
UNIVERSITY OF CALGARY

Designing Interactive Behaviours for Smart Objects

by

David Ledo Maira

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE

DEGREE OF DOCTOR OF PHILOSOPHY

GRADUATE PROGRAM IN COMPUTER SCIENCE

CALGARY, ALBERTA

SEPTEMBER, 2020

© David Ledo Maira, 2020

i

ABSTRACT
In this thesis, I propose methods for repurposing existing hardware and software to enable designers to

create live interactive prototypes for smart interactive objects without the need to write code or create custom

circuitry. The advent of ubiquitous computing brought the promise of interactive artifacts that in-

tegrate into our everyday lives. While this has led to a myriad of “smart objects”, the problem is that

it is difficult for interaction designers to devise interactive behaviours for such objects. For exam-

ple, how might an interaction designer prototype behaviours for a smart speaker? How can they go

beyond voice responses and, for instance, animate lights to show that the speaker is listening, or

searching for an answer on the web? Designers today face three challenges: (1) needing multiple

expertise of designing behaviour, form, circuitry, and programming the functionality; (2) lacking

software tools to author fine-tuned dynamic behaviours; and (3) needing closer-to-product repre-

sentations to physically manipulate the prototype.

I overcome this gap through a method and two interactive systems. I propose a design metaphor:

Soul–Body Prototyping, which suggests leveraging off-the-shelf mobile phones and watches to create

smart object prototypes. By enclosing the mobile device (“soul”) into a physical enclosure

(“body”), the designer can exploit the mobile device’s rich sensing, outputs, and internet connec-

tivity. I then operationalize Soul–Body Prototyping through two proof-of-concept prototyping tools.

Pineal features trigger-action behaviours which automatically generate 3D models for physical

forms. These forms fit a mobile device and expose the necessary inputs and outputs. Astral is a tool

where designers can mirror a portion of the desktop’s screen onto a mobile device, and create map-

pings that convert live mobile sensor data into mouse or keyboard events. Thus, the mobile device

remote controls (and repurposes) familiar desktop applications for dynamic behaviour prototyping.

Overall, my work contributes an alternative way to prototype smart interactive objects, which in-

forms the design of future prototyping tools. Moreover, I investigate fundamental questions such

as the meaning of interactive behaviour, as well as evaluation methods for prototyping tools and

toolkits in HCI research.

iii

ACKNOWLEDGEMENTS
The journey of undertaking a PhD is a multi-year investment, in which I have met many people

who have made a significant impact on my work and my life. I am truly grateful to everyone who

was a part of this stage of my life, and I am fascinated by how many people I have crossed paths

with in different points of these five years. It really feels like the "end of an era". It means a lot as a

Latin American minority who migrated with his family as a refugee to have accomplished such a

huge milestone after many years of hard work. Unfortunately, this list is made in a limited

timeframe and I may have missed a lot of people.

I would like to first thank my supervisors Lora Oehlberg and Saul Greenberg, who have not only

experienced my journey first hand, but helped shape it into what turned out to be five very im-

portant years of my life that turned out very well. I do not think there was a single meeting where

Lora did not show her enthusiasm, and I particularly appreciate our many conversations about the

post-PhD life, and our many discussions about writing and prototyping. Saul has played a very im-

portant role in my life, not only as a mentor, but someone who ten years ago saw a lost undergrad

full of enthusiasm and decided to give him an opportunity to try out HCI research. This is some-

thing I will be forever grateful. I hope to be as good at big-picture thinking as what Saul always

exhibited when working together. I think also it means so much to me that I got to mark important

milestones in both of my supervisors' careers, as the first student Lora took in as a professor, and

the last graduate student Saul is graduating.

My supervisory committee members also provided me with a lot of support. Jo Vermeulen, known

in the lab as "related work ninja" taught me to be thorough in my quest for knowledge, and seeing

him know so many sources helped me make connections between much work which seemed dis-

jointed. Jo and I have exchanged ideas quite often, leading to very long conversations which have

helped me reflect on my own research practice. Carey Williamson took fantastic care to read through

my dissertation and point out all the pieces that could use some editing, which helped improve the

presentation of the work. I would also like to thank my examiners. Barry Wylant provided valuable

iv

insight from a designer's perspective, and his questions always made me reflect more about the role

of my work. In fact, Barry has seen me from my early days in my MSc when I wanted to start learn-

ing design, and develop to the designer I am today. When I found out my external examiner would

be Björn Hartmann, I felt a mix of honour, awe, and excitement. Reading his PhD thesis was an

absolute inspiration, and the way that he brought in interaction design into his work was a heavy

influence to most of my work. I am grateful for the time taken to read and discuss my own work, as

well as getting to know how I think, and getting me to engage in further reflection.

My thesis work was enriched with external collaborations with fantastic people aside from Lora,

Saul and Jo, who have already been mentioned. I would like to thank (alphabetically):

Fraser Anderson. Fraser was my manager at Autodesk Research, and he ensured I had a

wonderful experience during my time as an intern. Fraser always took the time to meet with

me twice a week to discuss the project progress, but also talk about his own academic jour-

ney. He always made sure I did not have any major road blocks, and pointed me in the right

direction, or helped me directly when needed.

Sebastian Boring. I do not think I know someone with as much technical flexibility and

breadth as Sebastian. I find it incredible that even as a professor he had time to contribute

with the basis for the networking modules used in Astral. What started as a casual conver-

sation on networking challenges became such a fruitful collaboration. I always tell people

that while I do not consider myself to be a great programmer, everything I know came from

his mentorship back in 2011 when he was doing his postdoc and I was an undergrad. Even

when I was learning how to write, Sebastian would sit with me and edit next to me so I could

see how he approached situations. This also applied to my programming back then.

Sheelagh Carpendale. Sheelagh is an inspiring researcher who encourages students to follow

their bliss and to always think big and think differently. Sheelagh will always see things from

an angle nobody else can, and express things in such a way that everyone around her gets

excited about the ideas that she is passionate about.

v

Tovi Grossman. Tovi to me is the absolute master of efficiency, and has a very sharp eye for

focusing on the things that matter the most for a project. With just a few minutes, Tovi can

take an idea and sharpen it to go in the right direction.

Steven Houben. Writing with Steven is an absolute delight. I appreciated all the hours spent

together on the toolkit evaluation paper, writing and rewriting the different sections to get

it just right. I love how Steven can take first-hand experience and make connections with

larger problems in the field.

Michael Hung. I had the honour of mentoring Michael Hung during his undergrad, who

managed to come in without knowing much about the research area and managed to create

an absolutely fantastic implementation for WatchPen.

Nicolai Marquardt. I have known Nic since I started in the iLab in 2010. He was one of my

mentors and someone I got to work with very closely. Nic has always been an inspiration,

and he was one of the reasons I got really excited about design in the first place. I remember

watching with wonder every little experiment he would make, and was always so excited

when he would come, grab me from my desk, and show me the small prototypes he built. I

am so delighted we got to collaborate again during my PhD.

Ryan Schmidt. During my time at Autodesk, Ryan was incredible at changing anything upon

request within Meshmixer so I could access the functions through the API. Ryan also helped

me understand high-level computer graphics concepts which were foreign to me.

I have made a lot of friends during my time in Calgary, I will talk about some of them chronologi-

cally, though I do not think words alone can express my gratitude. I would like to first thank my

core group of friends throughout my time at the iLab. Bon Adriel Aseniero, Tamara Flemisch, Ga-

briele Kuzabaviciute, and Fateme Rajabi-Yazdi: I am so glad I have friends like you, people I can

absolutely trust at any point in my life and with whom I have shared so many moments. I think it is

impossible to summarize the number of adventures I have had with those four people. Bon has been

my friend since 2008 and I am so grateful we have shared so many moments of our journey. Tamara

is one of my best friends and I am glad we have remained in touch and traveled together more than

vi

once. She always is excited to see my graphic design or research work. Fateme made for fantastic

moments discussing philosophical life matters, shopping, and she even came to visit me when I had

my knee surgery. Gabi is a fountain of creativity and child-like wonder, and her freedom of expres-

sion was a huge inspiration. Her positivity shines throughout. During the early stages of my PhD, I

was fortunate to overlap with Alice Thudt and Dominikus Baur, who were key people in helping me

find and better understand myself, and with whom I spent countless hours playing indie video

games. Jonathan Haber was a fantastic yoga buddy. Jagoda Walny was the more senior student I

could always turn to, who always had a positive outlook to situations. I am a huge fan of her work.

I am glad we have remained in touch even after she left the lab and that I still get to hang out with

her and her husband Simon Nix. Sowmya Somanath engaged in so many conversations about the

future. before I went to Autodesk, I briefly met Philipp Koytek and Sebastian Lay, who were super

fun to be around. Thank you to professors Tony Tang, Ehud Sharlin, and Wesley Willett. In particu-

lar, Tony had one of the most insightful conversations before I started my PhD, which was the

reason I knew I wanted to go into the program. I also want to thank the many Curio Lab members

who fostered so many wonderful discussions and social moments: Kevin Ta, Martin Feick, Terrance

Mok, Tiffany Wun, Michael Hung, Sydney Pratte, Kath Blair, Peyman Pootschi. Also thank you to

other lab members who kept the environment exciting, including but not limited to: Sasha Ivanov,

Kendra Wannamaker, Kurtis Danyluk, April Zhang, Jessi Stark, Karthik Mahadevan, Daniel Rea,

Søren Knudsen, Christian Frisson, Brennan Jones, Sarah Storteboom, Ricky Pusch, Lawrence Fyfe, Jus-

tin Quaintance, and Gonzalo Mendez. I also want to thank wonderful friends I made at the university

outside the lab: Mandy Cheng, Bianca Guimaraes, Gui Morilha, and Shining Chen.

Towards the end of my PhD, I met Anastassiia Moussatova through flamenco guitar, who became

one of my best friends. She is someone who always challenges me intellectually to levels I had not

thought possible. Thank you Anastassiia for your support and friendship, your trust in having me

perform guitar with you on stage, our super fun hangouts, for looking at some of the early versions

of my chapters, and the many hours of discussions about my ideas, the meaning of the PhD, the

role of a thesis, how to edit, learning and practice methods for music, and the list just goes on and

on. I really admire that after doing a PhD you decided to follow your bliss and became a flamenco

vii

dancer of such high caliber. I also want to thank two musicians that became really close friends

Ricardo Sanchez, who is an absolute guitar wizard and has been teaching me for 2 years now, and

Jonathan Lewis, who can make a violin sing like nobody else can. I enjoyed all the hangouts that

included one or more of you, as well as Linda Stead. Also thank you to Gabriel Cabrera de los Ga-

zules, fantastic teacher and friend during my two-week visit in Malaga.

Teaching has always been an activity I enjoy. I want to thank Sonny Chan for letting me be a co-

instructor for CPSC 581, and also all the amazing students for challenging me to be better and being

a true inspiration. Thank you to Terrance Mok, Shayne Baumgartner, Sharon Lei, Sara Williamson,

Riane Vardeleon, Peter Buk, Orkhan Suleymanov, Mike Chubey, Lien Quach, Kevin Ta, Hannah Sun,

Carrie Mah, Brandon Yip, and Aaron Mouratidis. That fall of 2015 was truly special and the students

left a long-lasting impact in me. I also want to thank my students in SENG 403, CPSC 481, and

Technovation, as well as my Technovation co-teachers Mia MacTavish and Ben Ulmer. I am also

grateful I got to mentor Riane Vardeleon and Michael Hung during their undergrad research studies,

both of them absolutely rocked it.

I want to thank some of my instructors. I learned a lot working closely with Carl Gutwin right before

starting my PhD, and was excited to take his online course, where I got to learn more about Surface

Computing. In particular, I appreciated his take on the course as a systems perspective, where we

got to learn a lot of the technical aspects behind touch interaction, how it is implemented, as well

as different user studies. I had the fortune of working with Nick Sousanis, a comic artist and scholar

who enlightened me with a higher level of appreciation towards the many nuances behind visual

communication. I learned so much about how to represent space and time through drawing, as well

as how to teach and nurture students. I took an embodied cognition with Penny Pexman, which made

me realize how the understanding of affordances in design have stayed relatively behind. Lastly,

during my time in Toronto, I took a Continuing Studies course on graphic design at OCAD Uni-

versity with Christina White, and her lessons and directions helped me shape and define my visual

style and communication.

viii

My time at Autodesk Research in Toronto made a huge impact in my life and career. I got to interact

with some fabulous people in the summer of 2016 as part of the UI Research Group. The group of

interns, which included Rahul Arora, Ailie Fraser, Nathaniel Hudson and Frazer Seymour, made for

a fun dynamic energy in the work place, and created a strong group of friends all excited to hang

out inside and outside the office. I will never forget our walks to Bulk Barn, or our video game

nights. I worked with many talented senior researchers: Fraser Anderson, George Fitzmaurice, Tovi

Grossman, Rubaiat Habib, Ben Lafreniere, Justin Matejka, Ryan Schmidt, and Nobuyuki Umetani.

I visited Aarhus University in October 2018 and did a research visit for two months working with

Susanne Bødker and Jo Vermeulen. I am grateful to Lindsay MacDonald and Jo Vermeulen for hosting

me and showing me around the city multiple times, and making the foreign experience less daunt-

ing, as well as our hangouts and deep conversations. The Computer-Mediated Activity group,

where I worked, had a strong culture of going together for lunch and having stimulating conversa-

tions. I am grateful I got a chance to meet Mirzel Avdic, Nathalie Bressa, Olav Bertelesen, Gopinaath

Kannabiran, Henrik Kolsgaard, Licinio Roque, Sarah Thiel, and Anke van Oosterhout. As well, I had

fantastic interactions with members of the Ubi group, where Jo worked, including Joao Belo, An-

dreas Fender, Jens Emil Grønbæk, and Tiare Feutchner. I enjoyed seeing Susanne's social science

centric approach to design, and the heavy and thorough theoretical emphasis reflected in her group.

Another important milestone in my PhD was attending the Doctoral Consortium (DC) at UIST

2018. I am grateful to Merrie Morris, Wendy MacKay, Ranjitha Kumar, and Orit Shaer, for taking

the time to look at our work and impart their wisdom. I also met great people through HCI confer-

ences, I would like to thank Andres Lucero, German Leiva, Carla Griggio, Mai Ciolfi, and Nacho

Avellino, who are some of the Latinos I hung out with and exchanged invaluable experiences.

In 2019, I interned at Microsoft Research, where I worked as part of the EPIC (Extended Percep-

tion, Interaction and Cognition) Group under the mentorship of Ken Hinckley. Ken's approach to

design and his insights always made for long intellectual discussions, and he pushed me to think

differently about interaction design problems. He inspired me to think about the little things people

do. This talent might be why he could notice all the nuances within people's interactions with each

ix

other, as well as with technology, being a true master of finding those things that are "seen but un-

noticed". During this internship I got to work together again with Frederik Brudy, a really close friend

of mine. Together with Frederik we always have this synergy where we can work together and get

a lot done in a fraction of the time. We have incredibly complementary skills and approaches to

problem solving. It was truly a joy to get to work closely with Bill Buxton, Christian Holz, Michel

Pahud, and Nathalie Riche. I also thank the other members of the EPIC Group for their insightful

conversations and discussions, including Mar Gonzalez Franco, Bongshin Lee, Eyal Ofek, and Mike

Sinclair. The intern program at Microsoft is huge and there were many fellow interns with whom I

shared fantastic moments, but I want to particularly thank Nicole Barbosa Sultanum, Brian Cohn

and Lucy Yip. I have known Nicole since her days in the iLab in 2010 and I am glad we are still

friends and that I have had the chance to hang out with her in Toronto so many times.

I realized I have spent a lot of time talking about the people in my direct work environments thus

far, but I would like to also thank my family and of course my relatives. My parents, David Ledo and

María Angélica Maira are an absolute inspiration, and are the example of an immigrant family who

sacrificed everything so her kids could move forward in life. My mamá is the example of someone

who will do what it takes to get what she wants, never giving up. My papá is more chill in his ap-

proach, and I admire his insatiable enthusiastic positivity which is always full of hope. My sister,

Michelle Ledo, was always there for me reminding me to take things one step at a time. I am glad we

rescued your cat, Cindy, together. I do not think I thank them enough; I am so grateful for them

and love them dearly. My cat Champagne has been the most wonderful companion and source of

comfort, and she came into my life just when I had started my PhD in 2015. I always tell people

she’s a very sweet cat who likes company, but really, I love that she always sits next to me when I

am writing, and to have someone that is so excited when I come home or wake up in the morning.

Last but not least, I would like to thank the different funding sources that made my research work

possible for believing in me and providing me with resources. I am grateful to Alberta Innovates

Technology Futures (AITF), the National Sciences and Engineering Research Council (NSERC)

for their PhD scholarships. As well, the Killam Foundation, for choosing me as a Killam Laureate

and their 2 years of fellowship, as well as Adobe for their Adobe Research Fellowship.

x

PUBLICATIONS
Many of the materials, figures and ideas presented in this dissertation have appeared in prior peer-

reviewed publications.

Conference Publications

Hung, M., Ledo, D., & Oehlberg, L. (2019). WatchPen: Using Cross-Device Interaction Con-

cepts to Augment Pen-Based Interaction. Proceedings of the 21st International Conference on Hu-

man-Computer Interaction with Mobile Devices and Services, 1–8. doi: 10.1145/3338286.3340122

Ledo, D., Anderson, F., Schmidt, R., Oehlberg, L., Greenberg, S., & Grossman, T. (2017). Pineal:

Bringing Passive Objects to Life with Embedded Mobile Devices. Proceedings of the 2017 CHI Con-

ference on Human Factors in Computing Systems, 2583–2593. doi: 10.1145/3025453.3025652

Ledo, D., Houben, S., Vermeulen, J., Marquardt, N., Oehlberg, L., & Greenberg, S. (2018). Eval-

uation Strategies for HCI Toolkit Research. Proceedings of the 2018 CHI Conference on Human Fac-

tors in Computing Systems, 1–17. doi: 10.1145/3173574.3173610

Ledo, D., Vermeulen, J., Carpendale, S., Greenberg, S., Oehlberg, L., & Boring, S. (2019). Astral:

Prototyping Mobile and Smart Object Interactive Behaviours Using Familiar Applications. Pro-

ceedings of the 2019 on Designing Interactive Systems Conference, 711–724. doi:

10.1145/3322276.3322329

Extended Abstracts

Ledo, D. (2018). Designing Interactive Behaviours Beyond the Desktop. The 31st Annual ACM

Symposium on User Interface Software and Technology Adjunct Proceedings, 228–231.

doi: 10.1145/3266037.3266132

https://doi.org/10.1145/3338286.3340122
https://doi.org/10.1145/3025453.3025652
https://doi.org/10.1145/3173574.3173610
https://doi.org/10.1145/3322276.3322329
https://doi.org/10.1145/3266037.3266132

xi

Web Resources and Video Figures for Publications

The following web pages link to some of my projects at the time of this thesis submission (August

2020). These links contain information about specific projects, such as the article’s PDF, video,

and high-resolution images. The video figures are of particular importance to fully understand how

the systems (WatchPen, Pineal and Astral) work in action.

Evaluation Strategies for HCI Toolkit Systems:

http://davidledo.com/projects/project.html?toolkit-evaluation

https://github.com/davidledo/toolkit-evaluation

WatchPen:

http://davidledo.com/projects/project.html?watchpen

Pineal:

 http://davidledo.com/projects/project.html?pineal

Astral:

http://davidledo.com/projects/project.html?astral

http://davidledo.com/projects/project.html?toolkit-evaluation
https://github.com/davidledo/toolkit-evaluation
http://davidledo.com/projects/project.html?watchpen
http://davidledo.com/projects/project.html?pineal
http://davidledo.com/projects/project.html?astral

xii

xiii

xiv

TABLE OF CONTENTS

Abstract .. i

Acknowledgements .. iii

Publications .. x

Table of Contents .. xiv

List of Figures .. xxvi

List of Tables .. xxxi

 Introduction .. 1

1.1 Motivation: The Vision of Seamless Interactions with Technology 4

1.2 Problem: The Gaps When Designing a Single Smart Object .. 6

 Challenge 1: Need For Multiple Specializations ... 8

 Challenge 2. Lack of Tool Support .. 9

 Challenge 3. Need for Close-to-Product Representations ... 10

1.3 Thesis Statement .. 11

1.4 Research Questions ... 13

 RQ1. How Might Designers Repurpose Mobile Devices to Prototype Smart Interactive

Objects? .. 14

 RQ2. How Might Designers Author Forms Around Mobile Devices to Make Them Look

and Feel Like Smart Objects? ... 15

 RQ3. How Might Designers Leverage Existing Familiar Software Tools to Author

Interactive Behaviours for Smart Objects? .. 15

 Research Question Foundations ... 16

Who Are Interaction Designers? ... 16

xv

What is Interactive Behaviour? ... 17

How Do We, or Should We, Evaluate Prototyping Tools? ... 17

1.5 Thesis Organization .. 18

 Part 1: Prototyping Interactive Behaviour ... 18

 Part 2: Soul–Body Prototyping ... 19

 Part 3: Systems .. 20

PART 1 INTERACTIVE BEHAVIOURS 23

 Background ... 25

2.1 Interaction Design .. 26

 What is Design? ... 27

 User Experience Design .. 28

 Interaction Design ... 29

 Who are Interaction Designers? .. 29

 How Designers Think ... 30

The Design Thinking Process ... 31

Strategic Aspects of Design Thinking .. 32

 The Design Process: How Interaction Designers Work .. 34

The Product Development Process ... 34

The Design Phase .. 36

 Summary ... 38

2.2 Prototyping: How Designers Explore Ideas ... 39

 What is Prototyping? ... 40

 Why Do Designers Prototype? ... 41

xvi

Prototyping as Exploration ... 41

Prototyping as Specification and Communication ... 42

Prototyping as Means of Evaluation .. 43

 What Do Prototypes Prototype? ... 44

 Exploratory Prototyping in Interaction Design .. 45

Structure: The What ... 46

Behaviour: The How ... 47

Usage: First-Hand Experience with the Concept ... 47

 Summary ... 48

 Beginings of a Descriptive Framework of Interactive Behaviour…….. 49

3.1 The Problem With The Word Feel .. 50

3.2 Interactive Behaviour, Defined .. 52

3.3 A Descriptive Framework of Interactive Behaviour .. 54

 Behaviours are Relationships Between Inputs and Outputs ... 55

 Behaviours Have Dependencies .. 56

 Programming Constructs of Behaviour .. 60

 Summary ... 62

3.4 Discussion .. 63

3.4.1. Hard Dimensions and Interdependence ... 63

3.4.2. Validation: Using The Framework to Describe Prior Systems 63

3.4.3. Fit of Current Methods .. 64

3.5 Conclusion ... 64

 Prototyping Interactive Behaviour, Related Work 67

xvii

4.1 Common Prototyping Activities ... 68

 Sketching ... 68

 Wireframes / Storyboards ... 70

 Wizard of Oz .. 71

 Video Prototyping ... 72

 Programmed Interactive Prototypes ... 73

 How Do These Approaches Prototype Structure, Behaviour and Usage? 74

4.2 How Do Designers Prototype Interactive Behaviour Today? Or do They?76

 Formative Interviews: Challenges and Needs ... 78

 The (Commercial) Tools Designers Use Today ...79

Software Tools Shape How People Think, And What Is Possible 81

4.3 Behaviour Prototyping Tools in Research and Industry .. 82

 Traditional Coding .. 83

 Visual Programming .. 85

 Screen Transitions .. 88

 Timeline ... 90

 Programming by Example .. 91

 Keyframing ... 93

 Stage Metaphor ... 94

 Step by Step Wizards .. 94

 Wizard of Oz and Video Prototyping Tools .. 95

 Smoke and Mirrors and Screen Poking .. 96

4.4 Summary And Conclusion ... 98

xviii

 Evaluating Toolkit Systems .. 101

5.1 The Challenge of Toolkit Evaluation... 102

5.2 What is a Toolkit? ... 104

 Defining a Toolkit .. 104

 Why do HCI Researchers Build Toolkits? ... 105

 Evaluating Toolkits .. 109

5.3 Methodology ... 110

 Dataset ... 110

 Analysis and Results ... 111

5.4 Type 1: Demonstrations .. 112

 Why Use Demonstrations? ... 113

 Evaluation Techniques as Used in Demonstrations ... 114

 Individual Instances ... 114

 Collections ... 116

 Going Beyond Descriptions .. 117

 Challenges .. 118

 Reflection and Opportunities ... 119

5.5 Type 2: Usage ... 120

 Why Evaluate Usage? ... 121

 Evaluation Techniques as Used in Usage Studies .. 122

 Ways to Conduct Usage Studies ... 122

 Ways to Elicit User Feedback .. 125

 Challenges .. 127

xix

 Reflection and Opportunities ... 129

5.6 Type 3: Technical Performance .. 130

 Why Analyze the Technical Performance? ... 130

 Techniques as Used in Technical Performance ... 130

 Challenges .. 132

 Reflection and Opportunities ... 133

5.7 Type 4: Heuristics ... 134

 Why Use Heuristics? .. 135

 Evaluation Techniques for Heuristics .. 136

 Challenges .. 137

 Reflection and Opportunities ... 138

5.8 Discussion ... 139

 Rethinking Evaluation .. 139

Evaluation by Demonstration? .. 140

Usability Studies (Still) Considered Harmful Some of the Time 141

Successful Evaluation versus Successful Toolkit .. 143

Non-Coding Toolkits .. 143

The Need for HCI Infrastructure Research .. 147

5.9 Limitations .. 149

5.10 Applying Evaluation Strategies: Why the Reported Dissertation Research is Not Yet Ready

For User Studies... 149

5.11 Conclusion ... 152

PART 2 SOUL–BODY PROTOTYPING 153

xx

 Soul–Body Prototyping .. 155

6.1 Motivation: Designer Challenges .. 156

6.2 Design Rationale ... 160

6.3 Soul–Body Prototyping Paradigm: The Mobile Device as a Prototyping Engine 163

6.4 Design Space of Soul–Body Prototyping .. 167

 Mobile Sensors ... 170

 Mobile Output ... 174

 Power and Connectivity ... 175

 Input and Output Modification .. 175

Rerouting Modifiers ... 175

Transducing Modifiers ... 176

6.4.5. Surrounding Physical Form (Body) ... 177

6.5 Discussion ... 180

6.5.1. Metaphor Boundaries ... 180

6.5.2. Extending the Metaphor: Mobile Devices as Moving Targets 182

6.5.3. Applying Soul–Body Prototyping in the Context of this Thesis 184

6.5.4. Key Technical Limitations When Not Using Dedicated Electronic Sensors 186

Physical Range of Modifiers .. 186

Association Between Sensors and Modifiers ... 187

6.6 Conclusion .. 188

 Soul–Body Prototyping Case Studies 189

7.1 Student Explorations Before Realizing Soul–Body Prototyping .. 191

 GymBuddy by Mike Chubey ... 194

xxi

 Pathologist Device by Terrance Mok ... 195

 Smart Docks by Orkhan Suleymanov ... 196

 Huggable Phone by Sara Williamson .. 197

 Phoame Swords by Kevin TA ... 198

7.2 Watchpen: Later Student Exploration .. 199

7.3 Discussion .. 202

 Limitations .. 202

What Can We Extrapolate from Student Explorations? ... 202

Understanding Sensors .. 203

 Soul–Body Prototyping and HCI Research ... 204

 Soul Body Prototyping and Designers ... 205

7.4 Conclusion ... 206

PART 3 SYSTEMS ... 207

 Pineal: Behaviour-Driven Physical Prototyping 209

8.1 Pineal .. 211

8.2 Related Work and Contributions .. 213

8.3 Interface And Workspaces .. 216

 Visual Programming Environment ... 216

Input Modules .. 216

Output Modules ... 218

Mapping Modules ... 219

 Modeling Environment Interaction ... 220

Hover.. 221

xxii

Brush Selection ... 221

Object Placement .. 221

8.4 Usage Scenario: Creating a Toy Firetruck ... 222

 Step 1: Importing the Base Form 3D Model .. 223

 Step 2: Authoring the Behaviour via Visual Programming .. 223

 Step 3: Guiding the Modelling Process ... 225

 Step 4: Object Generation ... 226

 Step 5: Object Assembly .. 227

8.5 Implementation .. 227

 System Overview ... 228

 Automated Model Configuration .. 230

Defining the Mobile Device Screen Position on the Form and Placing the Mobile Device

