedia Groupware. Proc Distributed Multimedia
Systems (DMS’05), Knowledge Systems Institute, 2005.

[2] Cao, X. and Balakrishnan, R. Evaluation of an online
adaptive gesture interface with command prediction. Proc
Graphics Interface, 2005. 187-194.

[3] Cohen, P.R., Coulston, R. and Krout, K., Multimodal
interaction during multiparty dialogues: Initial results. Proc
IEEE Int’l Conf. Multimodal Interfaces, 2002, 448-452.

[4] Cohen, P.R., Johnston, M., McGee, D., Oviatt, S., Pittman,
J., Smith, I., Chen, L. and Clow, J., QuickSet: Multimodal
interaction for distributed applications. Proc. ACM
Multimedia, 1997, 31-40.

[5] Cypher, A. Watch What I Do: Programming by
Demonstration. MIT Press, 1993.

[6] Dietz, P.H., Leigh, D.L., DiamondTouch: A Multi-User
Touch Technology, Proc ACM UIST, 2001. 219-226

[7] Greenberg, S. and Boyle, M. Customizable physical
interfaces for interacting with conventional applications.
Proc. ACM UIST Conference, 2002, 31-40.

[8] Gutwin, C. and Greenberg, S. Design for individuals, design
for groups: Tradeoffs between power and workspace
awareness. Proc ACM CSCW, 1998, 207-216

[9] Lunsford, R., Oviatt, S., and Coulston, R., Audio-visual cues
distinguishing self- from system-directed speech in younger
and older adults. Proc. ICMI, 2005, 167-174.

[10] McGee, D.R. and Cohen, P.R., Creating tangible interfaces
by augmenting physical objects with multimodal language.
Proc ACM Conf. Intelligent User Interfaces, 2001, 113-119.

[11] Oviatt, S. L. Ten myths of multimodal interaction, Comm.
ACM, 42(11), 1999, 74-81.

[12] Tse, E., Shen, C., Greenberg, S. and Forlines, C. Enabling
Interaction with Single User Applications through Speech
and Gestures on a Multi-User Tabletop. Proc. AVI 2006.

[13] Tse, E., Greenberg, S., Shen, C. and Forlines, C. (2006)
Multimodal Multiplayer Tabletop Gaming. Proc. Workshop
on Pervasive Games 2006.

[14] Wu, M., Shen, C., Ryall, K., Forlines, C., Balakrishnan, R.,
Gesture Registration, Relaxation, and Reuse for Multi-Point
Direct-Touch Surfaces, Proc. TableTop2006. 183-190.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