 ... 230

Screen Cavity and Alignment Pins ... 232

Speaker and Sensor Holes .. 233

Button Creation .. 233

LEDs Simulated with Light Pipes .. 234

Diffusers .. 234

 Raw Sensor View ... 235

8.6 Resulting Prototypes ... 235

 Toy Fire Truck ... 236

 Magic 8 Ball ... 236

 Level .. 237

xxiii

 Ambient Display Planter .. 237

 Voice-Activated Light-bulb ... 238

8.7 Discussion ... 239

 Limitations .. 240

Conceptual Limitations ... 240

Technical Limitations .. 246

 Pineal, Designers and Prototyping .. 248

Pineal, Expertise and Current Practices ... 249

Is Automation Good? ... 249

How Rapid is Pineal’s Rapid Prototyping? ... 251

How Long Should Pineal Prototypes Live? .. 252

Generality .. 252

8.8 Conclusion .. 253

 Astral: Behaviour Prototyping Via Familiar Tools 255

9.1 Astral .. 257

9.2 Related work and Contributions .. 262

9.3 Working with Astral ... 269

 Mirroring Desktop Contents ... 269

 Specifying Input Remapping through Rules .. 269

 Merging Several Rules into Rulesets .. 275

 Deciding When Rules are Triggered .. 275

 Sensor Selector ... 277

9.4 Usage Scenario: Creating a Level .. 279

xxiv

 Preparing the Prototype: Illustrator and AfterEffects .. 280

 Step 1: Starting Astral ... 282

 Step 2: Sensor Selector ... 282

 Step 3: Rule Editor .. 283

 Step 4: Mapping Mouse Position to the AfterEffects Timeline 283

 Step 5: Fine-Tuning through Easing Functions .. 284

9.5 Interactive Prototypes Made With Astral .. 285

 Converting Video into Interaction-Driven Animation ... 285

Video-Based Prototyping ... 285

 Converting Existing Desktop Inputs/Outputs into New Device-Specific Interactions

 .. 287

Authoring Open-Ended Interaction Techniques ... 287

Prototyping Multiple Alternatives ... 289

 Bringing Sketches to Life ... 289

Iterative Prototyping at Multiple Resolutions .. 289

Authoring Smart Object Behaviours ... 291

9.6 Implementation.. 292

9.7 Discussion ...295

 Revisiting the Design Rationale ... 296

 Evaluation Approach ... 300

 Scale and Reappropriation of Tools .. 303

 Implementation-Level Constraints ... 305

Implementation Bottlenecks ... 305

xxv

Device Relativism ... 307

Permanence ... 308

9.8 Summary ... 308

 Conclusion ... 311

10.1 Revisiting This Thesis’ Target Problems ... 311

10.2 Primary Contributions .. 316

10.3 Secondary Contributions ... 317

10.4 Future Work ... 318

 Making Existing Objects into Smart Prototypes ... 318

 Soul–Body Multi-Device Ecologies ... 320

 Supporting Multiple Parameters .. 321

 New Building Blocks for Interactive Behaviour Design .. 322

 Reflections in Systems Research .. 323

10.5 Reflection ... 324

10.6 Closing Remarks ... 329

References .. 333

Appendix .. 383

xxvi

LIST OF FIGURES
Figure 1.1 Scope of Research Presented in This Thesis .. 3

Figure 1.2 Visual Summary of Thesis Statement ... 13

Figure 1.3 Thesis overview showing this dissertation’s chapters and parts. ... 21

Figure 2.1 User Experience Design as an overlap of content, form and behaviour. (Adapted from Cooper et al.

(2014)). ... 28

Figure 2.2 Survey results adapted from Pratt and Nunes (2012). Participants were asked: What is the professional

background that led to your UX position? .. 30

Figure 2.3 Design strategies of creative designers as described by Cross (2011). Diagram adapted from Cross (2011,

pp.78) .. 33

Figure 2.4 Different examples of the design process, as explained by Dix et al. (2004), Cooper et al. (2014),

Greenberg (1996) and Gibbons (2016). Diagrams adapted from the respective sources. 35

Figure 2.5 Getting the design right vs. getting the right design, paraphrased from Greenberg et al. (2011) 36

Figure 2.6 Laseau’s view (1982) of the design process as elaboration and reduction. Diagram based on illustration by

Greenberg et al. (2011). .. 37

Figure 2.7 Pugh’s description of the design process as a funnel (1990) with multiple cycles of elaboration and

reduction that converge towards a solution. Diagram based on illustration by Greenberg et al. (2012). 38

Figure 2.8 Buxton’s (2007) distinction between sketching and prototyping. While ideas in design indeed naturally

evolve from exploration to specificity, the design literature still largely refers to all of these techniques as

prototyping. Figure reproduced from Buxton (2007). .. 40

Figure 2.9 Schematic of this thesis’ exploratory prototyping in the context of interaction design. Given existing

research on what prototypes prototype, I argue that exploratory prototyping has the components of Structure,

Behaviour and Usage. Structure is the basis (form or layout) which the person interacts with. Behaviour is what

the system does before, during or after the interaction. Usage refers to a person’s ability to try out the

behaviours given the provided structure. ... 45

Figure 2.10 Exploratory prototyping in the context of prior work discussing what prototypes might prototype. Note

that in the context of interaction design, reflecting system-level implementation is not in the scope of the

prototyping practice. .. 46

Figure 3.1 Buxton’s (1990) three-state model of graphical input showing the three states: (0) out of range, (1)

tracking, and (2) dragging. It also shows example inputs of mouse, stylus/pen, and touch and how they might

transition between each state. Figure based on Buxton (1990). .. 56

Figure 3.2 Mackinlay et al. (1990) taxonomy as exemplified on a radio. Image based on Buxton (2013). 59

Figure 4.1 Example of quick sketches for a single idea: “how might two phones share a file by using their built-in

sensors?” In this case, the sketch shows bumping two devices together to share files. While each sketch shows

xxvii

the same idea, they have different levels of visual detail, none of which took more than two minutes to

complete. .. 68

Figure 4.2 Example of a wireframe. The image on the left shows the view of a profile, while the view on the right

shows what happens when a user clicks on the top left hamburger menu. ... 70

Figure 4.3 Wizard of Oz. Adapted from Gould et al. (1983). ... 71

Figure 4.4 Contrasting different prototyping approaches and the extent to which they prototype structure,

behaviour and usage elements of an interactive system or artifact. Note how interactive programmed

prototypes are of the highest fidelity and resolution. yet they also provide the most coverage for what the

system might be like. .. 77

Figure 4.5 Tools interaction designers use today as described by Myers (2008), Subtraction.com (2015) and

UXTools.co (2018). Results reproduced from the respective sources. .. 80

Figure 4.6 Event model vs. interaction machine. Beaudouin-Lafon (2004) exemplifies the contrast between (a)

event-driven programming and (b) an interaction machine to implement a rubber-band selection. A rubber-

band selection consists of allowing the user to draw a free-form area and select the contents inside of it (e.g.,

shapes, text, images). Figure recreated from Beaudouin-Lafon (2004).. 84

Figure 4.7 Examples of visual programming approaches. (A) and (B) show node-link diagrams Max/MSP, where (A)

performs audio mappings, while (B) modifies a video feed. (C) Shows Scratch, a block-based language. (A) and

(B) taken from https://cycling74.com/products/max/, while (C) is taken from

https://www.aace.org/review/prepare-for-fun-scratch-3-0-is-coming/ .. 87

Figure 4.8 The d.tools interface (annotated). Image reproduced and modified from Hartmann (2009). 89

Figure 4.9 How motion tweening works. The animator draws the first frame, and applies transformations to the last

frame (e.g., changing fill, size and orientation). The system automatically interpolates between the two frames

to create a continuous animation. ... 91

Figure 4.10 Setup for Chameleon by Fitzmaurice (1993). Setup shows how a portable TV augmented with a button

and position sensors is rendering the video-streamed images from a camera pointed at a monitor which runs the

software applications for mobile spatial navigations. Image based on Fitzmaurice (1993).................................. 96

Figure 5.1 Code and contribution as described by Fogarty (2017). Figure illustrates how system contributions are

described within HCI research: stand-alone novel technical contribution; a combination of novel and known

techniques to achieve novel functionality; using known techniques to achieve novel functionality; or achieving

known functionality with novel techniques. Figured adapted from (Fogarty, 2017). .. 105

Figure 5.2 Gaines’ (1991) BRETAM model of forecasting information sciences as described by Greenberg (2007).

Within it, toolkits foster replication to aid design exploration (Adapted from Greenberg (2007)). 107

Figure 5.3. Summary of the entire dataset for toolkit evaluation. Each row represents the different toolkit goals and

their (interpreted) method distributions, while the last row shows the entire data distribution. 142

xxviii

Figure 5.4. Distribution of evaluation strategies for non-coding toolkits. Highest value on the chart is 14 papers. .. 144

Figure 5.5. Evaluation strategies as used in this dissertation. ... 151

Figure 6.1. Nintendo Labo from 2018 enables players to insert the Nintendo Switch tablet and controllers into

cardboard enclosures. Different controller sensors (e.g., the IR camera) are used to sense user input as defined

by the enclosure. ... 164

Figure 6.2. M5Stack device. The image shows the M5Stack base module featuring a 2 inch x 2 inch touchscreen, 3

buttons, USB port, and a Lego-compatible peg at the bottom to attach other modules. The bottom three images

show the modules for battery, prototyping and GPS. Image adapted from http://www.m5stack.com/ 165

Figure 7.1. Gymbuddy (by Mike Chubey) is a mobile device which can be attached to gym equipment (e.g., bench

press) and provides training and assistance through the display. The system keeps track of repetitions via a

distance sensor. .. 194

Figure 7.2. Pathologist device (by Terrance Mok). The device features a caliper powered by a knob and a servo

motor which is used to record measurements on different body features (e.g., a tattoo or a scar). The

application allows pathologists to select different parts of the body to enter the recorded information. 195

Figure 7.3. Smart Docks by Orkhan Suleymanov provides physical controls at different locations of a home with

specialized usage contexts: a music station, as well as an alarm clock. .. 196

Figure 7.4. Huggable Phone by Sara Williamson presents a stuffed animal hugging a phone. The mobile device can be

used to video call a parent who is currently away. ... 197

Figure 7.5. Phoame Swords by Kevin Ta is an augmented physical game in which players engage in a sword fight

until they run out of health. The mobile device plays sound effects and keeps track of player’s health / hit

points. ... 198

Figure 7.6. WatchPen is a tablet stylus that has been augmented with a smartwatch. WatchPen explores how

different sensors and outputs can augment tablet interactions in the context of a drawing application. 199

Figure 7.8. The WatchPen display shows the current colour, as well as hue, saturation, and brightness and radius

sliders which can be adjusted anytime. ... 200

Figure 7.7 Physical airbrush (a), and its replication in WatchPen (b) which can control the ink flow with the watch’s

touchpad. The orientation of the pen (c) changes how the paint is spread on the canvas. 200

Figure 7.9. Stamp tool in WatchPen, triggered when the pen is held upright. The pen tool can capture contents (a)

and show it on the display, and then paste copies on the canvas (b). .. 201

Figure 8.1. Overview of Pineal. .. 211

Figure 8.2. Pineal consists of (1) a simplified visual programming language to author basic behaviours for mobile

devices (left); and (2) a 3D modeling environment, which allows designers to import custom models that can be

3D printed (right). Pineal’s programmed behaviours then automatically modify the 3D models so they can

indeed house the mobile device and expose the necessary inputs and outputs once 3D printed. This figure

xxix

shows a Toy Firetruck model, which is used as a running example, where pressing a button makes the truck

flash its lights and play a siren sound. .. 217

Figure 8.3. Interactions in the 3D modeling environment are of three types: (a) hovering the cursor shows where an

operation will take place; (b) pressing down the left button and dragging allows the user to paint a selection;

and (c) placing an imported model. Operations are always relative to the surface of the 3D model mesh. 221

Figure 8.4. Components of the complete firetruck model. ... 222

Figure 8.5. Schematic of visual program to create interactive firetruck. ... 225

Figure 8.6. Steps taken by the designer to customize the firetruck 3D model from the moment it is imported until all

modifications have taken place. The figure also shows the operation that the system performs in the

background. .. 226

Figure 8.7. System architecture of Pineal, showing connections between smart phone, watch, NodeJS Server, C#

client and Meshmixer ... 228

Figure 8.8. Visual description of window transparency: the 3D modeling environment in Pineal is an instance of

Meshmixer that sits behind the Pineal window. ... 229

Figure 8.9. Operations performed by Pineal on the 3D models include: (A) Positioning the screens; (B) Carving out

the screen and placing alignment pins; (C) Speaker and other sensor holes; (D) Buttons; (E) Simulated LED

lights through light pipes and (F) Light Diffuser. .. 231

Figure 8.10. Example of the optional spring around the button as done in the Firetruck prototype. The spring is soft

and elastic and requires the user to apply an activation force for the button to make contact with the mobile

device screen. ... 233

Figure 8.11. Live accelerometer data from the mobile device as visualized by Pineal. The visualization plots the raw

X, Y and Z values. ... 235

Figure 8.12. Sample of smart interactive objects created with Pineal, which includes: (A) Toy Firetruck; (B) Magic 8

Ball; (C) Level; (D) Ambient Light Planter; and (E) Voice-Activated Light Bulb .. 236

Figure 9.1. Astral allows designers to prototype interactive behaviours by: (1) mirroring contents of a desktop region

to a mobile device, (2) streaming mobile sensor data to the desktop, and (3) remapping the sensor data into

desktop input (e.g., mouse and keyboard events) on a designer-chosen desktop application 258

Figure 9.2. Astral’s steps to convert a desktop website into a mobile game. ... 259

Figure 9.3. Easings in animation. A circle moves horizontally over time (from time = 0 to time = n). Ticks on the

timeline mark the position of keyframes. .. 268

Figure 9.4. Astral’s main interface as displayed on a desktop computer, showing the (a) Main View, and (b) the Rule

Editing Window, where designers can create mappings from sensor data onto mouse and keyboard events. .. 270

Figure 9.5. Rules in Astral take a sensor value, such as the accelerometer y-axis, and map it to a desktop input such

as a mouse position. ... 271

xxx

Figure 9.6. Sensor visualizations change depending on the currently selected sensor, to enable more straightforward

mappings. The figure shows (A) Compass, (B) Touchscreen, and (C) Light Sensor. 272

Figure 9.7. Mapping sensor inputs to discrete and continuous keyboard/mouse inputs. Figure shows (A) mapping to

a discrete input such as a key press, and (B) mapping to a continuous input destination (e.g., mouse position).

 .. 273

Figure 9.8. Easing function options in Astral based on Penner (2002). These easing functions can also be inverted.

 .. 275

Figure 9.9. Sensor Selector. Designers can record and playback a video which plots the sensor data of all detected

mobile device sensors. Designers can then scrub on the video or the visualizations to see the associated video

frame to that sensor value. Designers can create a selection to automatically create a rule that uses the range of

values for that sensor. ... 278

Figure 9.10. Visual description for Astral’s usage scenario. In the scenario, a designer authors a prototype for an

interactive level on a mobile device by repurposing the timeline on a video editing software. 281

Figure 9.11. Video based prototypes in addition to the level phone app used in the scenario. (A) shows a compass,

while (B) shows a re-implementation of Android’s quick settings menu, where one can change the phone

brightness. .. 285

Figure 9.12. Tilt-to-Zoom Prototype. This figure shows how Astral leverages conditionals to create an interaction

that requires considerable coding only repurposing a web browser on the desktop. ... 288

Figure 9.13. Input variations in Flappy Bird on a mobile device, using different inputs: (A) touching the screen, (B)

blowing on the microphone, and (C) shaking the device. The designer alternates these by (D) covering the

screen’s light sensor. .. 289

Figure 9.14. Prototypes in low resolutions. The figure shows: (A) a sketch rendered on the mobile watch, (B) a

PowerPoint mockup, and (C) an in-progress drawing in Illustrator which controls the music in iTunes. 290

Figure 9.15. Smart object prototypes featuring (A) a mug holding a smart watch as a smart speaker, and (B) a

physical prototype to the initial video-based level presented in the first usage scenario. 291

Figure 9.16. Summary of the interactive prototypes, what the original design activity entails and how Astral bridges

taking non-interactive prototypes into prototypes that can be tested on the target device and refined before

implementation efforts. .. 293

Figure 9.17. Rule preview enhancements with additional feedback and awareness cues. ... 298

Figure 9.18. Alignment tools in Adobe Illustrator. .. 304

Figure 10.1. Sketch sample showing different ways of augmenting existing objects with mobile devices to work as

smart object prototypes. ... 320

Figure 10.2. Visualization which interprets how Pineal and Astral cover the different aspects of interactive behaviour

design and how they can be combined. ... 326

xxxi

LIST OF TABLES
Table 5.1. Overview of all toolkits in the sample. Types: (1) Demonstration, (2) Usage, (3) Technical Performance

and (4) Heuristics. ... 111

Table 5.2. A summary of the four evaluation strategies. ... 112

Table 6.1. Table summarizing common basic mobile device inputs and outputs .. 169

Table 8.1. Soul–Body Prototyping design space as fulfilled by Pineal. Highlighted areas in green show which

dimensions of the design space were explored by each prototype. ... 239

Table 10.1. Summary of primary thesis contributions ... 315

 INTRODUCTION

“The only true voyage of discovery… is not to go to new places, but to

see through different eyes” —Marcel Proust

In this thesis, I1 propose methods for repurposing existing hardware and

software to enable designers to create live interactive prototypes for smart

interactive objects without having to write code or create custom circuitry.

While there is a sharp increase in the amount of technologies availa-

ble today given the presence of smart objects such as digital assistant

speakers, and smart lights, interaction designers’ practices have not

kept up with these new technologies. In particular, interaction de-

signers are missing methods and tools that can enable them to create

prototypes to learn, discover, and realize ideas while considering the

many variables involved in how people interact with technology.

1 While my thesis is highly collaborative in my co-authored publications, I use the pronoun

“I” as (1) I am the primary researcher leading and conducting the majority of this work,

and (2) this collective body of work is being described and integrated within my own re-

search agenda.

2 INTRODUCTION

Some of these variables range from devising the inputs and outputs,

to contextualizing the actions within the physical form of the object,

to considering animations that can provide appropriate feedback for

a user’s actions. These variables and many more come together with

the goal of providing a delightful user experience while ensuring usa-

bility. As will be described in this thesis, there is a need for new tools

and methods for interaction designers that can keep up with the in-

creasing demands of designing smart interactive objects. By smart in-

teractive objects, I refer to computationally powered, consumer-level

physical objects, such as digital assistant speakers, smart lights, other

appliances or even toys.

In general terms, my thesis contributes to- and is scoped within- the

field of Human–Computer Interaction (HCI), a sub-discipline of

computer science strongly influenced by design given its multi-disci-

plinary approach. The research I carry out in this thesis, contextual-

ized in Figure 1.1, is situated at the intersection of different subareas

within the field of HCI. The areas of ubiquitous computing (ubicomp)

and tangible user interfaces explore how computers and technology in-

tegrate into our everyday lives to support activity beyond the confines

of a single screen, which provides the perspective and theme behind

my work. In my research, I create prototyping tools, new systems that

provide building blocks to help the design and authoring of new inter-

active prototypes. In addition, my thesis borrows concepts from the

branch of HCI of mobile sensing and output techniques, which provide

a suite of approaches to realize the new prototyping tools and meth-

ods which can help create new technology.

 DAVID LEDO, 2020 | 3

To enable interaction designers to create these new prototypes, it is

first necessary to understand the gap between: the research vision

proposed in Human–Computer Interaction (§1.1), and the challenges

faced by interaction designers (§1.2). The careful consideration of

these two realities will aid in the understanding of why smart interac-

tive objects (e.g., digital assistant speakers, smart lights) might often

fail to meet end-users’ expectations, and why it is likely that interac-

tion design is not yet formally incorporated in the creation process of

smart objects. Thus, through the examination of the current state of

the interaction design workflow, I propose my thesis statement as a

solution to the design challenges in §1.2, as specified through a design

paradigm (Soul–Body Prototyping) and two systems (Pineal and As-

tral) (§1.3). To guide the execution of this thesis, I devise a series of

research questions that I outline in §1.4 and that guide my entire

Figure 1.1 Scope of Research Presented in This Thesis

4 INTRODUCTION

work, as well as a set of secondary questions which establish the nec-

essary foundation to understand and conduct the work presented in

this dissertation. Finally, I discuss this thesis’ organization in §1.5.

1.1 MOTIVATION: THE VISION OF SEAMLESS IN-
TERACTIONS WITH TECHNOLOGY

The field of ubiquitous computing stems from the vision that com-

puters, and technology at large, will embed themselves into the fabric

of everyday life (Weiser, 1990), where people interact with technol-

ogy without realizing it. However, this embedding seems to be rela-

tive. For example, consider a person living in an urban setting who

uses an elevator on a regular basis. This person might use it without

noticing that there was an interactive exchange taking place with a

computer, from the button presses, to the process of reaching the

destination. For a technology to truly become invisible it means that

it either is familiar enough to the point that the user has reached some

form of mastery, or that the technology is “well designed”, meaning

that it facilitates the person’s goals and people can make sense of

their actions. It is possible to go beyond the purely functional focus,

and think about the experience that the object creates.

According to Norman (2013), interaction designers focus on ensuring

that people can understand the technology that they operate, so they

can know what can be done, what is happening and what just occurred

when an action takes place. Cooper et al. (2014) distinguishes the fo-

cus on form from a graphic or industrial designer, with an interaction

designer’s role in designing the interactive behaviour of an object to

ultimately create a seamless user experience. As electronic compo-

 DAVID LEDO, 2020 | 5

nents become cheaper, new smart interactive objects, including ap-

pliances such as a smart lightbulb and a digital assistant speaker are

becoming more common-place. These types of devices feature inter-

net connectivity, and different means of interaction, such as light an-

imations, sounds, buttons, or even touch-enabled displays. People to-

gether with different technologies can become integrated into an eco-

system, or an ecology (Nardi & O’Day, 1999), where the interactive

objects are interconnected and support people’s activities. The focus

on many devices coming together has multiple flavours within the

ubiquitous computing literature. Different explorations include com-

puters assessing people’s activity through sensing (Schilit et al.,

1994), using that information to have technology react (Cooperstock

et al., 1997), while taking into account people’s location and social

expectations (Greenberg, 2001). Indeed, examining a plethora of de-

vices of different shapes and sizes with a wide range of functionality

coming together shifts the focus of design towards human activity ra-

ther than dealing with a single device. The focus on human activity

can be beneficial, as it helps reflect on how technologies can be reac-

tive or proactive, and how interactions can take place in the fore-

ground or background, so that technology can meet some of the social

expectations (Ju & Leifer, 2008).

I argue, however, that people’s operations with a single device are

equally important, as they are often used individually to accomplish

a particular task. Many of people’s activities are mediated through

interactions with a single device at a time. Thus, there is a need to

carefully consider and refine how people interact with an individual

object to create a seamless exchange. This way, people can come to

understand what is possible to do with a smart object, as well as the

6 INTRODUCTION

effect of their actions, all while having an experience that is free of

pauses and hesitation, and even having one of delight.

One example of a non-seamless smart object interaction is a conver-

sation with a smart speaker today (e.g., Google Home, Amazon

Echo). Besides the expected delays and challenges associated with

speech input, there are few ways for people to understand what is

happening with the smart speaker. While the speaker may show some

lights flashing or a delayed voice feedback, there is no way for the end-

user to know if the speaker is listening to a question, or looking for

answers on the internet, if there is an error, or what the confidence of

the digital assistant is when providing an answer to the question.

Here, an interaction designer can explore many aspects of how the

exchange with the smart speaker takes place, such as showing an os-

cillating light that maps to the voice to show the response, animating

the lights in a certain way to show that the speaker is listening, or

looking for an answer, using colours to denote errors or low confi-

dence, etc. The question then becomes how a designer can devise

these types of rich interactions to help create a seamless and pleasur-

able experience with the smart object.

1.2 PROBLEM: THE GAPS WHEN DESIGNING A
SINGLE SMART OBJECT

As mentioned, ubiquitous computing research tends to focus on hu-

man activity and how many devices can come together to support that

activity. This does not mean that the design of the experience is com-

promised, rather it is secondary: the focus on what people are doing,

and how they transition from one task to the next are augmented by

 DAVID LEDO, 2020 | 7

user experience elements. Indeed, one might still see ubiquitous com-

puting work that considers aspects of animation and visuals, while

also offering interesting mechanisms for interaction, as shown for in-

stance in Proxemic Interaction work (Marquardt et al., 2011; Ledo et

al., 2014). Similarly, single smart objects and their designs are also

seen in HCI conferences, such as the Ripple Thermostat (van Ooster-

hout et al., 2018), which focuses on creating an emotional user expe-

rience through force feedback and shape change. Still, it is necessary

to first be able to design a single device interaction, and design it well,

if we are to scale design to multiple devices working in concert. More-

over, many of the ideas presented in ubiquitous computing take a long

time to be adopted, if at all, and it could largely be attributed to the

lack of tools to create or simulate these experiences in the short term.

As I discuss in Chapter 4, prototyping tools face cycles in which re-

search and development increases, only to have new technologies ar-

rive and clear some of the efforts as authoring ability becomes com-

mon-place again. However, the increases in standardization in the

last decade have also led to additional barriers, as it is difficult to cre-

ate prototypes that break away from the new standards.

The questions then become: how to bring focus to these experiential

elements, and how to further include interaction designers, who are

trained in creating rich user experiences. Interaction design provides

vocabulary and methods to devise how people interact with technol-

ogy, and outlines interactive behaviours a means for people to under-

stand their actions and communication with interactive systems. For

example, some behaviours might encompass suggesting how some-

one might interact with an artifact via: affordances and signifiers (e.g.,

8 INTRODUCTION

a ‘button’ suggests something can be pressed), mappings (e.g., vol-

ume increasing or decreasing as one turns a knob in a given direction),

or providing appropriate feedback (e.g., showing the current temper-

ature setting on a thermostat), etc. (Norman, 2013). Many of these

aspects break down into what Saffer (2013) calls microinteractions,

which he claims are ways to show an object has been designed with

care.

As I will fully describe in Chapter 2, designers typically engage in the

process of prototyping, where they iteratively generate various differ-

ent solutions to one or more aspects to the problem, and in the pro-

cess learn and discover a final solution. However, the gap to interac-

tion designers participating in the design of interactive smart objects

comes down to three main challenges, described below and further

discussed in Chapter 6.

 CHALLENGE 1: NEED FOR MULTIPLE

SPECIALIZATIONS

Prototyping enables exploring what is possible, as well as discovering

new aspects to the solution. Yet, the design of interactive behaviour

often depends on a physical form and base functionality being pre-

sent. Realizing these prototypes for smart objects requires that inter-

action designers can to some extent generate: (1) the object’s physical

form, which provides the object its meaning, while also exposing the

appropriate controls (inputs and outputs); and (2) the object’s func-

tionality, which requires programming, as well as creating the custom

circuitry that connects the different sensors and outputs. Thus, the

designer needs to consider many variables at once, each of which can

be time consuming, featuring a variety of specialized challenges, and

 DAVID LEDO, 2020 | 9

overall are tailored towards experts in different areas. For example, a

smart object prototype might require a designer to: generate physical

forms either through some material or CAD software; create elec-

tronic circuitry that can be embedded into the form, which entails

finding the appropriate components and soldering them in place; and

then program and debug the prototype, all while guessing whether

the bugs are a result of software issues or problems with assembling

the electronic circuit itself (Booth et al., 2016). Because the prototyp-

ing process is about time-bound individual explorations, relying on

different specialists would hinder the prototyping process by remov-

ing the designers’ ability to discover and fine-tune elements by trial

and error.

 CHALLENGE 2. LACK OF TOOL SUPPORT

Most existing prototyping tools (e.g., InVision, Adobe XD) and re-

sources for interaction design focus on building applications for desk-

top computing or basic mobile applications. Thus, a lot of the tools

and techniques assume the traditional WIMP (Windows, Icon, Menu

and Pointers) paradigm, which emphasizes a flow of interactions

based on states and transitions (e.g., “when a button is pressed,

switch to the next screen”). As will be discussed in Chapter 3, such

actions represent only a small fraction of interactive behaviours, and

the nuanced communication one can have with an interactive system.

Additionally, smart objects have a variety of ways in which people can

interact with them, as they can often be physically held and manipu-

lated, or rely on different sensors to interpret human actions (e.g.,

buttons, accelerometer, microphone). As a result, interaction design

for smart objects can differ considerably from interaction design for

10 INTRODUCTION

desktop computers. Because existing design tools do not readily lend

themselves to designing rich and nuanced interactive behaviours, de-

signers end up resorting to other applications to approximate some of

their ideas. For example, a designer might work with a video editor to

create an animation, and communicate the result with many descrip-

tions for a developer (Maudet et al., 2017). Thus, having a broader

range of tools would enable designers to create the appropriate rep-

resentation depending on what kind of prototype they want to

achieve.

 CHALLENGE 3. NEED FOR CLOSE-TO-PRODUCT

REPRESENTATIONS

While an interaction designer’s explorations will vary in terms of res-

olution2 (e.g., paper sketches versus an interactive prototype) across

the process, holding a physical representation can greatly help con-

textualize the interactions with the physical object. For example, a

small action such as viewing a paper sketch of a mobile interface in a

phone screen already helps a designer understand aspects such as

scaling issues when fitting many elements on a screen as shown by de

Sá et al. (2008). Given that smart objects are each unique in shape,

holding the physical object and testing the different buttons or sensor

reactions can create a dramatically different experience compared to

a two-dimensional prototype. Common low-cost and “fast” ap-

proaches such as paper sketches, storyboards, or click-through

2 The HCI literature often uses the word “fidelity” broadly to refer to both stage of the de-

sign and level of sophistication. As it will be explained later, Houde and Hill (1997) and

many sources in design theory define fidelity as the stage in the design process, from “reso-
lution”, which refers to the prototype’s degree of sophistication.

 DAVID LEDO, 2020 | 11

slideshows cannot achieve the small subtleties of the interaction

when prototyping, or reflect a responsive experience. This is where

Myers et al. (2008) distinguish that a majority of behaviours cannot

be represented as simple state transitions which can be sketched or

storyboarded. In the end, the design of the experience is directly tied

to the designer creating the experience and making the necessary

changes until the object “feels right”. Löwgren and Stolterman

(2007) refer to this ability as a development of a designers’ judge-

ment. Yet to arrive at a better judgement, it is important for designers

to create a physical prototype that they can physically hold, manipu-

late, and change, where they can learn within the creation process.

The creation process needs to be more malleable.

Given these challenges, the overarching research question that I iden-

tify and investigate in this thesis is:

How might we devise a means for designers to author interactive

behaviours for smart interactive objects?

1.3 THESIS STATEMENT
To address the three challenges presented in the previous section, I

propose methods for repurposing existing technologies to work as

base platforms for designing interactive behaviours. I posit using mo-

bile devices in place of custom electronics, and leveraging existing

desktop applications to author the design of interactive behaviours.

Mobile devices are common-place and contain a large number of sen-

sors and outputs: high resolution touchscreens, speakers, micro-

phones, cameras, accelerometers, gyroscopes, magnetometers, etc.

Additionally, they have built-in batteries and the ability to connect to

12 INTRODUCTION

the internet. Consequently, designers can place mobile devices that

drive the computation and act as the “soul” of the smart object, while

a fabricated enclosure can provide the object with a form, or “body”,

designers then should be able to leverage or repurpose familiar desk-

top tools to author prototypes, either through augmenting and auto-

mating existing tools (e.g., aiding in the 3D modeling process) or by

remapping the mobile sensor values in ways that can be recognized

by the existing applications (e.g., streaming a desktop video and ma-

nipulating a video timeline as a phone moves). Based on the above

points, my thesis statement is that:

We can repurpose existing hardware, such as mobile phones and

watches, and software to enable designers to create live interactive

prototypes for smart interactive objects without requiring code or

custom circuitry.

Given my thesis statement, this leads to the following research points

that guide my work:

1. Paradigm. I explore how designers can use mobile devices

and their built-in sensors and outputs in place of electronics

to author interactive smart object prototypes (realized via a

design metaphor: Soul–Body Prototyping)

2. Tools. I create proof-of-concept prototyping tools that build

on top of existing desktop applications to:

a. Create physical prototypes that enclose the mobile device

in an appropriate form given interactive behaviour speci-

fications (realized via a system, Pineal)

 DAVID LEDO, 2020 | 13

b. Repurpose familiar desktop tools to author rich interac-

tive behaviours that are driven by the user’s interactions

(realized via a system, Astral)

1.4 RESEARCH QUESTIONS
Given the research points in the previous section, I propose one pos-

sible solution to enable designers to overcome the challenges of (1)

needing multiple expertise, (2) lacking tool support, and (3) requiring

close-to-product representations outlined in §1.2. Through a proto-

typing paradigm and two interactive systems, I provide methods in

which designers can work with readily available technologies and

Figure 1.2 Visual Summary of Thesis Statement

14 INTRODUCTION

bring them into a new context. For example, a designer might create

a prototype for a smart speaker (Figure 1.2) by placing a smart watch

inside a mug, with the screen facing a lid that has a light diffuser, and

may use tools to author the form for the lid containing the watch, as

well as the watch’s behaviours. The watch can then sense the speech

input via the microphone, or leverage the accelerometer to detect

when people hold the mug, and flash a variety of animations. This

approach proposes one way to answer the overarching research ques-

tion in my work:

How might we devise means for designers to author interac-

tive behaviours for smart interactive objects?

To realize the three research points within my thesis statement, I

guide my work through three key research questions, summarized

and contextualized within the smart speaker example in Figure 1.2.

 RQ1. HOW MIGHT DESIGNERS REPURPOSE

MOBILE DEVICES TO PROTOTYPE SMART

INTERACTIVE OBJECTS?

To repurpose mobile devices as tools for smart object design, I pro-

pose Soul–Body Prototyping, a design metaphor in which the mobile

device (the ‘soul’) is placed inside a physical form (‘the body’), which

features the prototype’s inputs and outputs and meaning. The para-

digm enumerates the different sensors and outputs provided by mo-

bile devices, and describe how they might be repurposed to create

new kinds of inputs and outputs. Together with examples of how the

sensing and outputs can be repurposed, it is possible for designers to

appreciate what kinds of physical prototypes are possible, and how

 DAVID LEDO, 2020 | 15

they might be devised. The added mobile device also provides a way

for designers to imagine and even invent new kinds of interesting

smart objects. Answering this research question will address the first

point in my thesis statement (Figure 1.2-1).

 RQ2. HOW MIGHT DESIGNERS AUTHOR FORMS

AROUND MOBILE DEVICES TO MAKE THEM

LOOK AND FEEL LIKE SMART OBJECTS?

To generate physical forms in which the designer can incorporate the

mobile device, I created Pineal. Pineal is a prototyping tool that can

generate 3D printed physical objects that house mobile devices and

expose the necessary inputs and outputs, informed by the Soul–Body

Prototyping Paradigm (RQ1). Designers can import a pre-built 3D

model, and use visual programming to author behaviours that run on

the mobile device and also serve as instructions to modify the 3D

model to fit a mobile device and use the appropriate inputs and out-

puts. This tool addresses point 2A of my thesis statement, as shown

in Figure 1.2-2A.

 RQ3. HOW MIGHT DESIGNERS LEVERAGE

EXISTING FAMILIAR SOFTWARE TOOLS TO

AUTHOR INTERACTIVE BEHAVIOURS

FOR SMART OBJECTS?

I lastly explore how designers can create nuanced interactive behav-

iours through a prototyping tool called Astral. Astral allows designers

to use existing desktop tools and repurpose them for mobile device

interactive behaviour design. It creates a closed-loop of interaction in

which a portion of a desktop display is mirrored onto the mobile

16 INTRODUCTION

phone screen, and ranges of sensors are converted into mouse and

keyboard events through interactive visualizations. Through Astral it

is possible to use familiar desktop tools and encompass both the abil-

ity to trigger actions, as well as the ability to create interaction-driven

animations, that is, animations that operate as a function of the inter-

action as opposed to simply a function of time. This last goal realizes

point 2B of my thesis statement (Figure 1.2-2B).

 RESEARCH QUESTION FOUNDATIONS

As I carried out my dissertation research, I found key points of

knowledge to be missing within the field which were necessary to bet-

ter understand the research at hand. As a result, the research ques-

tions are informed by, and sit upon integrating multiple theories in

different fields beyond HCI, such as design research and interaction

design. In particular, the following secondary questions arose:

Who Are Interaction Designers?

Research in HCI often uses a broad term to talk about designers,

which does not necessarily reflect a specific design discipline. In par-

ticular, using the term “designer” in HCI often leads to a level of

vagueness which allows researchers to stretch the definition. Zim-

merman et al. (2007) have pointed out the need to distinguish inter-

action designers from software developers. As a result, it is necessary

to best understand who interaction designers are, what their skillset

is, and how they work if we are to design technologies to support

them and their practice.

 DAVID LEDO, 2020 | 17

What is Interactive Behaviour?

The term “interactive behaviour” is often used to describe what inter-

action designers do (Cooper et al., 2014). While the term is effective

at differentiating itself from form (i.e., physical form or layout of an

interface), there is no definition of what is meant by interactive be-

haviour, therefore creating a fundamental ambiguity. While behav-

iour could refer to what an object does, there are many subtleties to

behaviours that could be further clarified integrating different theo-

ries of input.

How Do We, or Should We, Evaluate Prototyping Tools?

Hewett et al., (1992) define Human–Computer Interaction as a “dis-

cipline concerned with the design, evaluation and implementation of inter-

active computing systems for human use”. Indeed, Kaye (2007) states

that knowledge creation requires some form of validation. As a re-

sult, HCI research often points to evaluation as a necessary compo-

nent (Greenberg and Buxton, 2008), typically in the form of user

studies, especially in the form of usability. However, the contribution

of HCI systems research and evaluation in HCI research is often a

controversial topic in the community given the variety of methods

available to execute the research and the different perspectives com-

ing to play. Having a solid foundation on evaluation methodologies

helps strengthen the research creation process in two ways. First, it

provides a framework in which one can assess the extent of the work

done, and second, it provides a reference point of questions to con-

sider when carrying out research even from the early stages.

18 INTRODUCTION

Consequently, while these questions may seem secondary to the re-

search I am carrying out, they are fundamental stepping stones to de-

vise paradigms and tools to help interaction designers in the creation

of smart objects.

1.5 THESIS ORGANIZATION
My thesis is structured in three main parts across ten chapters includ-

ing this introduction, visually summarized in Figure 1.3.

 PART 1: PROTOTYPING INTERACTIVE BEHAVIOUR

The first part of the thesis focuses on the theory of Interactive Be-

haviours behind my work. The conceptual foundations in this part

provide a base which defines (1) the target audience (interaction de-

signers), (2) what interactive behaviours are, and (3) the contribution

and role of evaluation of prototyping tools.

Chapter 2 explores and integrates different sources in HCI Research,

Design Research, and Interaction Design Practitioner works and sur-

veys. This integration helps define who interaction designers are, and

what activities they carry out, which is something that often remains

unclear in HCI literature. Chapter 3 provides a descriptive frame-

work of interactive behaviour, in which I bring together different ap-

proaches to create a working definition of behaviour in the context of

interaction design. Chapter 4 narrows down on prototyping ap-

proaches for interactive behaviour and shows the landscape of tech-

niques and tools followed by practitioners today. These approaches

and tools help to: understand the limitations of current tools, and sit-

uate my work within the landscape of tools that offer different de-

grees of prototyping interactivity. I further demonstrate that a lot of

 DAVID LEDO, 2020 | 19

the expressiveness and fine-tuning of interactive behaviour is

achieved through coding which is often beyond the expertise of de-

signers. Then, I provide a taxonomy of prototyping tools in HCI and

industry and show the different approaches and their processes. The

question that arises from examining these tools is their research con-

tribution and their evaluation, which provides further inquiry on the

contribution of my tools. This is a larger challenge in Human–Com-

puter Interaction research, as prototyping tools fall into the category

of HCI toolkits, which do not have well-established methods to eval-

uate the work. Chapter 5 contextualizes the role and contribution of

toolkits in HCI research, and analyzes the different evaluation meth-

ods through a survey of 68 representative papers. These results help

further shape the meaning of evaluation in HCI systems research

while also providing a set of methods that ultimately defined my own

research approach in this thesis.

 PART 2: SOUL–BODY PROTOTYPING

The second part of my thesis, Soul–Body Prototyping, focuses on the

primary conceptual contribution of my work. Chapter 6 outlines

Soul–Body Prototyping as a metaphor and paradigm for designers. In

it, I suggest designers can create smart object prototypes by using mo-

bile devices in place of custom electronics and placing them into

forms that provide the prototype with meaning and physical inputs

and outputs. I provide a design space of Soul–Body Prototyping

which looks at ways to repurpose different mobile sensors and out-

puts. Chapter 7 demonstrates Soul–Body Prototyping as a feasible

and expressive paradigm by featuring and analyzing undergraduate

HCI student projects. I discuss a selection of five early explorations

20 INTRODUCTION

with undergraduate students in a five-week assignment, as well as a

full Soul–Body research system, WatchPen, which represents a case

study of a 3-month undergrad research project I supervised.

 PART 3: SYSTEMS

The third part of the thesis focuses on Systems and is built upon the

knowledge outlined in the previous part. It operationalizes Soul–

Body Prototyping into software tools designers can use. Chapter 8

shows Pineal, which supports designers in creating physical proto-

types with basic behaviours through a 3D modeling tool and a visual

programming environment. Chapter 9 shows Astral, a prototyping

tool which focuses on the creation of interactive behaviours for mo-

bile devices and smart objects using existing familiar desktop tools.

Lastly, Chapter 10 presents overall conclusions for my works, inte-

grating the resulting research contributions from previous chapters

and providing reflections on what this work means for existing prac-

tices. Here, I also discuss possible future directions for the continua-

tion of this work.

 DAVID LEDO, 2020 | 21

Figure 1.3 Thesis overview showing this dissertation’s chapters and parts.

PART 1
INTERACTIVE
BEHAVIOURS

 BACKGROUND

“Santayana taught us that those who do not know history are con-

demned to repeat it. That surely is true in design as in anything else,

but in design there is a corollary: those who do know history are privi-

leged to repeat it at a profit.” —Ralph Caplan

Since I propose methods for repurposing existing hardware and software to

enable designers to prototype interactive behaviours for smart interactive

objects, it is important to answer three foundational questions that

bound this thesis: who interaction designers are; what interactive be-

haviours are; and how to assess the value of prototyping tools for in-

teractive behaviour. In particular, this chapter has the added value of

being an integration of different sources in what might seem as simi-

lar, yet are disconnected areas, including Design Research, Human–

Computer Interaction, Interaction Design, and User Experience De-

sign. Thus, this integration provides base definitions, as well as an

added understanding and structure to the role of interaction design-

ers in designing interactive behaviours. To answer the three founda-

tional questions, I structure this review as follows:

26 BACKGROUND

Interaction Designers (§2.1). One discipline that tends to be under-

defined and sometimes misinterpreted in HCI is interaction designer.

In particular, what needs further explanation is the kind of back-

ground an interaction designer has, how they think, and what their

role is. To provide a holistic understanding of interaction design, I

begin by defining and scoping what is meant by design (§2.1.1), user

experience design (§2.1.2), and then narrow down into interaction

design (§2.1.3). The thought process of interaction designers is simi-

lar to other design disciplines (§2.1.4), but what changes is their role

in the product development process (§2.1.5), and specifically how

their ideas come together in the design phase (§2.1.6). Knowing these

elements helps better understand the target audience of this thesis.

Prototyping (§2.2). Given that designers work through prototyping,

understanding prototyping in the context of interaction design is a

fundamental building block for this thesis. Interaction designers ex-

plore their ideas through prototypes. I explain what prototyping is

(§2.2.1), why designers do it (§2.2.2) and what it might serve in the

product design process (§2.2.3). I discuss how the literature inter-

prets what types of questions prototypes can examine (§2.2.4) and

frame interaction design prototypes into what I call Exploratory Pro-

totyping (§2.2.5). Framing prototyping as exploratory prototyping

puts together the different variables that prototypes might investigate

and teases out interactive behaviour from that.

2.1 INTERACTION DESIGN
This section answers the first foundational question posed in this the-

sis of who interaction designers are. I discuss the background pertain-

ing to interaction designers, and connect different sources to provide

 DAVID LEDO, 2020 | 27

an understanding of the target audience for the systems and tools of-

fered in this thesis. This definition requires narrowing down from the

definition of Design (§2.1.1), to the more specific User Experience

Design (§2.1.2), from which Interaction Design is a sub-discipline

(§2.1.3). Once interaction design is defined, it is possible to discuss

who interaction designers are (§2.1.4), and explain how designers are

trained to think about problems generally (§2.1.5) before introducing

the design process in larger product development as carried out in

interaction design practice (§2.1.6).

 WHAT IS DESIGN?

Before delving into the specifics of interaction design, I first explain

what I mean by design. Design can refer to an individual instance

(e.g., discussing a design with a client) or as a process (e.g., designing

a chair). In the context of my thesis, I refer to design as a process.

The Oxford Dictionary defines design as the “purpose, planning, or

intention that exists or is thought to exist behind an action, fact, or mate-

rial object”. Dix et al. (2003) describe design as “achieving goals within

constraints”, which articulates that design has a specific purpose, a

set of constraints (e.g., time, budget, materials), and trade-offs.

Caplan (1982) states that “design is a process for making things right.

For shaping what people need”, which brings a key point – in achieving

the specified purpose, design ultimately will reach people and has the

potential to impact their lives. Hartmann (2009) articulates that de-

sign has three core characteristics: (1) it is a process and has a struc-

ture, (2) it is not manufacturing or software development, and (3) it

has clients and end-users.

28 BACKGROUND

Thus, I define design as:

Design is the structured, and informed process by which things (actions or

objects), that ultimately reach an audience, are intentionally made under

specific constraints. The design process is informed through probes called

prototypes, which examine one or more aspects of the implementation, in

varying fidelities and resolutions, to ultimately create a refined solution.

 USER EXPERIENCE DESIGN

One discipline of design which has emerged in the last few decades,

especially manufacturing and technologies become more common-

place, is the area of user experience design. Norman (2013) describes

experience design as “the practice of designing products, processes, ser-

vices, events, and environments with a focus placed on the quality and en-

joyment of the total experience”. Cooper et al. (2014) claim that all

realms of design influence people’s experiences by “carefully manip-

ulating the variables intrinsic to the medium at hand” (pp. xxii). To

show how different design disciplines craft experiences, they use dif-

ferent examples, such as: a graphic designer creating an experience

through a poster by manipulating fonts, photos and illustrations; an

industrial designer creating an experience through a chair by combin-

ing different materials and construction techniques; and an interior

designer creating an experience for a space by using layout, lighting

and materials.

Cooper et al. (2014) further refine the context of user experience de-

sign to the creation of digital products, which aligns with definitions

by Norman (2013) and Moggridge (2007). Within user experience

design, Cooper et al. (2014) promote three overlapping concerns:

Figure 2.1 User Experience Design as an
overlap of content, form and behaviour.
(Adapted from Cooper et al. (2014)).

 DAVID LEDO, 2020 | 29

form (done by graphic and industrial designers), content (done by

information architects, copywriters, animators, and sound design-

ers), and behaviours (done by interaction designers), illustrated in

Figure 2.1. The particular nuancing of these three concerns, as it will

be described later, is important, as it helps separate the elements of

layout and form from the elements of behaviour.

 INTERACTION DESIGN

Cooper et al.’s (2014) depiction of user experience design portrays

interaction design as a piece of the larger puzzle, which they attribute

with the creation of “interactive behaviour”. Löwgren and Stolterman

(2007) define interaction design as “the process that is arranged within

existing resource constraints to create, shape, and decide all use-oriented

qualities (structural, functional, ethical, and aesthetic) of a digital arti-

fact” (pp. 5). The Interaction Design Association (IxDA)1 scopes the

designed technology as computers, mobile devices, appliances and

beyond. Moreover, Norman (2013) frames interaction design as how

people interact with technology, where “the goal is to enhance people’s

understanding of what can be done, what is happening and what has just

occurred. Interaction design draws upon principles of psychology, design,

art, and emotion to ensure a positive, enjoyable experience” (pp. 5).

 WHO ARE INTERACTION DESIGNERS?

Given the multidisciplinary nature of interaction design, it does not

yet have a well-defined home discipline compared to other forms of

1 https://ixda.org/ixda-global/about-history/ – accessed December 21, 2018.

https://ixda.org/ixda-global/about-history/

30 BACKGROUND

design such as architecture and graphic or industrial design. The dis-

cipline from where a practitioner comes from can shape their overall

approach, as the formal training provides practitioners with: (1) tools

and foundational theories (Stolterman, 2008), (2) methods and pro-

cesses to approach problems (Cross, 1982), and (3) ways of knowing

(Cross, 1982). An online survey by Pratt and Nunes (2012), illus-

trated in Figure 2.2, asked respondents about their formal back-

ground in user experience design, which showed that over 68% of de-

signers are not formally trained in specialized technical disciplines

(e.g., computer science). Other surveys (Subtraction.com 2015, Ux-

tools.co 2017 and 2018), as well as prior studies in the HCI commu-

nity, such as Myers et al. (2008) and Maudet et al. (2017) also discuss

what tools interaction designers use, as well as their expertise, which

corroborate this information and will be further described in Chapter

4, §4.2. Different design disciplines (e.g., graphic and industrial de-

sign) all have similar foundations as part of their training, though the

specific activities carried out may vary. This training provides design-

ers with a way of thinking different from those taught in other disci-

plines (e.g., computational thinking2).

 HOW DESIGNERS THINK

“Designers in action are commonly described as being intuitive or sensitive

to a situation. Sometimes the process is even seen as badly structured, sub-

jective, or fuzzy. This same process can, however, also be seen as a highly

2 By “computational thinking”, I refer to the way of thinking taught in areas such as com-

puter science, by which problems are decomposed into abstractions with the goal of auto-

mation (Wing, 2008).

Figure 2.2 Survey results adapted from
Pratt and Nunes (2012). Participants were
asked: What is the professional background
that led to your UX position?

 DAVID LEDO, 2020 | 31

rigorous and disciplined way to act if seen from a designerly point of view”

(Stolterman, 2008).

Design problems are often described as “wicked problems” (Bu-

chanan, 1992). According to Rittel and Webber (1973), wicked prob-

lems: have no definitive formulation and requires developing an ex-

haustive list of potential solutions; have no clear stopping rule, with

multiple right and wrong answers; and have changing requirements

that makes them hard to test. As a result, design problems require a

way of thinking that can support dealing with these wicked problems.

Cross (2011) explains how designers think based on multiple inter-

views, research experiments and observations, described next.

The Design Thinking Process

The problem is actively re-formulated. Designers define the prob-

lem that needs to be solved, which may be different from the problem

given: “Goals are set at high level, with clear objectives and direct terms…

It is this simple clarity which might make other people conclude that the

goal is simply impossible” (Cross, 2011, pp. 73). Perhaps Cross is point-

ing out that designers acknowledge that the current challenge is a

wicked problem, and as a result making goals high level helps them

see the big picture.

There are periods of intense activity followed by reflective con-

templation. Cross (2011) discusses that designers will engage in de-

sign activities in an almost obsessive fashion, and then completely

slow down to reflect on what took place.

Solution strategies are devised abruptly. Cross (2011) states that a

strategy to solve the problem “is achieved by means of sudden insight

32 BACKGROUND

which comes when relaxing after deep immersion in the problem, and the

solution details then cascade from the concept” (pp. 74). Designers create

new patterns that then further re-formulate the problem while sug-

gesting directions for a solution – problem and solution co-evolve.

Methods are non-systematic and done in parallel. Cross (2011)

stipulates that design activity continues at many levels simultane-

ously, in which drawing acts as a primary thinking tool providing dif-

ferent views and different levels of detail. Designers also frequently

build models and mock-ups.

Strategic Aspects of Design Thinking

Cross (2011) describes three strategic aspects of design thinking:

Approaching problems as ‘broad systems’. Cross means that de-

signers think about the bigger picture and how the different pieces

relate to each other. He exemplifies this by describing how designers

might think of a car in terms of the different parts that make it go,

while engineers might focus on designing and perfecting a specific

part, such as a clutch. This view is important, as it shows that design-

ers are thinking about the big picture, but also the relationships be-

tween the different elements.

Framing the problem in a personal way. Cross discusses how de-

signers will frame problems based on the requirements of a situation,

but the solution will be strongly influenced by their personal motiva-

tion (e.g., altruistic vision of pleasing potential end-users).

Designing from First Principles. Cross explains that designers con-

stantly identify and inform their design through first principles. In

 DAVID LEDO, 2020 | 33

Human–Computer Interaction literature, there is a similar concept,

known as design guidelines, which are descriptions that “provide di-

rections for designers or highlight factors that should be considered when

designing interactive systems” (Wiberg and Stolterman, 2014, pp. 533).

Wiberg and Stolterman (ibid) add that the goal of design guidelines is

to specify and formulate factors that a design needs to consider.

Thus, designers come with their existing knowledge, but also con-

tinue to learn by doing – essentially experiential learning (Kolb, 1984),

and further inform decisions from other sources, including general

research, user research, evaluation results, etc. Cross (2011) adds

that designers use first principles implicit or explicitly in their de-

signs. Indeed, given that designers frame problems in personal ways

and each have different experiences, they might be implicitly lever-

aging these views as first principles throughout the process. Alterna-

tively, designers might learn from different sources, such as user re-

search, or in their own experimentations, what the successes and fail-

ures of each solution might be.

Figure 2.3 Design strategies of creative designers as described by Cross (2011). Dia-
gram adapted from Cross (2011, pp.78)

34 BACKGROUND

These thinking processes and strategies, summarized in Figure 2.3,

help understand how designers approach situations, and how they fit

within the larger design process. The thinking process shows how de-

signers need to somehow explore ideas to let these problems and so-

lutions co-evolve. Within the design process, designers have a dedi-

cated phase where they actively take on this exploration.

 THE DESIGN PROCESS: HOW INTERACTION

DESIGNERS WORK

When discussing the design process, the literature can refer to two

different workflows: the product development process as a whole, or

the design phase within that process.

The Product Development Process

The larger product development process encompasses different

phases such as user research, design, implementation, and evalua-

tion. The product development process varies across organizations

and literature. In fact, Dubberly3, a software design consultancy com-

pany has compiled a document with over one hundred different mod-

els of the product development process across companies, institu-

tions and academic publications, and it shows how different organi-

zations have different expectations as to what activities an interaction

designer might tackle (e.g., user research). Figure 2.4 shows some

different example instantiations of the process, all of which involve

designers generating ideas and creating prototypes within a “design

phase”, the focus of this dissertation.

3 http://www.dubberly.com/articles/how-do-you-design.html – accessed March, 2019

http://www.dubberly.com/articles/how-do-you-design.html

 DAVID LEDO, 2020 | 35

Figure 2.4 Different examples of the design process, as explained by Dix et al. (2004), Cooper et al. (2014), Greenberg (1996)
and Gibbons (2016). Diagrams adapted from the respective sources.

36 BACKGROUND

The Design Phase

The second way in which the literature may refer to the design phase

itself within the process, which consists of the activities that unfold

from the designer generating ideas to arriving at a potential solution

under certain constraints (e.g., time, budget, particular idiosyncrasies

of the goal). These artifacts are later implemented by someone else

(e.g., software developers) and the process is often referred to as de-

sign handoff. Cross (2011) describes a process followed by experi-

enced designers from an experiment, which included the following

steps: (1) quantifying the problem, (2) generating concepts, (3) refin-

ing concepts, (4) selecting a concept, (5) designing, and (6) present-

ing. These steps resonate with other discussions of the design pro-

cess, including Buxton (2007), Laseau (1982) and Pugh (1991).

Buxton (2007) explains design has two main facets – getting the right

design and getting the design right (explained in Figure 2.5). The first

step of the process, is to thus generate a multitude of ideas which to

find a viable solution. As the process of idea generation moves for-

ward, ideas may evolve in different ways. Rosenman and Gero (1989)

suggest that design ideas might result from combination (taking fea-

tures from existing designs), mutation (modifying elements of exist-

ing designs), analogy (making associations outside the current do-

main), or first principles (see Section 2.5). Cross (1997), in empirical

studies, corroborates these approaches, and adds the concept of emer-

gence – where ideas evolve by recognizing emergent behaviours in

structure or function. What is particularly interesting about emer-

gence is the implication of evolution of ideas, as well as how the four

Figure 2.5 Getting the design right vs. get-
ting the right design, paraphrased from
Greenberg et al. (2011)

 DAVID LEDO, 2020 | 37

previous elements of combination, mutation, analogy and first prin-

ciples might come together. The result is that ideas do not exist in iso-

lation, they inform each other. Frank Chimero, a professional interac-

tion designer, describes his process in a similar fashion:

“The bad ideas have been documented and captured in some way,

which turns them into a resource that can be mined in the process.

New and better ideas will certainly come as well, but mixing the

two speaks to the cumulative nature of improvising and the special

sort of presence it requires. Ideas build on top of one another, and

to do so well, one must be in the moment, actively poking at the

current situation to use its opportunities as material for construc-

tion.” (Chimero, 2012, pp. 40)

Looking at emergence as a descriptive model of creative design helps

understand how the design process might arrive at a potential solu-

tion to the problem. Laseau (1980) describes design as a process of

elaboration and reduction, diagrammed in Figure 2.6. Greenberg et

al. (2011) describe Laseau’s process as generating solutions, while

also deciding which of those ideas are worth pursuing and further de-

veloping those solutions. Pugh (1991) further describes the design

process as a funnel, shown in Figure 2.7, where cycles of elaboration

Figure 2.6 Laseau’s view (1982) of the design process as elaboration and reduction.
Diagram based on illustration by Greenberg et al. (2011).

38 BACKGROUND

and reduction converge towards a final solution, until a single con-

cept, which as a result of the convergence has been refined and devel-

oped, is selected. Thus, because ideas inform each other, and in the

thinking process (see §2.1.5) the problem and solution are co-evolv-

ing, the design process naturally evolves towards discovering more

fine-grained details of what will become the resulting solution.

In this process, interaction designers create prototypes, which Lim et

al. (2008) describe as manifestations of ideas, which get developed in

different resolutions (degrees of sophistication) depending on the type

of knowledge the designer is trying to obtain from each.

 SUMMARY

Design is the structured process by which things are intentionally

made under specific constraints. User Experience Design focuses on

the quality of the overall experience. According to Cooper et al.

(2014), User Experience Design is constrained to digital artifacts,

where it is the result of the intersection of form, content and interac-

tive behaviour – the latter which is the focus of interaction designers.

Figure 2.7 Pugh’s description of the design process as a funnel (1990) with multiple cy-
cles of elaboration and reduction that converge towards a solution. Diagram based on
illustration by Greenberg et al. (2012).

 DAVID LEDO, 2020 | 39

Interaction designers have a wide variety of different backgrounds

given its multi-disciplinary nature. However, only a few interaction

designers are specialized in fields of technology (e.g., information

technology or computer science). Given that design problems are of-

ten “wicked problems”, designers are trained with unique ways of

thinking, and strategies. Designers follow a non-systematic approach,

where they generate multiple ideas, and where the definition of the

problem and solution co-evolve.

The product development process often has a dedicated design phase

where interaction designers explore and devise solutions to problems:

they explore multiple ideas, which might come from different places

and inform each other, and are externalized and manifested in differ-

ent degrees of sophistication. The different explorations inform each

other, meaning that they do not exist in isolation, rather the solutions

emerge from the different idea manifestations. These manifestations

are called prototypes.

2.2 PROTOTYPING: HOW DESIGNERS EXPLORE
IDEAS

Different design disciplines have particular ways of exploring, navi-

gating and evolving through ideas. Architects might draft blueprints,

put together maquettes, create three-dimensional CAD4 models; in-

dustrial designers might create visual renderings or make physical

models out of foam which are sanded down; and graphic designers

may print out early versions of their visual arrangements. All of these

4 CAD stands for Computer-Aided Design

40 BACKGROUND

are different forms of externalization, where the physical manifesta-

tions make it so the “world can speak back to [the designer]” (Schön,

1987). When describing interaction designers, Lindell (2014) states

that interaction designers have a feel for how a design might be real-

ized, which is “obtained by transforming design into technology” (pp.

617). Lindell adds that interaction designers create realistic represen-

tations in a quick and at times chaotic manner. These manifestations

of ideas are all different kinds of prototypes. I next describe what pro-

totyping is (§2.2.1), why designers prototype (§2.2.2), the aim of pro-

totypes (§2.2.3), and how it is possible to deconstruct those aims as

structure, behaviour and usage (§2.2.4).

 WHAT IS PROTOTYPING?

To a lay person, prototyping might mean “a first or preliminary version

of a device or vehicle from which other forms are developed” 5, but proto-

typing is much more than a single preliminary version. A more suita-

ble definition for prototyping is Lim et al.’s (2008) take: “prototypes

are a tangible attempt to view a design’s future impact so that we can pre-

dict and evaluate certain effects before we unleash it on the world” (pp. 8).

Beyond Schön’s view that design is a reflective practice – a conver-

sation with the situation (1987), Lindell (2014) argues that design,

through its externalization, is a form of craftmanship: “patient and not

tempted to do quick fixes” (pp. 617). Lindell further cites Sennet’s view

of crafting (2009), where problems are identified in the making pro-

cess and solutions are identified simultaneously: a relationship be-

tween hand and mind.

5 https://en.oxforddictionaries.com/definition/prototype – accessed January 2019

Figure 2.8 Buxton’s (2007) distinction be-
tween sketching and prototyping. While
ideas in design indeed naturally evolve
from exploration to specificity, the design
literature still largely refers to all of these
techniques as prototyping. Figure repro-
duced from Buxton (2007).

https://en.oxforddictionaries.com/definition/prototype

 DAVID LEDO, 2020 | 41

 WHY DO DESIGNERS PROTOTYPE?

Because prototypes are different forms of externalizations, they can

serve different roles in the design process. The next subsections dis-

cuss how prototypes can be used for exploration, specification and

communication, as well as evaluation.

Prototyping as Exploration

Because Human-Computer Interaction and Interaction Design draw

from multiple disciplines, including design, software development,

and engineering, prototyping has different interpretations. To rem-

edy this, Buxton (2007) distinguishes between prototypes and

sketches to illustrate different roles, as shown in Figure 2.8. Buxton

creates a distinction where sketches are exploratory and prototypes

are meant to specify. Yet, much of the design literature, including

Goel and Pirolli (1992), Logan and Smithers (1992), Lim et al. (2008)

and Cross (2011), advocate for prototyping as a means to design

thinking in the same way that Buxton discusses sketching: prototypes

are “tools for traversing a design space where all possible design alterna-

tives and their rationale can be explored” (Lim et al., 2008, pp. 2) as

opposed to means to “identify and satisfy requirements” (ibid, pp. 2).

Logan and Smithers (1992) warn against seeing prototypes as mere

parametric descriptions, or seeing them as means to generate descrip-

tions, as this view can lead to two flawed assumptions: (1) prototypes

have little or no link between each other, and (2) solutions can be

achieved through search. Instead, it is not through the prototypes

themselves, but through the exploration activity itself that gives de-

signers such an understanding, as it suggests the breadth of possible

solutions, and conveys whether the solution might be feasible given

42 BACKGROUND

the current constraints. Lim et al. (2008) add that the strength of a

prototype lies in the fact that it is incomplete: “it is the incompleteness

that makes it possible to examine an idea’s qualities without being a copy

of the final design… [it] structures the designer’s traversal of the design

space by allowing decisions along certain dimensions” (pp. 7).

The reason why prototypes shift towards something that appears

more like a specification can be explained by the design funnel of

§2.1.6 – ideas evolve and inform each other, which leads to more set

decisions. The types of manifestation might shift over-time, and

likely take on higher resolutions. However, level of sophistication may

not always correlate to the stage of the design process (Houde and

Hill, 1997).

Prototyping as Specification and Communication

Prototyping can be seen as a means of communication between de-

signers, developers and stakeholders (Sharp et al., 2015). Floyd

(1984) explains that unlike traditional manufacturing, software sys-

tems have often unspecified and often changing requirements, and

prototyping is a means of discussion to explore and define the re-

quirements. Moreover, prototyping can support rapid feedback cy-

cles between designers and clients, communicate new ideas to devel-

opers and answer unanswered questions (Gerber and Caroll, 2012).

Thus, the prototypes become a shared instrument that designers can

leverage to devise solutions (Bødker and Grønbæk, 1991). Indeed,

Bertelsen (2000), as well as Leiva (2018), describe prototypes as

boundary objects (Star and Griesemer, 1989) between communities of

practice, as designers can ground conversation between different

groups of people (developers, clients, users, etc.). As the design cycle

 DAVID LEDO, 2020 | 43

progresses, the communication might also become more a form of

specification, where designers can clarify their intent with develop-

ers. In fact, studies of the communication between designers and de-

velopers show that designers will go as far as resorting to high-end

video editing tools, such as Adobe AfterEffects, to describe nuanced

animations, transitions and interactions to developers, which are then

supplemented with explanations (Maudet et al., 2017).

Prototyping as Means of Evaluation

Prototyping is also described as a means of evaluation. By creating

early versions of the system (e.g., using paper), it is possible to con-

duct usability inspection and evaluation methods to more rapidly it-

erate between versions of the system (Nielsen, 1993). Lim et al.

(2008) argue that this view, while more traditional in earlier Human-

Computer Interaction approaches, tends to favour standardized

graphical user interfaces, and is only one narrow way of looking at

prototyping. Furthermore, the usability inspection of a paper proto-

type may not be as viable in a post-WIMP (Windows, Icons, Menus

and Pointers) approach given that state transitions and the like are

more difficult to convey, thus requiring higher resolution solutions.

What these different views on prototyping show thus far is that pro-

totyping is primarily a means of exploration through making, where

designers can discover an answer to a question. As questions get an-

swered, the solution takes shape which can additionally be used for

communication as well as evaluations. Such questions become more

concrete as a result of the cumulative knowledge from the prior pro-

totyping activity.

44 BACKGROUND

 WHAT DO PROTOTYPES PROTOTYPE?

While the last section describes the different uses and benefits of pro-

totyping, this section shows how prototypes answer specific ques-

tions. Indeed, Lim et al. (2008) describe prototypes as filters – a way

to view the problem and explore the answer to a question.

Given multiple sources from a variety of disciplines (e.g., engineer-

ing, computer science), prototyping has different interpretations as

to what questions they might answer. However, many of these dis-

cuss elements outside of design (e.g., technical implementation).

Gero (1990) described prototypes as parametric descriptions that de-

fine function, structure, expected behaviour, and actual behaviour of an

object. Lichter et al. (1994), on the other hand, described prototyping

from the point of view of software development: a presentation proto-

type is used to convince potential clients that a problem can be solved;

a prototype proper shows functional elements to clarify the problem at

hand; breadboards examine implementation details to help software

specification; while a pilot system illustrates how the software works

and enables early experimental testing. Houde and Hill (1997) posit

prototyping in terms of what they might be trying to articulate when

creating software applications, a prototype might prototype: imple-

mentation, examining how to solve a software problem; role, investi-

gating how a system might be used in the real world; and look and feel,

referring to the visual and behavioural elements within the system.

Houde and Hill argue that these prototyping angles are not mutually

exclusive, and that a prototype might investigate the answers to these

questions in different levels. Houde and Hill also distinguish between

 DAVID LEDO, 2020 | 45

fidelity (stage within the design process) versus resolution (level of so-

phistication of the prototype), as it is not always the case that the level

of sophistication only increases as the design process moves forward.

Lim, Stolterman and Tenenberg (2008) propose a similar and more

nuanced view of prototyping to Houde and Hill, though much more

focused on broader aspects design (e.g., industrial design), especially

designing physical form. Lim et al. provide a framework for thinking

about prototyping in terms of an anatomy composed of filters and

manifestations. Prototypes as filters focuses on what aspect in partic-

ular the prototype is trying to explore, which can include: appearance

(physical properties such as size, colour, shape, etc.), data (infor-

mation architecture, such as the number of labels, content organiza-

tion), functionality (system functions and user needs), interactivity

(behaviours in terms of input, output, feedback, and information),

and spatial structure (how components are combined, such as the spa-

tial arrangement of the interface). As manifestations (i.e., as arti-

facts), prototypes might have variable materials (medium), resolution

(level of sophistication), and scope (range of what is covered).

 EXPLORATORY PROTOTYPING IN

INTERACTION DESIGN

Because the views on what prototypes might target are so broad, I am

taking the relevant points of what prototypes aim to achieve when it

comes to exploration in interaction design. Given interaction design-

ers’ training (see §2.1.4), they are not concerned with the specific de-

tails of how a system or artifact might eventually be implemented

(i.e., examining functionality and actual implementation details). The

key takeaway is that this subsection contextualizes the focus of this

Figure 2.9 Schematic of this thesis’ explor-
atory prototyping in the context of interac-
tion design. Given existing research on
what prototypes prototype, I argue that ex-
ploratory prototyping has the components of
Structure, Behaviour and Usage. Struc-
ture is the basis (form or layout) which the
person interacts with. Behaviour is what
the system does before, during or after the
interaction. Usage refers to a person’s abil-
ity to try out the behaviours given the pro-
vided structure.

46 BACKGROUND

thesis, namely the exploration of interactive behaviour (defined in

Chapter 3), as we need to better understand: what do interaction de-

signers need to consider to explore ideas in interaction design? Note

that this is not an exhaustive categorization. All these elements are

interconnected in some way – a prototype’s structure defines the pos-

sible behaviours, and possibilities of trying it out. As a result, to test

the behaviours, there needs to be some form of underlying structure

(e.g., an interface mock-up) of some resolution or fidelity from which

the behaviour can be the basis. This is summarized in Figure 2.9.

Given that this outline of exploratory behaviour builds on what pro-

totypes prototype in different areas of design, computer science, and

engineering, Figure 2.10 shows how all of these elements are inte-

grated. Note that in particular, implementation details are not in

scope of idea exploration.

Structure: The What

Physical Form. The most basic forms to work with in interaction de-

sign would be to assume one is working with existing types of devices,

such as a desktop or laptop computers, or some type of mobile device.

Forms can become more complex, especially when considering an ap-

pliance such as a radio. The form itself also provides users with the

structure of the input and output. For example, a radio may have

knobs and sliders that the user can manipulate as inputs, and the

speakers may change volume and react accordingly. The placement

and arrangement of the controls matters as well.

Visuals and Layouts. When working with digital screens, users are

dealing with a digital counterpart to the form. The structure is de-

fined by the layout of the interface and the types of controls provided

Figure 2.10 Exploratory prototyping in the
context of prior work discussing what proto-
types might prototype. Note that in the con-
text of interaction design, reflecting system-
level implementation is not in the scope of
the prototyping practice.

 DAVID LEDO, 2020 | 47

to the user. What makes the visual and layout more complex is that

the contents are dynamic – they can change any time.

It is also worth mentioning that the structural elements of form and

layout are very similar, though form is more related to physical ar-

rangement of controls, while layout is more related to the digital ar-

rangement of the different controls. An artifact may feature both

structural elements, such as a radio with a digital display.

Behaviour: The How

The structural elements outline “what people interact with”,

whereas behavioural elements look at “how people interact with the

what”. Thus, interactive behaviour is ultimately about how the inputs

become outputs, all which tie back to the structure of the device/ar-

tifact/software. Interactive behaviour will be explained further in

depth in Chapter 3.

Usage: First-Hand Experience with the Concept

To get a sense of how the behaviours work, the designer needs to en-

vision them in action, and perhaps even try them out. A prototype

might also be created to explore how it might be used. The evaluative

approach to prototyping looks at giving a prototype to users that they

can test, but from an exploratory perspective, designers can execute

ideas that they can try out and foster self-reflection to arrive at new first

principles. The most basic form of usage requires little behavioural el-

ements, as it is fostered by imagination. For example, Jeff Hawkins

(Moggridge, 2007) carried a block of wood as a stand-in for the Palm

Pilot, and would pretend to use it throughout the day to understand

how it might work (e.g., for scheduling, setting reminders during

48 BACKGROUND

meetings). However, as one needs to understand more complex be-

haviours that are less tied to usability, such as how a system provides

feedback, or other experiential elements such as what happens at a

system-level as a result of continuous actions (e.g., how a display

might show feedback of interaction with a slider), it is necessary to

have a more fleshed out interactive behaviour within the prototype.

 SUMMARY

In the design process, designers create prototypes as a way to mani-

fest their ideas and explore an individual question. These manifesta-

tions take different forms, are made in different resolutions (degrees

of sophistication) and at different fidelities (how early/late the design

process). While prototyping theory has been explored in many differ-

ent areas aside from design, including engineering and computer sci-

ence, prior work presents different ways in which prototyping can be

used, including exploration, communication/specification and evalu-

ation. Within these types of prototyping, the activity itself may an-

swer different questions such as the appearance, how it works, etc. I

argue that for exploratory prototyping in interaction design, proto-

types might answer questions of structure (i.e., the visual layout and

the physical form), behaviour (how inputs become outputs) and us-

age (ability to get first-hand experience with the concept). In the con-

text of Human–Computer Interaction, there is a better understanding

of prototyping form and visual layouts, and how to inspect a system’s

usability. However, the concept of interactive behaviour still remains

vague, which is further explored in the next chapter.

 BEGININGS OF A DESCRIPTIVE

FRAMEWORK OF INTERACTIVE

BEHAVIOUR

Indeed, to propose methods for interaction designers to prototype interac-

tive behaviours for smart interactive objects entails an understanding of

what is meant by interactive behaviour. The concept of interactive

behaviour, while seemingly simple on the surface, is actually quite a

complex conversation – perhaps one that merits extensive explora-

tion, as it may be no different to bigger discussions in the research

community, such as the meaning of interaction (Hornbæk and Ou-

lasvirta, 2017) or the meaning of interactivity (Janlert and Stolterman,

2017). Look and feel of an interface are often grouped together as if

they were a single unit. Myers et al. (2008), however, realized that

not everything was about the layout of a user interface in software,

which prompted further investigation on the subject. The solution

50 BEGININGS OF A DESCRIPTIVE FRAMEWORK OF INTERACTIVE BEHAVIOUR

was to separate “look” from “feel” to get to a closer grasp of interac-

tive behaviour. Still, to prototype interactive behaviours, it is neces-

sary to define what interactive behaviours are.

The previous chapter introduced interactive behaviour as a part of

exploratory prototyping in interaction design and how it is dependent

of the underlying structure of a system or artifact (i.e., the physical

form or visual layout) and enables people to have first-hand experi-

ence with the system or artifact. In this chapter, I bring together dif-

ferent theories of HCI to help define interactive behaviour and un-

derstand how researchers might describe these kinds of behaviours.

Understanding what behaviour means is a fundamental step in HCI

research if we are to design the next generation of tools to generate

interactivity beyond code. It is especially important if ‘behaviour’

continues to be broadly used, and oversimplified in research discus-

sions. To address these needs, I explain why interactive behaviours

are not simply synonymous with the “feel” of an interface (§3.1), de-

fine interactive behaviour (§3.2) and navigate through different fun-

damental theories that explain how inputs and outputs come together

to create dynamic and responsive experiences (§3.3), which provide

insight on the small nuances when designing these types of behaviour.

Together, these points provide the beginning towards creating a de-

scriptive framework to define interactive behaviour (§3.4).

3.1 THE PROBLEM WITH THE WORD FEEL
Interactive behaviour is often described as “feel”, which leads to

many loose interpretations and challenges within the field – it is not

a term that can be easily operated on. Indeed, the elements of inter-

 DAVID LEDO, 2020 | 51

activity are often lumped together with visual elements when discuss-

ing prototypes in terms of “look and feel”, such as Houde and Hill’s

view on prototyping (1997). However, this is not in discredit to them,

as at the time desktop interfaces had reached a high degree of stand-

ardization, given the prevalence of the WIMP (Windows, Icons,

Menus and Pointers) paradigm and different user interface widgets

(e.g., evolved versions of the ones in the Xerox Star (Johnson et al.,

1989)). Myers et al. (2008), investigated how designers author behav-

iours and tried separating “look” from “feel”, by defining feel as “…

anything that an application does… what you cannot draw… anything

that required [authoring] using [a] timeline or scripting” (pp. 1). The

word “feel” is easily open to misinterpretation because it can refer to

many non-interactive elements associated with it: a system might feel

smooth, a system might feel familiar, a system might feel unrespon-

sive, a system might feel dated, a system might feel modern or old,

etc. and many of these feelings can be evoked exclusively via aesthetic

choices. For example, the visual style choices in video games such as

using pixelated artworks can make a game look and feel “retro”,

while an artifact might also have tactile qualities such as material and

texture (e.g., feeling soft, fuzzy, plastic or metallic), which again refer

to a different kind of feel. Indeed, these aspects are important, and

will affect the overall user experience, but are distracting from what

prior work has tried to describe if the description lacks precision: de-

signing interactions with a system or artifact beyond the structural

elements of physical form and visual layout.

52 BEGININGS OF A DESCRIPTIVE FRAMEWORK OF INTERACTIVE BEHAVIOUR

3.2 INTERACTIVE BEHAVIOUR, DEFINED
Given a system or artifact’s layout, the interactive behaviour is what

allows a person to actively engage and interact with the system or ar-

tifact. Thus, from a design perspective, interactive behaviour can be

defined as follows:

Interactive behaviour is how a designer defines a series of hu-

man-provided inputs to become a series of human-perceiva-

ble outputs.

When people interact with a system, they perform (implicit or ex-

plicit) actions which are interpreted as one or more inputs (captured

by sensors such as buttons, microphone, camera, accelerometers,

touch screens; input devices such as mice or keyboards; or contextual

elements such as time). The system responds to these inputs via out-

puts, which may be conveyed via visual displays, sound, tactile and

haptic feedback, etc.

Having this definition helps us narrow the scope into a definition that

is operationalizable by designers. Moreover, it takes the focus away

from the end-user in terms of how they might perform the actions or

how they might interpret them, and makes them fully about what a

system or artifact can do with its ability to receive information from

the world (inputs), interpret it (via computation or mappings), and

respond (output).

For example, consider a light switch which is attached to a ceiling

light. From a people-centric perspective, a person performs the ac-

tion of flipping the switch which in turn makes the lights go on. From

a design perspective (and under the current definition) the switch has

 DAVID LEDO, 2020 | 53

the ability to sense two values, which are interpreted and mapped into

two possible values (on or off), and the response involves switching

the current state. If the light switch is more complex, such as having

a dimmer, or a colour slider, the interpretation and mapping also in-

creases in complexity, leading to a wider variety of possible, and per-

haps dynamic, responses.

Moreover, this definition of interactive behaviour fits Beaudouin-

Lafon’s (2004) evaluation metrics for interaction models of descrip-

tive, evaluative, and generative power.

Descriptive Power. It can describe and fit within existing interaction

paradigms from interaction with desktop computers to interaction

with smart objects. The light switch example shows how indeed, the

definition can describe many variants of interactivity, a variety of in-

puts (e.g., a simple switch versus sliders or even a mobile applica-

tion), and outputs (e.g., on/off state, brightness and colour).

Evaluative Power. Designers can use this definition to assess interac-

tive systems, and they can confirm or deny whether their intention

was met. If the designer defines a slider value to dim lights, they can

assess via first-hand experience whether the lights change brightness

as the action is performed.

Generative Power. This definition of interactive behaviour can be

used by designers to generate new designs. In fact, the systems and

concepts built with this thesis from Chapter 6 onwards are examples

of how this definition can generate new designs.

54 BEGININGS OF A DESCRIPTIVE FRAMEWORK OF INTERACTIVE BEHAVIOUR

3.3 A DESCRIPTIVE FRAMEWORK OF
INTERACTIVE BEHAVIOUR

To create a framework means to provide a conceptual contribution in

HCI. Rogers (2004) describes the role of theory in HCI as providing

different types of knowledge. Rogers (ibid) states that theories can be:

(1) informative (provides useful research findings), (2) predictive (can

model user behaviour), (3) prescriptive (provides advice for design or

evaluation), (4) descriptive (provides rich descriptions), analytic

(identifies problems), (5) formative (provides concepts to discuss de-

signs), and (6) generative (provides constructs that can foster a variety

of solutions). I bring together different components of existing HCI

theories to describe interactive behaviour, which provides interaction

designers and other HCI researchers with a unified vocabulary. In

particular, this framework contributes:

1. Descriptive elements, as it outlines many components to in-

teractive behaviour,

2. Formative elements, as it brings terms and vocabulary used in

foundational HCI theories of input, and to a lesser degree,

3. Generative elements, as designers could use the vocabulary

provided and generate different kinds of ideas for interactive

behaviours

While the notion of interactive behaviour is not explicitly talked about

in Human–Computer Interaction, there are fundamental theories ex-

amining models of interaction, as well as models of input, which can

help in defining what interactive behaviour means. Current work

 DAVID LEDO, 2020 | 55

shows that behaviours (1) are a relationship between inputs and out-

puts, (2) they have dependencies from those inputs and outputs as

well as a state, and (3) they are heavily influenced by programming

paradigms given that they are always the result of some degree of pro-

gramming.

 BEHAVIOURS ARE RELATIONSHIPS

BETWEEN INPUTS AND OUTPUTS

In Human–Computer Interaction, behaviour is typically described as

a relationship between the user and one or more objects on screen (or

an object of interest beyond the screen). Thus far, the considerations

of behaviour discussed have focused primarily on the input, without

making much mention to the contents of the screen. In Human–Com-

puter Interaction, the concept of direct manipulation, as defined by

Shneiderman (1983), became a way to understand that computers

could be more than a console one types into – they were capable of

rendering objects one could directly operate upon. The direct manip-

ulation paradigm has continuous representation of objects of interest,

to which one can apply “physical” actions (e.g., clicking and drag-

ging), allowing rapid and reversible operations that could be reflected

on these objects of interest. Maloney and Smith (1995) argued for in-

terfaces to be live and direct, active and reactive, in what they called

morphic user interfaces. Morphic interfaces were supported under

four implementation techniques: structural reification1, layout reifi-

cation, ubiquitous animation, and live editing. Many of the standard

1 Reification refers to making abstract things more concrete. Oxford Dictionary.

https://en.oxforddictionaries.com/definition/reify February, 2019

https://en.oxforddictionaries.com/definition/reify

56 BEGININGS OF A DESCRIPTIVE FRAMEWORK OF INTERACTIVE BEHAVIOUR

interactions afforded by devices and operating systems today follow

this direct manipulation paradigm. Instrumental interaction, as de-

scribed by Beaudouin-Lafon (2000) provides a means to incorporate

the different elements present on the screen which are defined as do-

main objects (potential objects of interest). Instrumental interaction

considers interaction instruments (e.g., a scrollbar or any UI widget) as

mediators in the process of converting a user action (moving the

mouse to the scrollbar) into a command (scroll) that can appropriately

affect the object of interest (a textbox). Note that this framework was

built under the assumption of direct manipulation, and some of its

articulation becomes more difficult to interpret as one shifts to other

platforms such as smart objects. Still, the notion of objects of interest

as being entities beyond the screen remains – perhaps in the form of

an LED, a sound, etc.

 BEHAVIOURS HAVE DEPENDENCIES

Pioneering work in Human-Computer Interaction examined differ-

ent types of input devices. While the primary context was desktop

computing, it also spanned different kinds of everyday devices and

appliances. The 1980s and 1990s show different taxonomies aimed at

understanding input devices and from that understanding be able to

derive interaction techniques (defined by Foley and van Dam (1990)

as “a way of using a physical input/output device to perform a generic task

in a human-computer dialogue”).

Which behaviour is active depends on system-level global and local

states. Buxton (1990) proposed a three-state model of graphical input

(Figure 3.1), which describes the actions of a cursor based on what

the input device does as a means to: (1) appropriately match devices

Figure 3.1 Buxton’s (1990) three-state model
of graphical input showing the three states: (0)
out of range, (1) tracking, and (2) dragging. It
also shows example inputs of mouse, sty-
lus/pen, and touch and how they might transi-
tion between each state. Figure based on Bux-
ton (1990).

 DAVID LEDO, 2020 | 57

to input techniques, and (2) compare different devices or techniques

to each other. As such, a mouse has the states “tracking” and “drag-

ging” (depending on whether the button is being pressed). A pen has

an additional state which is when the stylus is “out of range”, and

touch events are either “out of range” or “dragging”. Thus, different

quasimodes (or user-maintained modes (Raskin, 2000)) are transacted

depending on the current selection. Buxton (1983) lists: pointing,

tracking, selecting, dragging, rubber banding, menu pulling, charac-

ter recognition, and inking as examples. Note that this model de-

scribed the interfaces at the time and takes the cursor-based interac-

tion as the main assumption while categorizing different kinds of de-

vices. It does not discuss what kind of sensing they provide or how

that sensing is mapped to a particular output.

Traditional computing systems, as well as systems that rely on pre-

serving some degree of familiarity of such desktop-like systems, rely

on global states. For example, a drawing tool, even on a multi-touch

tablet device, typically has a global mode it ties to, which defines the

current drawing tool. As new inputs become available, it is possible

to look at input in a local manner. For example, in Local Tools

(Bederson et al., 1996) and Constructible Interaction (Walny, 2016),

tools are objects that can be dragged and acted upon individually.

Walny (2016) demonstrates that through visibility and locality it is

possible to have multiple objects that perform specialized operations

and could work across different collaborative settings. Once the input

moves away from the single cursor, global modes can be somewhat

relaxed in favour of states that affect only what the user is interacting

with. Collaborative tools, where multiple people are entering inputs,

or tools that, for instance, leverage bimanual interaction or multiple

58 BEGININGS OF A DESCRIPTIVE FRAMEWORK OF INTERACTIVE BEHAVIOUR

inputs, operate best with local states. Localizing states makes it so

that an input can be deconstructed and mapped to modify specific

parameters of the outputs, as done in systems such as ICon (Dragi-

cevic & Fekete, 2004). The reason for this is that the task is no longer

tied to a single point of interaction which forbids the existence of oth-

ers. That said, there can be a global state or mode (e.g., whether one

can move objects on a screen versus only view them) which guide the

actions of all inputs and outputs.

Inputs and outputs have properties/parameters. Mackinlay, Card and

Robertson (1990) brought another taxonomy that captured discrete

and continuous properties sensed within input devices (as informed

by existing toolkits to date): devices can sense position or force in an

absolute or relative fashion, and inputs can be linear or rotary. Mackin-

lay et al. represent input devices as a six-tuple of: manipulation oper-

ator, input domain, state of the device, resolution function, output

domain and specific device properties. The taxonomy describes de-

vices as both physical (e.g., mouse) or virtual (e.g., cursor). The out-

put domain set of one device can be composed into the input domain

set of another, referred to as a connection. An example of this connec-

tion is a radio in which the rotation of a station knob affects a physical

slider showing the current station. Figure 3.2 shows an example by

Mackinlay et al. (1990) of a radio and how the inputs can affect each

other. In particular to this example, the selection of AM or FM, and

the station slider value are combined into a single value that repre-

sents the current station.

 DAVID LEDO, 2020 | 59

Inputs are mapped into outputs. Hinckley et al. (2014) put together

some of these ideas in terms of how input devices behave. In particu-

lar some of their added relevant properties pertaining to how the in-

puts can turn into outputs include:

− Property sensed. Absolute or relative values sensed by the input

device (e.g., change in position sensed by a mouse).

− Transfer function. The device and operating system apply a

mathematical function to the system to scale the data and “pro-

vide smooth, efficient, and intuitive operation” (pp. 8). Design-

ers create appropriate mappings when matching the physical prop-

erties of the device into a potential output (e.g., converting a joy-

stick’s sensed force to the velocity of a cursor’s movement).

− Number of dimensions. Devices measure linear and angular val-

ues as determined by the sensors.

− State. Providing the meaning of what the system should do when

provided with a new value (e.g., pointing a cursor).

Input and output parameters can be combined and abstracted, im-

plicit or explicit. Another framework that helps contextualize inter-

active behaviour is Implicit Interaction (Ju and Leifer, 2008). Implicit

interaction posits that systems can have a varying degree of initiative

(reactive or proactive), and that the actions from a system can require

different levels of attentional demand (take place in the foreground or

the background). Other frameworks continued to build on the idea of

implicitness, such as Proxemic Interaction (Ballendat et al., 2010).

An important element within the work in proxemics is the idea of dif-

Figure 3.2 Mackinlay et al. (1990) taxonomy
as exemplified on a radio. Image based on
Buxton (2013).

60 BEGININGS OF A DESCRIPTIVE FRAMEWORK OF INTERACTIVE BEHAVIOUR

ferent spatial relationships (identity, distance, orientation, move-

ment) can dynamically affect the contents of different devices and

their interfaces within an artifact ecology. Considering newer forms

of interaction, including touch, mobile interactions, etc. leads to the

realization that interaction with systems is no longer tied to a single

input at a time with perhaps a few modifiers (e.g., mouse and key-

board) but that multiple inputs are affecting the contents on a device

regularly (e.g., multitouch, added sensors on a phone), which makes

the case for interactive behaviours considering different sources of

input, as well as the relationships between those inputs. For example,

in the one-handed mobile device interaction technique “tilt-to-zoom”

(Song et al., 2011), one can simultaneously tilt back-and-forth to

zoom in or out, as well as pan the finger across the screen to navigate

a map in different cardinal directions. Visuals respond to these two

dimensions independently.

 PROGRAMMING CONSTRUCTS OF BEHAVIOUR

Mackinlay et al. (1990) discussed the influence of their current

toolkits in their taxonomy. This is no surprise given that the interac-

tive systems people use are shaped by the language used (exemplified

in the next chapter). Object Oriented Programming and the emer-

gence of user interface builders popularized the idea of events, which

provide information when the system detects a specified change (e.g.,

updated values within an input device’s parameters, a key press, cur-

sor entering a selection, etc.). High level tools, such as Expression

Blend, have adopted this paradigm, and is referred to as “triggers”.

Triggers can act as a way to modify the current state.

 DAVID LEDO, 2020 | 61

Time is an input, but not always the most appropriate abstraction.

All interactions always take place over time, and there is no question

about the importance of time as an abstraction in many areas such as

animation. Time might be an appropriate abstraction when animating

a reaction (e.g., a screen transition when pressing a button). How-

ever, time as an abstraction becomes less useful when displaying in-

formation from a particular input (e.g., mouse moving). The reason

for this is that there might be a large number of time units (e.g., ticks

or steps) in which values do not change, thus, a common abstraction

is to talk about isolated events pertaining to the particular object (e.g.,

mouse move events, button clicked). The consequence has been to

favour triggers. Indeed, triggers are appropriate to “schedule” reac-

tions which are animated as time – Hartmann (2009) calls these re-

sponses “one-shot animations” to indicate how they take place only

when the trigger takes place.

Many programming approaches dynamically map input values to vis-

ual elements. For example, when applying a “pinch to zoom”, a com-

mon interaction in touch surfaces, the distance between touch points

dynamically adjusts the size of the object of interest. Hartmann

(2009) refers to these as “user-in-the-loop” behaviours, as “continu-

ous user input drives the behaviour” (pp. 31). Yet these types of map-

pings, or animations as a function of input parameters, are not yet

applied in higher-level prototyping tools. Another type of behaviour

which is not talked about and is out of the scope of this thesis is cu-

mulative behaviours, such as when drawing on a canvas with a brush

tool. In the case of the brush tool, the points drawn are accumulations

of a series of inputs which belong to the same cognitive operation,

which is known as chunking (Buxton, 1986).

62 BEGININGS OF A DESCRIPTIVE FRAMEWORK OF INTERACTIVE BEHAVIOUR

 SUMMARY

I defined interactive behaviour as how a designer defines a series of in-

puts to become a series of outputs. This definition helps scope the views

on behaviour, as it shifts the focus to how the system responds to sen-

sors, input devices or contextual elements (e.g., time) to act in a pro-

active or reactive manner. I then integrated paradigms from Human–

Computer Interaction to outline that: (1) behaviours are a relation-

ship between inputs and outputs; (2) they have dependencies from

those inputs and outputs, global and local states, and parameters; and

(3) they are heavily influenced by programming paradigms given that

they are always the result of some degree of programming.

Overall, the foundations of interactive behaviour lead to particular

considerations that need to be satisfied to facilitate its prototyping:

1. Understanding that there is a state that influences the active be-

haviour, which is optional to a system,

2. Thinking of input and output as abstractions with parameters that

can be used for mapping (e.g., a slider’s value, a light’s bright-

ness), and

3. Thinking of outputs as animated transitions (pressing a button

and having the screen show an animation), cumulative operations

(drawing with a brush tool on a desktop application), as well as

interaction-driven animations (moving a slider and seeing a col-

our change dynamically as the mouse is being moved).

 DAVID LEDO, 2020 | 63

3.4 DISCUSSION
This chapter provides a set of perspectives to consider when design-

ing interactive behaviour which provide the beginnings of a concep-

tual framework. I believe there are four elements that would be nec-

essary to fully develop a viable framework. At the current state: it (1)

encompasses prior knowledge from different input and output theo-

ries in HCI, (2) it depicts the nuances of interactive behaviour and

why it is not a simple state transition, and (3) it helps people think

about interaction problems differently. While these three points suf-

fice in the context and scope of this thesis, I next outline what would

be needed for this framework to be complete.

3.4.1. HARD DIMENSIONS AND INTERDEPENDENCE

The current pointers show generalizations that can be made about in-

teractive behaviour, their role as a relationship between an input and

outputs, their dependencies, and some of their origins. The next step

is to define a distinct set of variables, and show how they interplay

between each other. This would also shift the current framework

from a description towards a more generative stage. In particular, I

think there is also value in showing how an input goes through a series

of transformations from the moment the user applies a single action,

until the system shows an output.

3.4.2. VALIDATION: USING THE FRAMEWORK TO DE-

SCRIBE PRIOR SYSTEMS

The current framework shows how past theories come together, but

it does not show how they can be used in context to describe prior

systems. One could take a set of interaction techniques, systems, and

64 BEGININGS OF A DESCRIPTIVE FRAMEWORK OF INTERACTIVE BEHAVIOUR

commercial tools, and show that the framework generalizes to encap-

sulate a variety of interactive behaviours. In the current state, the cur-

rent early framework can be used to discuss the interactions, but does

not fully frame them.

3.4.3. FIT OF CURRENT METHODS

The last limitation of the framework is that it is not yet seen in the

context of how prototyping tools deal with interactive behaviour de-

sign. I believe that one could examine the current approaches for cre-

ating interactive behaviours, as well as the prior prototyping tools,

both which are discussed in the next chapter, and contextualize the

extent to which the framework satisfies these components.

Overall, these three steps of creating more well-defined categoriza-

tions of behaviours, describing prior systems, and fitting the frame-

work in the context of prototyping tools, would provide means for re-

searchers and practitioners to describe and evaluate existing plat-

forms, as well as generate new ones.

3.5 CONCLUSION
Overall, this chapter provides a key working definition for interactive

behaviour which is founded on the way a system interprets a user ac-

tion. By looking at different theories and taxonomies of inputs, it was

possible to devise additional characteristics of interactive behaviour

which shape and describe most interactive systems today. The next

natural question is then how to prototype interactive behaviour,

which points to the tools and techniques designers use today, as well

as the existing gaps in this knowledge.

 DAVID LEDO, 2020 | 65

 PROTOTYPING INTERACTIVE

BEHAVIOUR, RELATED WORK

Now that the definition of interactive behaviour has been scoped, this

chapter describes how designers create prototypes in interaction de-

sign. First, I outline some common prototyping activities to provide

a sense of existing practices, where I highlight their common resolu-

tion and fidelity, as well as the extent to which they achieve prototyp-

ing structure, behaviour and usage (§4.1). Moreover, I then elaborate

on the challenges interaction designers face, and how the most com-

mon commercial tools do not address these challenges (§4.2). I argue

that the current commercial tools are limiting the types of prototypes

designers can achieve given (1) the focus on static structure and neg-

ligence of prototyping interactive behaviour, and (2) the tendency to

oversimplify the notions of behaviour. I conclude this section with a

review of existing software tools in industry and academia beyond the

common tools, and providing an overall taxonomy (§4.3) outlining

different authoring paradigms that can help inspire the next genera-

tion of tools for prototyping interactive behaviour.

68 PROTOTYPING INTERACTIVE BEHAVIOUR, RELATED WORK

4.1 COMMON PROTOTYPING ACTIVITIES
Interaction designers follow a variety of prototyping activities which

lead to different types of discoveries. The next subsections outline

examples of different design activities and the type of knowledge that

they might yield. As discussed by Houde and Hill (1997) and Lim et

al. (2008), these prototyping approaches have varying resolutions (de-

grees of sophistication) and can take place in different stages of the

design process, not necessarily tied to a specific fidelity (how early or

late in the design process). However, what makes these activities dif-

ferent is that they: (1) prompt and yield different kinds of questions

and answers; and (2) require varying degrees of effort and time com-

mitment. Thus, designers use their judgement to decide what is an

appropriate manifestation at the time. Typically, there is the associa-

tion that fidelity and resolution are directly proportional. For exam-

ple, designers sketch ideas on paper at an early stage, then progress

to higher levels of sophistications. However, this is not always the

case. For instance, a late stage of design may require ideas on paper

again if a change needs to happen, or a designer may jump right away

into an expert tool and produce a high-resolution solution that ex-

plores one small aspect of the user experience.

 SKETCHING

Sketching is an activity that is common in all areas of design, often

described as the core activity. By creating quick drawings, designers

can rapidly (i.e., in a matter of minutes) generate new ideas and have

them documented. Thus, it is a technique where a designer can man-

ifest and externalize an idea in a low resolution. Sketches may have

Figure 4.1 Example of quick sketches for a
single idea: “how might two phones share a
file by using their built-in sensors?” In this
case, the sketch shows bumping two devices
together to share files. While each sketch
shows the same idea, they have different
levels of visual detail, none of which took
more than two minutes to complete.

 DAVID LEDO, 2020 | 69

varying degrees of depth, which can be expressed by the level of vis-

ual detail, or through additional descriptions (e.g., secondary screens,

drawings to depict the interaction). Buxton (2007) explains how the

resolution of the sketch should depend on how developed the idea is.

Baskinger and Bardel (2013) define this as a spectrum from thinking

to describing. Stolterman (2008) compiles many authors describing

sketches, and concludes that “Sketching is a disciplined way of explor-

ing the relationships between diverse design ideas, between a whole and de-

tails, between form and function, between appearance and materials… a

rational designer works on many alternative designs in parallel in an iter-

ative way, while going back and forth between the whole and the details”

(Stolterman, 2008 pp. 61). Figure 4.1 shows an example of sketches

for exploring a design idea.

Sketching is not limited to a drawing on paper. Some forms of sketch-

ing may include adapting different paper cut-outs to present an inter-

face. For example, in PICTIVE (Muller, 1991), designers and users

can use post-it notes, paper, pens and highlighters to dynamically

draw an interface. The prototyping session can be video recoded to

show a history of the flow of the interface in the process. Alterna-

tively, designers can create physical models using materials such as

foam core and carve out areas for paper sketches to appear. For ex-

ample, Greenberg et al. (2011) show how one can draw a smartwatch

and arm on a foam core board, and cut out the screen. One can then

place strips of paper with different interface sketches to see what the

interface might look like in context. Alternatively, Frishberg (2006)

proposes “junk prototyping”, in which one can combine different sup-

plies and materials together with repurposed recycled objects (e.g.,

using a bottle cap as a knob), as a means to create physical mockups

70 PROTOTYPING INTERACTIVE BEHAVIOUR, RELATED WORK

of interactive objects. These types of practices have been widely

adopted in a variety of HCI and design related communities, includ-

ing participants at conferences such as ACM TEI1 (Tangible, Em-

bodied and Embedded Interactions), and Sketching in Hardware2.

Some of these approaches are further extended to have implementa-

tion elements to them, described in §4.3.9 and §4.3.10.

 WIREFRAMES / STORYBOARDS

Wireframing refers to visual representations of the different screens

or states of an interactive system. These often specify the different

interface elements (e.g., widgets such as buttons), their locations and

may also describe what happens when an action is executed (e.g.,

clicking on the hamburger menu in Figure 4.2-left). Wireframes can

be arranged in a linear sequence, as a sequential storyboard to show a

“visual story of a user experience unfolding over time” (Greenberg et al.,

2011, pp. 151). The visual representations can stop being linear and

become state transition diagrams (Greenberg et al., 2011), and even-

tually become branching storyboards describing the entire usage of

the application. User flow refers to the ability of a wireframe to be

tested with people and allowing designers to follow through task de-

scriptions. Wireframes play two main roles: (1) outlining the layout

of an application; and (2) defining the user flow (how a user might go

from one screen to another following particular tasks). With

wireframes, it becomes possible to carry out tests of the design with

1 https://tei.acm.org/ – Accessed August 2020
2 http://sketching-in-hardware.com/ – Accessed August 2020

Figure 4.2 Example of a wireframe. The
image on the left shows the view of a profile,
while the view on the right shows what hap-
pens when a user clicks on the top left ham-
burger menu.

https://tei.acm.org/
http://sketching-in-hardware.com/

 DAVID LEDO, 2020 | 71

users to evaluate its usability, and also provide developers with spec-

ification of what the user interface should look like as well as what the

transitions might be. While nowadays wireframes are primarily done

digitally through tools such as Balsamiq or Adobe XD, they can also

be created using paper, sticky notes or foam core. Using paper and

the like allows for early testing and more flexibility to make changes,

while the digital counterpart may work better for specification pur-

poses (e.g., outlining the layout and content to developers).

 WIZARD OF OZ

In some cases, it is possible to examine how an experience might play

out in a close-to-reality setting even if it is difficult to explore. The

Wizard of Oz Technique, first proposed by Kelley (1983), is one way

of doing so. Buxton (2007) defines the Wizard of Oz technique as

“making a working system, where the person using it is unaware that some

or all of the system’s functions are actually being performed by a human

operator, hidden somewhere ‘behind the scene’” (pp. 240). Buxton de-

scribes that the focus is not on the fidelity of the implementation, it is

the “fidelity of the experience” (pp. 239). As long as the system can

appear to be real, it is possible to test different scenarios of how the

interaction might play out, and then decide the opportunities and

shortcomings to create a more finished design. A good example of

Wizard of Oz is an experiment by Gould et al. (1983) at IBM: creating

a listening typewriter. The authors used a simulated environment: a

typist was located in another room, listening and typing to a partici-

pant dictating to what the participant thought was a regular computer

(see Figure 4.3). As a result, it was possible to test whether a speech

Figure 4.3 Wizard of Oz. Adapted from
Gould et al. (1983).

72 PROTOTYPING INTERACTIVE BEHAVIOUR, RELATED WORK

interface for typing would be a sensible idea long before speech recog-

nition algorithms reached such level of sophistication, thus creating

a more seamless experience. Gould et al. were able to test different

aspects of the listening typewriter, including people’s composition

time and their preference to this novel approach.

Wizard of Oz excels in the case of testing an envisioned interactive

system early on, even if the final implementation might currently be

impossible. One challenge, however, is that the human operator (the

Wizard) has to constantly be aware of what the participant expects as

a behaviour, and realizing the command (or providing cues that the

command is invalid). As a result, it is difficult, if not impossible, to

provide live feedback, or create complex dynamic interactions (e.g.,

simulating a mouse hover state, while still performing other opera-

tions). For example, Walny et al. (2012) show how even showing dif-

ferent states on a screen can be a challenge: “to the study participant,

the prototype appears fully functioning, though slow to respond” (pp.

2870), and “it was difficult for the wizard to be fully consistent across

participants and sometimes even within a participant. In addition to the

cognitive load and stress on the wizard to make quick, consistent decisions,

the [technology] we used to recognize touch was not 100% reliable” (pp.

2787). Yet, they still managed to devise and elicit an interaction vo-

cabulary for exploring data visualizations with pen and touch (i.e.,

post-WIMP interactions), with a level of flexibility of interpretation

that might not be possible in a full, robust prototype.

 VIDEO PROTOTYPING

In 1988, Mackay (1988) formalized many of the lessons of the Wizard

of Oz technique into Video Prototyping. Video prototypes make it so

 DAVID LEDO, 2020 | 73

that designers can illustrate interactive and non-interactive demon-

strations of software that has not yet been designed. Greenberg et al.

(2012) show examples of how video prototypes can be created at a

low cost in little time by filming or photographing paper sketches.

Thus, video prototypes can work at different fidelities, at the cost of

viewers not being able to fully experience what it is like to interact

with it first-hand.

 PROGRAMMED INTERACTIVE PROTOTYPES

In graphic design, designers often deliberately select design concepts

and complete them as a way to further explore and understand prob-

lems and potential solutions (Danis and Boies, 2000). Interaction de-

sign is no different, and there are instances in which it is necessary to

implement a programmed system (or at least a partially functional

one) to get a fuller sense of the experience. Lindell (2014) argues that

like paper and pencil, code is a malleable material that can be used to

explore solutions. Lindell’s study shows how some designers de-

scribe programming as a means to test their way forward, and that

sometimes it feels akin to sketching – and a fundamental tool when

an idea is difficult to portray on paper. This view is similar to Myers

et al. (2008) where interactive behaviours are reflected as features

difficult to describe on paper and would require at least some form of

programming or scripting.

Buxton (2007) suggests that the value of developed systems, or

“rapid prototypes”, is that they afford exploring a class of interaction

while providing direct personal experiences, though often limited to

lab settings. The programmed prototype can be tried out and in rele-

vant cases further fine-tuned until a behaviour feels right. Lindell

74 PROTOTYPING INTERACTIVE BEHAVIOUR, RELATED WORK

(2014) adds that this practice is particularly important if realizing a

new interaction technique, where the programming is treated in an

exploratory fashion rather than a descriptive manner. Indeed, inter-

action designers who are technologically savvy can rely on many tools

to solve the problem, and take an opportunistic approach (Brandt et

al., 2008), where they combine multiple programming languages and

software tools to realize novel interactive technologies.

While seeing a realistic system might seem like the ideal solution,

there are a few challenges to consider. From a technical standpoint,

programming can be time consuming and require a lot of resources.

Moreover, interaction designers are not often literate in program-

ming, which can create more difficulties in the process or simply be

inaccessible. This might be why Brandt et al. indicate that opportun-

istic programming primarily relies on high-level tools with fast itera-

tion and impermanent code (2008). Finally, Buxton (2007) warns

against their “seductive” qualities, both from an experience stand-

point, as well as due to the investment in the system’s creation, which

can obscure a critical approach. Later sections of this chapter will dis-

cuss means to address the technical challenges, and encourage more

explorations – a way to potentially address the challenge of seduction.

 HOW DO THESE APPROACHES PROTOTYPE

STRUCTURE, BEHAVIOUR AND USAGE?

All of these different prototyping activities yield different benefits.

Sketches, given the facility to quickly create them, are a fundamental

tool for ideation and for capturing quick thoughts, which is why it is

practiced from the onset of the design. Wireframes are a solid way to

show specification of the interface – the overall layout and some of

 DAVID LEDO, 2020 | 75

the basic interactions (e.g., what happens when a button is pressed).

Some systems (e.g., InVision, Adobe XD) also often provide addi-

tional features to create animations. Wizard of Oz, video prototyping

and interactive programmed prototypes are less common given that

they can be time consuming to create, and might even require addi-

tional expertise (e.g., ability to edit videos or to program). Wizard of

Oz enables simulation and provides some understanding of how a sys-

tem might communicate with a person, whereas video prototypes

provide a third-person envisioning of the interaction. Programmed

prototypes are of the highest resolution and require the most effort to

create3. Yet, from the perspective of behaviour (creating animated

transitions and showing in-the-loop behaviours) as well as the per-

spective of usage (the ability to try them out), programmed proto-

types provide the most coverage. Also note that if a prototype has a

particular physical form, such as a smart object or appliance, then not

many of these approaches cover the experience of interacting with

the physical object. Indeed, if a fully interactive programmed proto-

type has to take place for a smart object, the physical form, or a close

representation of it, would likely need to be present as well. Figure

4.4 summarizes how these approaches contrast to each other from

my own perspective as broad generalizations. This directly informs

3 Note that in spite of their complexity, a coded prototype can be vastly easier to produce

than a commercial system, as prototypes focus on exploring and conveying a concept.

Thus, these prototypes do not often focus on efficiency, error management, robustness,

appropriateness of the programming language, of platform compatibility.

76 PROTOTYPING INTERACTIVE BEHAVIOUR, RELATED WORK

the goal of my work of complementing these practices to enable in-

teraction designers to prototype interactive behaviours earlier on and

illustrates the current gap on each approach.

4.2 HOW DO DESIGNERS PROTOTYPE INTERAC-
TIVE BEHAVIOUR TODAY? OR DO THEY?

Myers et al. (2008) studied how interaction designers devised inter-

active behaviours, and found that it was a result of discovery by ex-

ploration. Looking back at the different prototyping approaches from

the last section, it would seem like the only suitable approach to try

out dynamic behaviour is via programmed interactive prototypes. In-

terestingly, calls for making prototyping tools that can support a va-

riety of behaviours beyond one-shot animations and that can target

more types of devices (e.g., appliances) date back to 1995 (Tscheligi

et al., 1995).

Typically, the discussion of interactive behaviour, as explained by

Cooper et al. (2014), Saffer (2013), and current prototyping tools

such as InVision and Adobe XD, is centred in the following views:

1. Interactive Behaviour as Screen Transitions. Interactive

behaviour can be thought of as elements of an application’s

flow4, such as navigating between different screens of the in-

terface, or incorporating user interface widgets and describing

their effects.

4 Grigoreanu et al. (2008) define flow as a diagrammatic representation to show the struc-

ture of the application conveying the flow of data, an analogous term to wireframing.

 DAVID LEDO, 2020 | 77

2. Interactive Behaviour as Animations. Interactive behav-

iour can be described as animations and animated transitions

that take place in the user interface. These animations can

happen as a result of a trigger, or to communicate the current

state of an application (e.g., a loading screen).

These two behaviour classifications are important, as they cover a

representative portion of the user interfaces today and the authoring

necessary for interaction designers. However, this is only a small

Figure 4.4 Contrasting different prototyping approaches and the extent to which they
prototype structure, behaviour and usage elements of an interactive system or artifact.
Note how interactive programmed prototypes are of the highest fidelity and resolution.
yet they also provide the most coverage for what the system might be like.

78 PROTOTYPING INTERACTIVE BEHAVIOUR, RELATED WORK

piece of what interactive behaviour can mean, and with the increased

standardization in user interfaces (e.g., Apple Design Do’s and

Don’ts5), designers are only leveraging a limited amount of their skill-

set. This becomes even more problematic not only when trying to

create applications that move away from the standard, but as new in-

terface paradigms arrive, such as smart objects and head mounted

displays.

 FORMATIVE INTERVIEWS: CHALLENGES

AND NEEDS

There are a few studies in Human–Computer Interaction that discuss

interaction designers and the challenges they face when authoring in-

teractive behaviour.

Exploration and Realization. Myers et al. (2008) found key insights

with regards to interactive behaviour design: (1) behaviours are more

difficult to design than creating the visual layout; (2) behaviours were

complex and diverse beyond what a system could provide as built-in

behaviours/widgets; and (3) behaviours emerge through exploration

and fine-tuning (they required iteration). Moreover, designers re-

flected that interactions needed to be created with details in mind,

citing comments such as: “there are many factors that can influence be-

haviour” (pp. 180), and “there’s no such thing as low-fidelity6 interac-

tion, it has to be right” (pp. 180). Grigoreanu et al. (2008) corroborate

5 https://developer.apple.com/design/tips/ – accessed February 2019
6 As per the earlier discussion of fidelity vs. resolution, the designer here likely was refer-

ring to resolution.

https://developer.apple.com/design/tips/

 DAVID LEDO, 2020 | 79

these results by investigating interaction designers’ needs, where the

needs rated most important ones were “flow” and “feel”.

Communication. The communicative aspect is another challenge in

the design of interactive behaviour. Both Myers et al. (2008) and

Maudet et al. (2017) share how ultimately developers have to realize

the designers’ solutions, and the better they can describe it, the more

accurate the implementation. Maudet et al. (2017) show how design-

ers will go as far as to create fully animated videos to show how a spe-

cific animation or interaction should take place. Video only shows one

part of the interaction: the output.

Impossibility. Maudet et al. (2017) show that designers can some-

times generate solutions that cannot be implemented by developers,

especially when it comes to custom interactions. Holmquist (2005)

posits how given that interaction designers work primarily with soft-

ware, it should be possible to create representations that can behave

close to the product, as “it can be put into situations that approach those

of real use” (pp. 51). Thus, the issue of impossibility might be a direct

consequence of the tools designers use today.

 THE (COMMERCIAL) TOOLS

DESIGNERS USE TODAY

Given the background of interaction designers and what studies share

about their practices, reaching a programmed interactive prototype

could address some of the challenges in terms of opening current ex-

ploration constraints, allowing for accurate communication, and

leading to plausible designs. Yet, this vision is challenged by the need

80 PROTOTYPING INTERACTIVE BEHAVIOUR, RELATED WORK

for specialization in programming high level behaviours while also do-

ing so in a timely manner. Interaction designers today use a variety of

tools to prototype interactive systems. Three online surveys provide

a landscape of the current state-of-the-art prototyping tools: Myers

et al. (2008), Subtraction.com (2015), and UXTools.co (Palmer,

2018). Figure 4.5 shows the results of these surveys. These results

reveal a series of insights, discussed next.

Scarcity of Traditional Programming. Aside from a portion of de-

signers doing a variable amount of web development (which can

range from HTML and CSS mockups, to Javascript development, to

full front-end development), there is no mention of other forms of

traditional programming (e.g., C#, java, python, etc.).

Departure from Authoring + Programming Tools. Related to the last

point, it seems there has been a departure from hybrid authoring and

programming environments such as Flash, Visual Studio and Expres-

sion Blend. These tools allow high-level authoring through pre-built

widgets (Visual Studio and Blend), free-form drawing and animation

support (Flash and Blend), as well as custom scripting (Flash via Ac-

tionScript, Blend and Visual Studio via C#). Perhaps these tools are

Figure 4.5 Tools interaction designers use today as described by Myers (2008), Subtraction.com (2015) and UXTools.co (2018). Re-
sults reproduced from the respective sources.

 DAVID LEDO, 2020 | 81

no longer used due to lack of support (e.g., Flash becoming less prom-

inent on the web), or the emergence of new and more common oper-

ating systems (e.g., iOS and Android as opposed to Microsoft-spe-

cific alternatives).

Focus on Wireframing/Flow. With the exception of AfterEffects and

HTML, all the tools in the surveys by Subtraction.com (2015) and

UXTools.co (Palmer, 2018) are primarily for wireframing. A few of

these tools support some degree of one-shot animations and a few

pre-defined triggers (e.g., tap, double tap, scroll) to add further inter-

activity elements. Thus, it becomes difficult to create personalized

triggers or interactions that deviate from the basic list.

High Standardization. The last aspect common to these prototyping

tools of today is the high amount of standardization. It is only possible

to author wireframes with the look and feel of standardized web and

mobile interfaces, with little room to go beyond or outside of these

boundaries. While it is one way of addressing the problem of impos-

sibility, this limits the kinds of experiences designers can create. My-

ers et al. (2008) unveiled over 100 behaviours designers wanted to

create that they were not able to under conventional tools, and yet

current tools only support wireframing for standard applications con-

strained to very simple one-shot animations.

Software Tools Shape How People Think, And What Is Possible

There is a risk of easily dismissing exploration of different prototyp-

ing tools in interaction design, given the large number of tools present

today. Yet, these tools can play a fundamental role in the envisioning

and outlining of current software tools and the tools of tomorrow.

There is a direct benefit to exploring the creation of prototyping tools

82 PROTOTYPING INTERACTIVE BEHAVIOUR, RELATED WORK

– especially if addressing elements of design not explored before or

explored in a limited way (e.g., interactive behaviours), or exploring

alternative ways of solving problems. Tools can support a designer’s

thinking process, as well as aid them in producing an artifact (Stolter-

man et al., 2009) – the goal can thus range from “playing” with ideas,

to creating artifacts, including the interplay of both. Still, design tools

“will influence what activities the designer sees as important” (pp. 10).

Dalsgaard (2017) explains that tools have an impact on designer prac-

tice, as they can shape: perception of the situation, conception of hy-

potheses, types of externalization, knowledge through action, and

possible mediations with other people. Indeed, this is because these

types of tools can be seen as a vocabulary and a language (Greenberg,

2007) that provides different paths of least resistance (Myers et al.,

2000). Indeed, different authoring approaches can provide different

mental models, thus the exploration of authoring tools for interaction

design can help in finding new types of interaction to support, and

different ways of thinking that can best fit each person.

4.3 BEHAVIOUR PROTOTYPING TOOLS IN
RESEARCH AND INDUSTRY

Research in Human–Computer Interaction together with different

commercial tools in the past and today span across different kinds of

approaches which provide a foundation for this thesis. Often-times

prototyping environments face a trade-off between generalizability

and flexibility with complexity and usability, and tools will cater to-

wards different degrees of expertise or learning. Note that all of these

approaches involve some degree of programming (i.e., breaking down

a problem into a set of logical steps), though not all involve coding

 DAVID LEDO, 2020 | 83

(i.e., programming by writing code). This is an important distinction,

as tools will often claim not requiring people to program, while they

really mean they devised a programming abstraction alternative to

code. The next sections describe some models for prototyping inter-

activity, which are not mutually exclusive and often influence each

other. The next chapter will dive more in-depth into toolkits and their

overall role in research as well as in the evolution of tools and systems

of the future.

 TRADITIONAL CODING

Traditional coding is the most expressive and flexible way to author

interactive systems. This makes sense as it is the basis to all software

and hardware applications. While not always accessible to designers,

researchers as well as companies have devised different levels of ab-

straction to facilitate the design of interactive systems. For example,

toolkits such as Arduino7, Phidgets (Greenberg & Fitchett, 2001) and

.NET Gadgeteer (Villar et al., 2013) provide programming support

to interface with different hardware components. Arduino does this

via a setup and loop model, where two main functions allow providing

linear instructions to individual components, or checking their cur-

rent values. The latter two platforms provide more abstractions in

both software (through an object–oriented and event-driven ap-

proach) as well as hardware (via custom components that can be con-

nected to the computer, such as sliders, joysticks, etc.).

7 Arduino: http://arduino.cc – accessed February, 2019.

http://arduino.cc/

84 PROTOTYPING INTERACTIVE BEHAVIOUR, RELATED WORK

User interface builders (e.g., Visual Studio, Blend) are one way to allow

layout design using predefined and sometimes custom-made widgets.

These widgets (e.g., buttons, checkboxes, sliders) can later be ac-

cessed in code, and subscribe to events (e.g., click, pointer8 pressed,

pointer enter, pointer leave) to provide different behaviours. These

interface builders are often constrained to a particular platform,

though systems such as Gummy (Meskens et al., 2008) and Gummy

Live (Meskens et al., 2009) examine models to make the interface

building generalize across different platforms. In fact, Gummy Live

8 Pointer often refers to different input devices such as mouse, pen, or touch.

Figure 4.6 Event model vs. interaction machine. Beaudouin-Lafon (2004) exemplifies
the contrast between (a) event-driven programming and (b) an interaction machine to
implement a rubber-band selection. A rubber-band selection consists of allowing the user
to draw a free-form area and select the contents inside of it (e.g., shapes, text, images).
Figure recreated from Beaudouin-Lafon (2004).

 DAVID LEDO, 2020 | 85

(Meskens et al., 2009) allows dynamic rendering of the user interface

on the target device (e.g., phone) as it is being drawn on the main

computer.

While interface builders are powerful in providing the presentation of

the interface, Beaudouin-Lafon (2004) contests that they provide

basic interaction, but do not support direct manipulation techniques

(e.g., rubber-band selection). Beaudouin-Lafon adds that to create

these interactions, developers are forced to “resort to tricks such as

global variables and unsafe narrowing to share state between chunks” (pp.

20), resulting in “brittle code that is hard to debug and hard to maintain”

(pp. 20). In this discussion, Beaudouin-Lafon shows how even pro-

gramming is already far-away from supporting the design of interac-

tive systems, exemplified in Figure 4.6.

 VISUAL PROGRAMMING

One way to abstract programming into a way that is more accessible

is via visual programming. There are two primary ways that visual

programming has been carried out in the past: node-link diagrams and

blocks.

The idea behind node-link diagrams is to treat programs as a flow of

data which gets converted until reaching an output, where authors

can visually inspect how the inputs are being transformed. Ko et al.

(2004) describe “data flow” as an abstract approach that remains hu-

man-centric. Max/MSP9, shown in Figure 4.7 A and B, is an author-

ing software for interactive sounds and graphics (originally created

9 https://cycling74.com/products/max/ – accessed February, 2019

https://cycling74.com/products/max/

86 PROTOTYPING INTERACTIVE BEHAVIOUR, RELATED WORK

for music, but later extended to support other areas such as custom

electronics and video). One interesting feature of Max/MSP is the

inclusion of custom widgets (e.g., piano keys) to make more sense of

the flow of data. Nintendo Labo’s Toy-Con Garage10 takes a similar

approach (albeit more simplified) to support the creation of “inven-

tions” using the Nintendo Switch controllers and their sensors/out-

puts to author interactive behaviours, such as making a controller vi-

brate on a physical shake action. Trigger-Action Circuits (Anderson

et al., 2017) also leverages node-link diagrams to automatically gen-

erate multiple circuit diagram alternatives, with assembly instruc-

tions and firmware code. Node-link diagrams have the advantage of

supporting one-off experiences, with three noticeable drawbacks.

First, the data-flow model emphasizes either discrete one-shot ac-

tions (e.g., when a piano key is pressed, play a sound) or input trans-

formations that may not be immediately obvious (e.g., making an in-

put, such as the sound average frequency, affect the colour settings

of a video feed). Second, there is a strong reliance on prebuilt black

boxes that define what effect they will apply to the input. The last

problem is scale, as writing complex programs will lead to cluttered

screens with many scattered nodes and links that appear messy and

have very low readability.

A more recent approach to visual programming is the use of visual

blocks, which improve readability and usability via a linear structure.

With the development of Scratch (Maloney et al., 2010), shown in

Figure 4.7 C, different kinds of programming constructs (commands,

10 https://labo.nintendo.com/invent/ – accessed February, 2019

https://labo.nintendo.com/invent/

 DAVID LEDO, 2020 | 87

functions, triggers and control) have a structure with visual notches

and exposed parameters. Scratch has been adapted into different con-

texts, including Microsoft MakeCode11 which can leverage the

scratch platform to operate electronics platforms including Arduino

and Microbit12.

11 https://www.microsoft.com/en-us/makecode – accessed February, 2019

12 https://microbit.org/ – accessed February, 2019

Figure 4.7 Examples of visual programming approaches. (A) and (B) show node-link
diagrams Max/MSP, where (A) performs audio mappings, while (B) modifies a video
feed. (C) Shows Scratch, a block-based language. (A) and (B) taken from https://cy-
cling74.com/products/max/, while (C) is taken from https://www.aace.org/review/pre-
pare-for-fun-scratch-3-0-is-coming/

https://www.microsoft.com/en-us/makecode
https://microbit.org/
https://cycling74.com/products/max/
https://cycling74.com/products/max/
https://www.aace.org/review/prepare-for-fun-scratch-3-0-is-coming/
https://www.aace.org/review/prepare-for-fun-scratch-3-0-is-coming/

88 PROTOTYPING INTERACTIVE BEHAVIOUR, RELATED WORK

 SCREEN TRANSITIONS

A natural software parallel to wire-framing includes the family of sys-

tems which feature screen transitions and some degree of custom

functionality. HyperCard by Apple Computer shows abstractions of

text, graphics, multi-media objects (e.g., sounds and video), as well

as user interface widgets into “cards” which could be interconnected

and linked (Nielsen et al., 1991). Objects could be drawn on screen

similar to a traditional graphical user interface builder, and scripts

could link the functionality from one card to the next. These cards13

would become integrated within the larger HyperCard program.

Goodman (1988) describes the target audience (which he calls “de-

velopers”) as computer consultants that create information tools for

their clients (e.g., a kiosk), teachers writing simulations for other stu-

dents, etc. Thus, the goal was for the system to be accessible to a more

casual set of users who could create different kinds of interactive mul-

timedia presentations. Nielsen et al. (1991) describe how HyperCard

could be used for prototyping graphical user interfaces. In later years,

this would be a process taken by presentation tools such as Microsoft

PowerPoint and Apple Keynote, as demonstrated by Greenberg et al.

(2012).

The challenge with using presentation software for prototyping is

that it worked as a re-appropriation for tools that were not designed

for that purpose. This changed with systems such as SILK (Landay,

13 While documentation of HyperCard is scarce, online resources offer an introduc-

tory video (https://www.youtube.com/watch?v=EMFscTOazS0) and a collection

of cards (https://archive.org/details/hypercardstacks) – accessed February, 2019

https://www.youtube.com/watch?v=EMFscTOazS0
https://archive.org/details/hypercardstacks

 DAVID LEDO, 2020 | 89

1996), DENIM (Lin et al., 2000) and DEMAIS (Bailey et al., 2001)

which leverage sketching as a way to draw interfaces and create con-

nections between widgets and screens. In particular, DEMAIS em-

phasized visibility and discoverability through a visual language that

summarized the different transitions and effects. Subsequently,

d.tools (Hartmann et al., 2006), shown in Figure 4.8, enabled novel

applications in the area of physical computing that could be proto-

typed through the use of state machine diagrams14. These diagrams

made it so designers could connect different states and transition

from one to another through input triggers (e.g., switching between

images on an LCD display using accelerometer values). While these

transitions were discrete, it was possible to connect the system to a

14 State transitions are talked about in two ways in Human–Computer Interaction litera-

ture. One is screen transitions, where one input (e.g., button click) switches the screen to

another point. The other is Buxton’s description of input (1990), where the state transition

refers to the global state (sometimes referred to as mode) of the system based on input.

Figure 4.8 The d.tools interface (annotated). Image reproduced and modified from
Hartmann (2009).

90 PROTOTYPING INTERACTIVE BEHAVIOUR, RELATED WORK

Java backend and code continuous transitions (which Hartmann et al.

describe as opportunities to collaborate with developers). Many of

the commercial prototyping tools today, such as Adobe XD, In-

Vision, Figma, Framer, etc. follow the state transition pattern,

though are limited to web or standard mobile interfaces.

 TIMELINE

Another common approach to designing behaviour emerged from an-

imation and video editing – the use of the timeline. Graphical repre-

sentations of time for animation date back to the late 1960’s, referred

to as “Picture-Driven Animation” (Baecker, 1969). In particular,

Adobe Flash (formerly Macromedia Flash) brought forward three

main features. The first was the concept of motion tweens, where ani-

mators could create a transition for an object across two keyframes

(e.g., changing size, position or colour), and the system would auto-

matically interpolate between them in a linear fashion, creating

smooth animated transitions (see Figure 4.9). These tweens could be

further customized through easing functions with different mathe-

matical operations (Penner, 2002). The second innovation was the

introduction of Actionscript in which it became possible to write code

and logic and associate it to a particular keyframe. The last innovation

was the ability to group drawings in a scene into self-contained objects

(e.g., movie clips), which meant that even if the animation was

paused, the objects could – via scripting – change between different

animations. This means that for example, a platforming game could

feature a character object that displays motion animations and moves

around when an arrow key is being pressed. Thus, one could create

interactive environments since different scene objects could behave

 DAVID LEDO, 2020 | 91

independently from each other without being bound to the main time-

line. Blend adopted some of the ideas of the Flash timeline, where a

group of objects are encapsulated into “storyboards” and the story-

board can be connected to a trigger (e.g., play storyboard when click-

ing a button) without the need to write any code.

 PROGRAMMING BY EXAMPLE

Programming by Example, also known as Programming by Demon-

stration, is a common approach to create programming environ-

ments. Halbert (1984) defines programming by example as taking a

user perspective – “the statements in [their] program are the same as the

commands [they] would normally give the system” (pp. 4) and the pro-

gram “is written by remembering what the user does”. As a result, the

collection of demonstrated cases (both positive and negative exam-

ples) define what should happen. One early example of programming

by example is Topaz (Myers, 1998), which uses the command pattern

Figure 4.9 How motion tweening works. The animator draws the first frame, and ap-
plies transformations to the last frame (e.g., changing fill, size and orientation). The
system automatically interpolates between the two frames to create a continuous anima-
tion.

92 PROTOTYPING INTERACTIVE BEHAVIOUR, RELATED WORK

to record scripts. Myers (1986) recognized a main limitation of the

demonstration approach in its ability to generalize, as the “user pro-

vides no guidance about the structure of the program so each new example

can radically change the program. The programmer often knows… which

values are variables and which are constants, or where the conditionals

should go, but there is no way to directly convey this information to these

systems” (pp. 64). Consequently, systems opt to only use program-

ming by example in a partial manner, or resort to other constraints

(e.g., pattern matching) which might limit what the program can do.

In 1994, Click Team’s Klik and Play15 applied a mix of demonstration

and questions to enable people to create games. A character could be

manipulated to teach it a motion pattern it should pursue, and run-

ning the game would prompt questions as events took place (e.g.,

“person and enemy have collided”, or “user pressed the spacebar”) and

provide a set of possible predefined commands (e.g., “subtract a life”,

“make character jump”).

Demonstrations are an effective way to distinguish discrete patterns

in individual sensor data. In A CAPella (Dey et al., 2004), one could

design context-aware applications by demonstrations based on dis-

crete data from multiple sensors, a camera and microphone. With Ex-

emplar (Hartmann et al., 2007), a designer could take an individual

sensor with discrete or continuous data (e.g., an accelerometer) and

match a pattern (e.g., shaking) or a threshold crossing (e.g., accelera-

tion in X > 5) to define a discrete action. The viewing of sensor data

15 Information about Klik and Play is scarce, but a video demonstration can be found in

https://youtu.be/LUTpumYboDs – accessed February 2019.

https://youtu.be/LUTpumYboDs

 DAVID LEDO, 2020 | 93

took place in real time. Similarly, Sauron (Savage et al., 2013) lever-

aged a camera inside a 3D print to identify actions on physical widgets

(e.g., moving a joystick). Note that these tools stop at the recognition

stage and offload the interactivity design to other software – d.Tools

in the case of Exemplar, and OSC sockets in the case of Sauron.

Programming by example has also led to the recording of macros as a

way to creating custom interactions. For example, D-Macs (Meskens

et al., 2010) leveraged demonstration atop of a GUI designer to create

multi-device interfaces, allowing the recording of screens and actions

on a desktop and then replaying the actions on the mobile interfaces.

Similarly, Sugilite (Li et al., 2017) allows creating complex multi-

modal actions on mobile interfaces.

Overall, programming by demonstration provides a means to create

commands via direct manipulation, and it excels at capturing poten-

tial triggers to create a one-shot response.

 KEYFRAMING

A few systems have taken the programming by demonstration ap-

proach in combination with the motion tweens provided in systems

such as Adobe Flash. Monet (Li & Landay, 2005) allowed designers

to manipulate objects and define the point of input, allowing the au-

thoring of different interactions such as sliding a mouse across a dial

or scaling an object using the mouse cursor. Similarly, different object

animations could also be linked between each other. In Monet it is

possible to create different interactive behaviours for custom widgets

and mouse-based interactions, such as a scroll bar, drag and drop, etc.

Systems such as Kitty (Habib et al., 2014), and Expresso (Krosnick

94 PROTOTYPING INTERACTIVE BEHAVIOUR, RELATED WORK

et al., 2018) apply these concepts in different contexts. In particular,

Expresso allows creating responsive web designs that will change as

a window is resized, thus one can map the position of visual objects

to the size of the current browser window.

 STAGE METAPHOR

Finzer and Gould (1993) created a programming environment made

for non-programmers to create education software based on the met-

aphor of theatre: “only things that can be seen can be manipulated” (pp.

1). In that sense, the environment had performers, stages, and inter-

acted via cues to each other. Adobe Director (formerly Macromedia)

leveraged this stage metaphor and provided additional scripting via

Lingo. Given Director’s built-in 3D engine and ability to support

more complex programming, toolkits such as DART (MacIntyre et

al., 2004) could support authoring Augmented Reality applications.

YoYo Games’ Game Maker contextualizes these principles into

game design, where people can create characters that have a set of

visuals (i.e., sprites) and attach behaviours to them based on events

(e.g., when the screen refreshes, when a key is pressed) via scripts or

node-link visual programs. Note that all these approaches require

some degree of coding even if in the background.

 STEP BY STEP WIZARDS

Perhaps one way to eliminate the programming gap is to make the

task less about programming and more about configuration. One can

create a system that forces (1) following steps in a (2) particular order

to accomplish a goal, where (3) different parameters can be set. This

 DAVID LEDO, 2020 | 95

is often referred to as the Wizard Pattern16, inspired by software in-

stallation “wizards”. PYGMALION (Smith, 1975) is perhaps the

first system to do this, emphasizing “doing rather than telling” (pp.

68). Several systems support this paradigm in different degrees.

IFTTT17 allows connecting multiple web services (e.g., “turn on the

lights when the pizza delivery arrives”) via pre-built trigger-action con-

nections. Midas (Savage et al., 2012) provided customization of ca-

pacitive sensors to re-route touch events which could be interpreted

by custom microcontrollers as well as mobile devices. In Midas, de-

signers lay out touch sensitive areas on a mobile device image to cre-

ate a fabrication-ready circuit, and map those touch-points to pre-rec-

orded actions or as WebSocket events that can be picked up by other

applications. PaperPulse (Ramakers et al., 2014) similarly supported

creating interactive paper-based circuits, where the software first

provided a widget builder which then allowed recording of custom

trigger-action events. Similarly, RetroFab (Ramakers et al., 2015)

made appliances smart by adding custom electronic components

which could then have actions recorded to define the behaviours and

provide controls from a mobile application.

 WIZARD OF OZ AND VIDEO PROTOTYPING TOOLS

Some tools have looked to support Wizard of Oz and video prototyp-

ing practices. In particular, de Sá et al. (2008) show how one can use

16 Nick Babich (2017) – Wizard Design Pattern https://uxplanet.org/wizard-design-pat-

tern-8c86e14f2a38 – accessed February, 2019.

17 IFTTT https://ifttt.com/ – accessed February, 2019.

https://uxplanet.org/wizard-design-pattern-8c86e14f2a38
https://uxplanet.org/wizard-design-pattern-8c86e14f2a38
https://ifttt.com/

96 PROTOTYPING INTERACTIVE BEHAVIOUR, RELATED WORK

photos of sketched or rendered wireframes on mobile devices to sim-

ulate an interactive system. It is worth noting how de Sá et al. reveal

how seeing the sketches in context detected usability issues early on,

but more importantly, seeing the interface on the target screen made

people realize early on when controls were inadequate, or sizing (e.g.,

amount of text) was an issue. ProtoAR (Nebeling et al., 2018) allows

designers to place overlays (e.g., sketches) atop clay models captured

with a mobile camera, thus allowing prototyping of Augmented Real-

ity applications. Montage by Leiva and Beaudouin-Lafon (2018) uses

(1) a user camera capturing a scene with a context containing a green

screen, (2) a wizard camera directed at a paper prototype, and (3) a

tablet canvas which places the paper prototype atop the green screen

using a chroma-key technique. Through this, they can record video

and use a timeline to change the contents of the interface. What is

interesting about these Wizard of Oz tools is in their adoption of some

of the aforementioned approaches (e.g., the timeline in Montage).

While some these tools do support live rendering, they remain as sim-

ulations which do not allow testing of the overall experience.

 SMOKE AND MIRRORS AND SCREEN POKING

Buxton (2007) describes an alternative way of achieving high fidelity

experiences, which he labels “smoke-and-mirrors” technologies. In-

stead of relying on a human operator as in Wizard of Oz, designers

realize an interactive sketch of a concept through “clever use of tech-

nologies and techniques” (pp. 245). Buxton exemplifies this approach

through Fitzmaurice’s work on Chameleon (1993). Chameleon sim-

ulates a mobile device that is spatially aware, and was realized

through the following setup shown in Figure 4.10: the end-user holds

Figure 4.10 Setup for Chameleon by Fitz-
maurice (1993). Setup shows how a porta-
ble TV augmented with a button and posi-
tion sensors is rendering the video-streamed
images from a camera pointed at a monitor
which runs the software applications for
mobile spatial navigations. Image based on
Fitzmaurice (1993).

 DAVID LEDO, 2020 | 97

a handheld portable TV with a small motion capture device attached

to the back; the sensors are connected to a computer running a three-

dimensional map application rendered on a display; and a video cam-

era reflects the visuals of the display on the handheld TV. From the

end-user’s perspective, they were holding a mobile device able to

sense spatial interactions at a time in which palmtop computers (and

further with such graphics capabilities) were not readily available.

While Fitzmaurice et al. show a hardware workaround to simulate

highly capable mobile interactions, the software still required imple-

mentation on a desktop computer.

The last example is a very sophisticated prototype, which is not a nec-

essary requirement for smoke and mirror prototypes. A simple, yet

still powerful approach, is to repurpose the mouse and keyboard

events within an application in an interesting way, a technique which

Hartmann (2009) calls “screen poking”. An example of this is Legan-

chuk’s Doorstates (Buxton, 1997), where a physical door was used as

a means to communicate accessibility in video conferencing by repur-

posing a mouse mounted by the door. Hudson and Mankoff (2006)

created BOXES, a hardware platform to create physical prototypes

out of cardboard, which then connected to an application, Thumb-

tacks, to assign mouse and keyboard events or recordings to control

familiar applications, to create simple hardware prototypes that could

behave in more sophisticated ways (e.g., tapping a piece of cardboard

would play music by clicking on the media player’s play button). Ma-

key Makey18 created a similar platform, albeit more simplified, where

18 Makey Makey https://makeymakey.com/ – accessed February, 2019.

https://makeymakey.com/

98 PROTOTYPING INTERACTIVE BEHAVIOUR, RELATED WORK

one could connect alligator clips to a custom board and the board au-

tomatically maps those events to mouse and arrow keys or mouse but-

ton events. Hartmann (2009) also created functions to support

screen poking within d.Tools, where he describes that the limitation

of screen poking is that it is “unaware of the internal state of the con-

trolled application” (pp. 87). Thus, while it is possible to use any ap-

plication, designers need to consider some degree of setup of the

computer application, and recognize that there may not always be full

control of the external application.

4.4 SUMMARY AND CONCLUSION
After discussing different prototyping activities carried out by design-

ers (e.g., sketching, wireframing), it becomes clear that designers can

only truly explore behaviours and physically try them out by creating

interactive programmed prototypes. Thus, I identify a gap in current

practices and in the commonly used commercial tools. Prior systems

tackle some of these elements, which directly inform my work in

providing means to author nuanced interactive behaviours for smart

interactive objects. Seeing the existing gap, and noting the added

complexities of smart object prototyping, later discussed in Chapter

6, this collective work informed the rationale that led to the research

contributions to be described in Parts 2 and 3 of this dissertation.

The background described in Chapters 2, 3 and 4, provides a context

on the skills and expectations of interaction designers, along with

their common practices. Different tools were depicted to show au-

thoring approaches which can be complemented with alternative so-

lutions to: (1) support exploration and behaviour authoring, (2) allow

the creation of smart objects, and (3) foster new ways of thinking

 DAVID LEDO, 2020 | 99

about how design tools can support designers in the creation process.

Moreover, another element that will provide further reflection and

insight is in having an understanding of the work done in HCI toolkits

and more importantly how these authoring systems are evaluated.

Understanding evaluation methods in advance will help shape the de-

sign of prototyping tools, as it enables thinking about what aspects to

support and how to communicate them, the topic of the next chapter.

 EVALUATING TOOLKIT

SYSTEMS

This chapter describes evaluation methods used in HCI toolkit re-

search1. At first glance, this chapter might appear secondary to the

dissertation’s technical goals of producing toolkits2/prototyping

tools for interaction designers. Yet, toolkit evaluation – and the deci-

sions made around it – are central to any academic discussion of

toolkit design. Many challenges accompany toolkit evaluation (§5.1),

and there is no consensus on whether it should be done, and if so,

how. The research portrayed in this chapter is an attempt to appraise

1 Portions of this chapter have been published in:

Ledo, D*., Houben, S.*, Vermeulen, J.*, Marquardt, N., Oehlberg, L., & Greenberg, S.

(2018). Evaluation Strategies for HCI Toolkit Research. Proceedings of the 2018 CHI Confer-
ence on Human Factors in Computing Systems, 1–17. doi: 10.1145/3173574.3173610

* Authors contributed equally to the work.

Data and other materials can be found at: https://github.com/davidledo/toolkit-evaluation.
2 Prototyping tools in the context of interactive behaviour design fall into the definition of

toolkits (§5.2). I argue that these prototyping tools are a subclass of toolkits, and their

building blocks operate as programming tools that do not require writing code.

https://doi.org/10.1145/3173574.3173610
https://github.com/davidledo/toolkit-evaluation

102 EVALUATING TOOLKIT SYSTEMS

and critically discuss (§5.2) the role of evaluation in toolkit research,

which in turn lays the foundation for why particular decisions were

made in evaluating the tools described in this dissertation.

Based on an analysis of 68 representative toolkit papers (§5.3), this

chapter contributes an overview and in-depth discussion of evalua-

tion methods for toolkits in HCI research. The survey resulted in four

types of evaluation strategies: (1) demonstration (§5.4), (2) usage

(§5.5), (3) technical benchmarks (§5.6), and (4) heuristics (§5.7). I pre-

sent these four evaluation types, and opine on the value and limita-

tions associated with each strategy. This meta-review synthesis is

based on a sample of representative toolkit papers. Further, I link in-

terpretations to both our own experiences as toolkit authors, and ear-

lier work by other toolkit researchers (§5.8). Researchers can use this

synthesis of methods to consider and select appropriate evaluation

techniques for their toolkit research.

5.1 THE CHALLENGE OF TOOLKIT EVALUATION
Within HCI, Greenberg (2007) defined toolkits as a way to encapsu-

late interface design concepts for programmers, including widget

sets, interface builders, and development environments. Such

toolkits are used by designers and developers to create interactive ap-

plications. Thus, they are generative platforms designed to create

new artifacts, while simplifying the authoring process and enabling

creative exploration.

While toolkits in HCI research are widespread, researchers experi-

ence toolkit papers as being hard to publish (Nebeling, 2017) for var-

ious reasons. For example, toolkits are sometimes considered as

 DAVID LEDO, 2020 | 103

merely engineering, as opposed to research, when in reality some in-

teractive systems are ‘sketches’ using code as a medium to explore

research contributions, whereas others embody their contributions in

the code itself (Fogarty, 2017). Sometimes, toolkit researchers are

asked for a particular evaluation method without consideration of

whether such an evaluation is necessary or appropriate to the partic-

ular toolkit contribution. Consequently, acceptance of toolkits as a

research contribution remains a challenge and a topic of much recur-

rent discussion, such as Bernstein et. al (2011), Fogarty (2017),

Greenberg (2007), Marquardt et. al (2017), Myers et. al (2000) and

Olsen (2007). In line with other areas of HCI (Greenberg, 2007; Ol-

sen, 2007), we should expect HCI toolkit research to use appropriate

evaluation methods to best match the particular research problem un-

der consideration, as discussed by Greenberg and Buxton (2008),

Hudson and Mankoff (2014), and Preece and Rombach (1994). How-

ever, while research to date has used different evaluation methods,

there is little overall reflection on what methods are used to evaluate

toolkits, when these are appropriate, and how the methods achieve this

through different techniques.

The last two decades have seen an increase in HCI toolkit papers

(Marquardt et al., 2017). These papers typically employ a range of

evaluation methods, often borrowing and combining techniques from

software engineering, design, and usability evaluation. From this cor-

pus, it is possible to derive what evaluation methods are useful, when

they are appropriate and how they are performed.

104 EVALUATING TOOLKIT SYSTEMS

5.2 WHAT IS A TOOLKIT?
Within HCI literature, the term ‘toolkit’ is widely used to describe

various types of software, hardware, design and conceptual frame-

works. Toolkit research falls into a category of constructive research,

which Oulasvirta and Hornbæk (2016) define as “producing under-

standing about the construction of an interactive artefact for some purpose

in human use of computing” (pp. 4958). They specify that constructive

research is driven by the absence of a (full) known solution or re-

sources to implement and deploy that solution.

As constructive research, toolkits examine new conceptual, design or

technical solutions to unsolved problems. To clarify this chapter’s re-

view’s scope, I next define and summarize what is meant by “toolkit”

and “toolkit evaluation”, and why HCI researchers build toolkits.

 DEFINING A TOOLKIT

I extend Greenberg’s original definition (2007) to define toolkits as

generative platforms designed to create new interactive artifacts, provide

easy access to complex algorithms, enable fast prototyping of software and

hardware interfaces, and/or enable creative exploration of design spaces.

Hence, toolkits present users with a programming or configuration

environment consisting of many defined permutable building blocks,

structures, or primitives, with a sequencing of logical or design flow

affording a path of least resistance. Toolkits may include automation

(e.g., recognizing and saving gestures (Marquardt et al., 2011a)) or

monitoring real-time data (e.g., visualization tools (Marquardt et al.,

2011b)) to provide developers with information about their own pro-

cess and results.

 DAVID LEDO, 2020 | 105

 WHY DO HCI RESEARCHERS BUILD TOOLKITS?

Before discussing toolkit evaluation, we elaborate on what they con-

tribute to HCI research. Wobbrock and Kientz position toolkits as ar-

tifact contributions, where “new knowledge is embedded in and mani-

fested by artifacts and the supporting materials that describe them” (pp.

40). Discussions by Myers et. al (2000), Olsen (2007) and Greenberg

(2007) on the value of HCI toolkits can be summarized into five goals:

G1. Reducing Authoring Time and Complexity. Toolkits make it eas-

ier for users to author new interactive systems by encapsulating con-

cepts to simplify expertise (Greenberg, 2007; Olsen, 2007).

G2. Creating Paths of Least Resistance. Toolkits define rules or path-

ways for users to create new solutions, leading them to right solutions

and away from wrong ones (Myers et al., 2000).

G3. Empowering New Audiences. Given that toolkits reduce the ef-

fort to build new interactive solutions, they can enable new audiences

to author these solutions. For example, Olsen (2007) discusses how

interface builders opened interface design to artists and designers.

Figure 5.1 Code and contribution as described by Fogarty (2017). Figure illustrates how system contributions are described within HCI
research: stand-alone novel technical contribution; a combination of novel and known techniques to achieve novel functionality; using
known techniques to achieve novel functionality; or achieving known functionality with novel techniques. Figured adapted from
(Fogarty, 2017).

106 EVALUATING TOOLKIT SYSTEMS

G4. Integrating with Current Practices and Infrastructures.

Toolkits can align their ideas to existing infrastructure and standards,

enabling power in combination (Olsen, 2007) and highlighting the

value of infrastructure research for HCI (Edwards et al., 2010). For

example, D3 (Bostock et al., 2011) integrated with popular existing

standards, which arguably contributed significantly to its uptake.

G5. Enabling Replication and Creative Exploration. Toolkits allow

for replication of ideas that explore a concept (Greenberg, 2007),

which collectively can create a new suite of tools that work together

to enable scale and create “larger [and] more powerful solutions than

ever before” (Olsen, 2007; pp. 252).

Toolkits serve different roles in terms of their research contribution.

Fogarty (2017), as illustrated in Figure 5.1, examines where the nov-

elty of a system lies. He suggests that in contrast to an individual tech-

nical contribution, a toolkit is a collection of techniques that can

achieve a particular functionality, where the functionality is the goal

(the “what”) and the technique collection describes “how” it is

achieved. The techniques and functionality can stand as a research

contribution in three ways: (1) a toolkit achieves a novel functionality

via novel techniques, (2) a toolkit achieves novel functionality

through known techniques (e.g., through combination of known ap-

proaches), or (3) a toolkit achieves known functionality through novel

techniques (e.g., using more optimized algorithms). Greenberg

(2007), focuses more on toolkits as a mean of promoting replication

by applying Gaines’ (1991) BRETAM model to forecast information

sciences (Figure 5.2). The model discusses different stages of the

 DAVID LEDO, 2020 | 107

adoption of technology, in which ideas are born through major break-

throughs, which are then replicated. Overtime, the concepts reach

empiricism which are formalized into theories. These theories are

then accepted and used to predict experiences until those theories are

assimilated and used without question. Greenberg’s replication is not

constrained to recreating a system to achieve the same result. Instead,

it is about being able to explore different facets of an idea, such as the

application scenarios, or different variations, to reach a richer a richer

understanding of the research vision. Under this vision, toolkits are

instrumental in supporting more researchers to explore these differ-

ent application areas.

Marquardt et. al (2017) see promise in toolkits as a research method-

ology within HCI. First, toolkits embody a generative means to real-

ize theoretical frameworks (e.g., Rogers (2004) and Wiberg and

Stolterman (2014)). For instance, the Proximity Toolkit (Marquardt

Figure 5.2 Gaines’ (1991) BRETAM model of forecasting information sciences as described by Greenberg (2007). Within it, toolkits
foster replication to aid design exploration (Adapted from Greenberg (2007)).

108 EVALUATING TOOLKIT SYSTEMS

et al., 2011) encapsulated the conceptual building blocks proposed in

Proxemic Interaction (Ballendat et al., 2010), which then fostered

more focused research applications in multiple areas, including de-

vising design patterns (Marquardt et al., 2012), advertising (Wang et

al., 2012), body-centric interaction (Chen et al., 2012), awareness of

shoulder-surfing in public displays (Brudy et al., 2014), remote con-

trols (Ledo et al., 2015), etc. Besides applying the Ballendat et al.’s

(2010) framework for proxemic interaction, these research endeav-

ours helped further explore what is possible in the research domain

while removing much of the programming complexity (e.g., tracking

people and devices in 3D space, calculating physical relationships be-

tween people and devices). Second, methodologies in design research

(e.g., (Cross, 1999), (Hevner et al., 2004), (Zimmerman, 2007)) sug-

gest that the design of artifacts provide researchers with an under-

standing of the solution space, while the artifact, in this case, the

toolkit, is an embodiment of the knowledge. With toolkits, research-

ers can experiment creating different prototypes, and in that process

can gain a better understanding of: (1) the design space, given that in

the creation process, the building blocks can be immediately recon-

figured to generate new solutions, thus further expanding the under-

standing of the design space; and (2) the paths of least resistance to sup-

port the authoring practice, as the toolkit creation process implies

adapting the authoring process to support different solutions and ap-

proaches in a generalizable way. Under this view, the toolkit can also

act as a means of exploration, as researchers can devise new ways of

authoring technologies to generate multiple solutions. Thus, the cre-

ation of a toolkit can be considered a malleable process that is in-

formed by an understanding of the target audience, a set of sketched

 DAVID LEDO, 2020 | 109

ideas, and the continued realization of individual prototypes while

considering how the authoring approach might generalize to other

variations or scenarios.

 EVALUATING TOOLKITS

A common concern among HCI toolkit and system researchers is the

difficulty in publishing (Nebeling, 2017). This might be due to the ex-

pectations and prevalence of evaluation methods (e.g., user studies),

regardless of whether the methods are necessary or appropriate to the

toolkit’s contribution. Part of the problem is a lack of clear methods

(Nebeling, 2017) or a clear definition of ‘evaluation’ within a toolkit

context. My stance in this dissertation is that the evaluation of a

toolkit must stem from the toolkit designer’s claims. Evaluation is a

means to follow through with the proposed claims of the innovation.

Toolkit designers should thus ask themselves: “what do we get out of

the evaluation?”

Toolkits are typically different from systems that perform one task

(e.g., a system, algorithm, or an interaction technique) as they pro-

vide generative, open-ended authoring within a solution space.

Toolkit users can create different solutions by reusing, combining

and adapting the building blocks provided by the toolkit. Conse-

quently, the trade-off to such generative power is the large space that

remains under explored. Evaluation methods that only examine a

small subset of the toolkit may not demonstrate the research contri-

bution, nor do they necessarily determine a toolkit’s success. As sum-

marized by Olsen (2007) in his reflective paper on evaluating systems

110 EVALUATING TOOLKIT SYSTEMS

research: “simple metrics can produce simplistic progress that is not nec-

essarily meaningful.” The central question is thus: what is an evalua-

tion? And, how do we reflect and evaluate such complex toolkit research?

5.3 METHODOLOGY
This chapter elucidates evaluation practices observed in modern

toolkit research within the HCI community. To build up an in-depth

understanding of contemporary evaluation practices, this chapter re-

port the results of a meta-review based on an analysis of a representa-

tive set of toolkit papers.

 DATASET

To collect a representative set of HCI toolkit papers, my co-authors

and I gathered 68 papers matching the following inclusion criteria.

Publication Venue and Date, Keywords: the initial selection con-

sisted of 58 toolkit papers that were published since 2000 at the major

ACM SIGCHI venues (CHI, UIST, DIS, Ubicomp, TEI, Mo-

bileHCI). We included papers containing keywords: toolkit, design

tool, prototyping tool, framework, API. All 58 papers comply with our

proposed toolkit definition.

Exemplary Papers. We then identified 10 additional papers published

elsewhere, based on exemplary impact (e.g., citations, uptake) such

as D3 (Bostock et al., 2011), Piccolo/Jazz (Bederson et al., 2004), and

the Context Toolkit (Salber et al., 1999). The total dataset includes

68 papers (Table 5.1). While other toolkit papers exist, our dataset

serves as a representative sample from which we could (1) gather in-

sight and (2) initiate meaningful discussion about evaluation.

 DAVID LEDO, 2020 | 111

 ANALYSIS AND RESULTS

The dataset was analyzed via several steps. I conducted open-coding

(Charmaz, 2014) on a subset of our sample, describing the evaluation

methods used in each publication. Next, my co-authors and I collec-

tively identified an initial set of evaluation methods and their varia-

tions as used across papers. At this point, my co-authors and I per-

formed focused coding (Charmaz, 2014) on the entire sample. We

continued to apply the codes to the rest of the sample, iteratively re-

fining and revisiting the coding schema. After coding all papers in

our sample, we created categories (Charmaz, 2014) to derive the

overarching evaluation strategies used by toolkit researchers, thus ar-

riving at the four evaluation strategies that we identify as (1) demon-

stration, (2) usage, (3) technical evaluation, and (4) heuristic evaluation.

Table 5.1 summarizes the analysis, showing the count of evaluation

strategies seen in the current sample. Note that this frequency count

is not necessarily indicative of a strategy’s overall appropriateness or

success, as it only reflects the methods that researchers have applied

to date from our specific sample.

Table 5.1. Overview of all toolkits in the sample. Types: (1) Demonstration, (2) Usage, (3) Technical Performance and (4) Heuristics.

112 EVALUATING TOOLKIT SYSTEMS

The following sections step through the four evaluation types, sum-

marized in Table 5.2. For each type, I will discuss their value and the

specific techniques used. I then reflect on challenges for that type,

followed by opportunities to reflect on the evaluation: opinions are

based on our insights gained from data analysis, my and my co-au-

thors’ experiences and/or opinions offered by other researchers. The

result is a set of techniques that researchers can use, on their own or

in combination, to assess claims made about their toolkits.

5.4 TYPE 1: DEMONSTRATIONS
The now famous “mother of all demos” by Douglas Engelbart (1968)

established how demonstrating new technology can be a powerful

way of communicating, clarifying and showcasing new ideas and con-

cepts. The transferability of an idea to neighbouring problem spaces

is often shown by demonstrating application examples (Oulasvirta &

Hornbaek, 2016). In our sample, 66 out of 68 papers used demonstra-

tions of what the toolkit can do, either as the only method (19/68) or

in combination with other methods (47/68). Demonstrations show

Table 5.2. A summary of the four evaluation strategies.

 DAVID LEDO, 2020 | 113

what the toolkit might support, as well as how users might work with it.

This ranges from showing new concepts (e.g., Phidgets (Greenberg

& Fitchett, 2001), Context Toolkit (Salber et al., 1999)), to focused

case studies (e.g., iStuff (Ballagas et al., 2003), SoD Toolkit (Seyed

et al., 2015)) to design space explorations (e.g., WatchConnect (Hou-

ben & Marquardt, 2015), the Proximity Toolkit (Marquardt et al.,

2011) and Pineal (Ledo et al., 2017)).

 WHY USE DEMONSTRATIONS?

The goal of a demonstration is to use examples and scenarios to clar-

ify how the toolkit’s capabilities enable the claimed applications. A

demonstration is an existence proof showing that it is feasible to use

and combine the toolkit’s components into examples that exhibit the

toolkit’s purpose and design principles. These examples can illus-

trate different aspects of the toolkit, such as using the basic building

blocks, demonstrating the workflows, or discussing the included

tools. Since toolkits are a ‘language’ to simplify the creation of new

interactive systems (Greenberg, 2007), demonstrations describe and

show how toolkits enable paths of least resistance for authoring.

In its most basic form, a demonstration consists of examples explor-

ing the expressiveness of the toolkit by showing a range of different

applications. More systematic approaches include explorations of the

threshold, ceiling or design space supported by the toolkit. The threshold

is the user’s ability to get started using the toolkit, while ceiling refers

to how much can be achieved using the toolkit (Myers et al., 2000).

While demonstrations may not show the full ‘height’ of the ceiling,

they are an indicator of the toolkit’s achievable complexity and po-

tential solution space. The principles and goals of the toolkit can also

114 EVALUATING TOOLKIT SYSTEMS

be demonstrated through a design space exploration which enumer-

ates design possibilities (Wiberg & Stolterman, 2014) and gives ex-

amples from different points in that space.

Sometimes, a prototype toolkit may not be mature enough (e.g., due

to bugs, incomplete parts) to afford other evaluation methods (e.g., a

user study). In such a case, demonstrations are a way to illustrate and

highlight the research concepts rather than the particular implemen-

tation. Indeed, toolkit authors should be transparent and explain that

they are demonstrating concepts of the toolkit itself, and that the cur-

rent version of the toolkit is not sufficiently robust for external usage.

 EVALUATION TECHNIQUES AS USED IN DEMON-

STRATIONS

Our sample reveals several techniques to demonstrate a toolkit.

These techniques are not mutually exclusive and can be combined in

different ways. The simplest unit of measurement for demonstration

is an individual instance. While multiple instances can be described

separately, researchers may carefully select instances as collections to

either explore the toolkit’s depth (case studies) or its generative

breadth (design spaces). Toolkit authors may also go beyond describing

the features of instances, by showing the detailed ‘how to’ steps in-

volved in the instance authoring process.

 INDIVIDUAL INSTANCES

1. Novel Examples. Demonstration of a toolkit can be done by show-

ing the implementation of novel applications, systems or interaction

techniques. The Context Toolkit (Salber et al., 1999) is a classic case

of how example applications are used to demonstrate the underlying

 DAVID LEDO, 2020 | 115

concepts of context-awareness (Schilit et al., 1994). A more recent ex-

ample is WorldKit (Xiao et al., 2013), which demonstrates projec-

tion-based touch interfaces on everyday surfaces in four different en-

vironments. Similarly, in DiamondSpin (Shen et al., 2004), the au-

thors explore the capabilities of their multi-touch table toolkit by

showing five different tabletop designs. Peripheral Displays Toolkit

(Matthews et al., 2004) uses three applications to demonstrate ways

to enable new peripheral displays. Finally, Sauron (Savage et al.,

2013) describes three prototypes to demonstrate the toolkit’s inter-

active features for physical prototypes. What is important is that

these examples detail how the features, design principles, and build-

ing blocks enable new applications.

2. Replicated Examples. Toolkits often facilitate authoring of systems

that were previously considered difficult to build. Recreating prior

applications, systems or interaction techniques shows how the toolkit

supports and encapsulates prior ideas into a broader solution space.

For instance, Prefuse (Heer et al., 2005) states that they “reimple-

mented existing visualizations and crafted novel designs to test the expres-

siveness, effectiveness, and scalability of the toolkit”. In d.tools (Hart-

mann et al., 2006), the authors recreated a classic iPod interface,

while the TouchID Toolkit (Marquardt et al., 2011) recreated prior

work from external sources (e.g., Rock and Rails (Wigdor et al.,

2011)) in bimanual interaction. Similarly, SwingStates (Appert &

Beaudouin-Lafon, 2006) and Prefab (Dixon & Fogarty, 2010) illus-

trate the expressiveness and power of their toolkit by recreating in-

teraction techniques in the research literature (e.g., Bubble Cursor

(Grossman & Balakrishan, 2005), CrossY (Apitz & Guimbretière,

116 EVALUATING TOOLKIT SYSTEMS

2004)). These examples demonstrate how toolkits reduce complex-

ity, effort and development time for recreating applications. Further-

more, replication can demonstrate how the toolkit generalizes across

a variety of examples.

 COLLECTIONS

3. Case Studies. Because toolkits often support complex applications,

case studies (typically concurrent research projects) can help explore

and elaborate the toolkit in greater depth. Five of our 68 papers in-

cluded case studies to reveal what their toolkit can do. The iStuff

toolkit (Ballagas et al., 2003) presents case studies of other research

projects that use the toolkit. Similarly, the SoD toolkit (Seyed et al.,

2015) describes its use in complex case studies: an oil and gas explo-

ration application and an emergency response system. Prefuse (Heer

et al., 2005) reports on the design of Vizster, a custom visualization

tool for social media data. Although case studies are less common

than examples, they convincingly demonstrate the toolkit’s applica-

tion within large, complex scenarios as opposed to small, self-con-

tained example applications.

4. Exploration of a Design Space. A design space exploration exem-

plifies the breadth of applications supported by the toolkit by fitting

it into a broader research theme. Design spaces often consist of di-

mensions with properties (categorical or spectrum variables (Wiberg

& Stolterman, 2014)) that examples can align to. A toolkit author can

create a collection of examples that each examine different points in

the design space. For example, WatchConnect (Houben & Mar-

quardt, 2015) describes a design space of how the toolkit supports in-

teraction across a watch prototype and a second screen. By providing

 DAVID LEDO, 2020 | 117

five examples, including both replicated and novel techniques, the au-

thors satisfy the smartwatch + second screen design space by exam-

ple. The Proximity Toolkit (Marquart et al., 2011) similarly describes

the design dimensions of proxemic interaction (Ballendat et al., 2010)

(e.g., distance, orientation, identity) and demonstrates through ex-

amples how the toolkit enables new proxemic-aware applications.

Pineal (Ledo et al., 2017) explores different ways of using and repur-

posing mobile sensors and outputs to author smart objects, using a

combination of novel examples and replication. Finally, DART

(MacIntyre et al., 2004) is an example of a toolkit supporting the ex-

ploration of a design space through a range of ‘behaviors’ and exam-

ples. A design space exploration is thus a systematic way of trying to

map out possible design boundaries. Although exploring the full de-

sign space is often impossible, examples demonstrate the breadth of

designs enabled by the toolkit.

 GOING BEYOND DESCRIPTIONS

5. ‘How To’ Scenarios. Toolkit papers can demonstrate a step-by-

step breakdown of how a user creates a specific application. Scenar-

ios break down tasks into individual steps that demonstrate the work-

flow, showing the results of each step. We found three ways in which

toolkit authors describe scenarios. One way is to dedicate a section to

describe how one example is authored (e.g., RetroFab (Ramakers et

al., 2015), Pineal (Ledo et al., 2016)). Second, a scenario can be used

throughout the paper to show how different parts of an example come

together (e.g., the Proximity Toolkit (Marquardt et al., 2011)). Demo

scenarios, as in VoodooSketch (Block et al., 2008) and Circuitstack

118 EVALUATING TOOLKIT SYSTEMS

(Wang et al., 2016) are common ways to explain how users might ex-

perience a toolkit’s path of least resistance. Third, authors might in-

clude code samples. For instance, Prefuse (Heer et al., 2004) and

Weave (Chi et al., 2015) use code snippets explaining how certain de-

sign principles or building blocks are supported directly in code.

 CHALLENGES

Using demonstrations to ‘evaluate’ a toolkit poses several challenges.

First is its rationale: although novel demonstrations built atop the

toolkit illustrate toolkit expressiveness, it is sometimes unclear who

would use such applications and why. Second, while creating demon-

strations can describe ‘what if’ scenarios, the demonstration itself

may not show that the toolkit can indeed be used by people other than

the toolkit’s authors. Such lack of external validation may pose issues

depending on the claims made in the paper. Third, example applica-

tions often aim to implement aspects of a potential future today; how-

ever, the target audience might not yet exist or simply be unclear.

Speculating on the intended audience creates the risk of an elastic user

(Cooper, 2004), where the definition of the target audience is

stretched to accommodate implementation decisions and toolkit de-

sign. Finally, many toolkit systems, such as Marquardt et. al’s Prox-

imity Toolkit (2011), PaperPulse by Ramakers et. al (2015), and Ea-

glesense by Wu et. al (2017), work with specialized or custom-built

hardware. In creating these arrangements, the authors might alienate

the potential audience, as some end-users would not be able to recre-

ate these complicated technical setups (e.g., acquiring the appropri-

ate equipment, creating the necessary spatial arrangements). Moreo-

ver, these specialized hardware systems might become deprecated.

 DAVID LEDO, 2020 | 119

 REFLECTION AND OPPORTUNITIES

Provide Rationale for Toolkit Design and Examples. Within every piece

of technology lie assumptions, principles and experiences that guide

the design of that technology. Many of these assumptions can come

across as arbitrary when designing toolkits. However, toolkit authors

often rely on their experience even if they do not explicitly mention

it. Discussing the understanding of the challenges, perhaps informed

by earlier studies or experiences with other tools or toolkits, can help

address why different decisions were made. Nebeling et al.’s XD

toolkit suite, as used in several publications (jQMultiTouch (2012),

XDBrowser (2014), XDKinect (2016)), is a compelling example of

how to do this. They constructed several toolkits to structurally and

systematically explore the large design space of cross-device compu-

ting. They clearly motivated the design and development of each

toolkit by earlier experiences in designing toolkits and systems. More

generally, research by design (Hevner et al., 2004) helps explore con-

crete implementations of ideas.

First-Hand Experience. Toolkit authors often have experience creat-

ing applications that the toolkit will support, and thus are genuinely

familiar with the development challenges and steps that need simpli-

fying. This experience leads to autobiographical design (Neustaedter

& Sengers, 2012) informing the toolkit design process. In Phidgets

(Greenberg & Fitchett, 2001), the authors discuss their frustrations

in authoring hardware-based applications, which informed their de-

sign and implementation. A toolkit may also leverage experiences

with building similar toolkits. The design of D3 (Bostock et al., 2011)

120 EVALUATING TOOLKIT SYSTEMS

evolved from the authors’ earlier experiences in creating visualiza-

tion toolkits (e.g., Prefuse (Heer et al., 2005), ProtoVis (Bostock &

Heer, 2009)).

Prior Work. Challenges identified in previous research can help moti-

vate the design of toolkits. For instance, the Context Toolkit (Salber

et al., 1999) describes challenges in authoring context-aware applica-

tions based on prior work (e.g., new types of sensing from multiple

distributed sources).

Formative Studies. Authors can perform formative studies to under-

stand their intended target audience. For instance, in d.tools (Hart-

mann et al., 2006), the authors conducted interviews at product de-

sign companies. Understanding current practices can help address

challenges with the design of the toolkit.

Discuss Boundaries and Underlying Assumptions. Despite including a

‘limitations’ section, toolkit authors often do not discuss aspects of

the toolkit that do not work well. Critically discussing what does not

work or the tasks complicated by the toolkit might help steer away

from a ‘sales pitch’.

5.5 TYPE 2: USAGE
While demonstrations answer the question of ‘what can be built with

the toolkit’, evaluating usage helps verify ‘who can use the toolkit’ under

certain circumstances, i.e., which tasks or activities can a target user

group perform and which ones still remain challenging? To evaluate

if and how a user group can actually use the tool, it is important to

investigate how that user group uses and appropriates the toolkit. Our

sample shows that more than half of the papers (35/68) include usage

 DAVID LEDO, 2020 | 121

studies. Only one toolkit paper uses a usage study as the only evalua-

tion method (Houben et al., 2016). Usage studies are often combined

with demonstrations (33/68) or technical evaluations (9/68).

 WHY EVALUATE USAGE?

The defining feature of usage evaluations is the involvement of exter-

nal users working with the toolkit. Much of usage evaluation is in-

formed by traditional user studies (as described by e.g., Dumas and

Redish (1999), Lazar et. al (2017) and Nielsen (1994)), and can help

verify whether the toolkit is: (1) conceptually clear, (2) easy to use, or

(3) valuable to the audience.

Given the prevalence of usability studies in HCI, many toolkit papers

examine the toolkit’s usability — i.e., how easy it is to use the toolkit.

Common measures are users’ opinions, preferences, completion

time, the number of steps (e.g., lines of code), or number of mistakes.

In addition, given that toolkits often propose new workflows, or ena-

ble creation of new kinds of artifacts, it is important to know if it will

be useful to the target audience. In looking for utility, researchers in-

quire into the audiences’ interest or outcomes. One way to assess util-

ity is to look at the output of the toolkit. This consists of investigating

the artifacts that the users authored with the toolkit. Lastly, a usage

evaluation might look to understand use of the toolkit: how a user ap-

propriates a toolkit, how it is used over time, and what kind of work-

flows are developed. The processes together with the end results can

point towards paths of least resistance, some of which may differ from

the ones the toolkit authors’ initially intended.

122 EVALUATING TOOLKIT SYSTEMS

 EVALUATION TECHNIQUES AS USED IN USAGE

STUDIES

Given the involvement of external people in usage evaluations, toolkit

authors can perform a variety of evaluations with users, each yielding

different kinds of insights. Our data revealed five ways to conduct usage

studies and two additional complementary techniques for eliciting user

feedback. The first four techniques refer to controlled lab experi-

ments, where participants are given consistent tasks that can yield ac-

curate measures, such as completion time. The fifth technique is

somewhat more aligned with ‘in the wild’ studies, which can provide

more realism as suggested by McGrath (1995) and Rogers and Mar-

shall (2017). The last two techniques are complementary methods to

elicit user feedback.

 WAYS TO CONDUCT USAGE STUDIES

1. Usability Study. When toolkits claim that they facilitate a process,

authors may choose to carry out a usability study. This can help iden-

tify issues with the toolkit, using measures of participants’ perfor-

mance (e.g., time, accuracy), and further qualitative feedback. Partic-

ipants are typically given programming tasks that exploit various as-

pects of the toolkit. These programming tasks tend to be close-ended,

though some may include a small degree of open-endedness (e.g.,

Hartmann et. al (2007)). To increase control, some tasks may incor-

porate pre-written skeleton code (e.g., (Nebeling et al., 2014)). Usa-

bility studies can examine various aspects of toolkits. For example,

Papier-Mâché (Klemmer et al., 2004) shows an evaluation of the

toolkit’s API usability, which revealed inconsistency in the naming of

 DAVID LEDO, 2020 | 123

software components and aspects of the toolkit that lacked documen-

tation. Hartmann et al. coined the term “first-use study” (2006) in

which participants are exposed to a toolkit for the first time and as-

signed different tasks. In d.tools (Hartmann et al., 2006), the study

aimed at determining the threshold (Myers et al., 2000) of the system,

while in Exemplar (Hartmann et al., 2007) the aim was on determin-

ing the successes and shortcomings of the tool. The study in Exem-

plar (Hartmann et al., 2007) combined close-ended tasks with a more

open-ended task. Some papers report modifying the toolkit to address

issues identified in a usability study, such as Papier-Mâché (Klemmer

et al., 2004) and DENIM (Lin et al., 2000), which Greenberg and

Buxton (2008) suggest should be the main goal of usability studies.

2. A/B Comparisons. One way to suggest improvement over existing

work is to compare the new toolkit to a baseline. Baselines include not

having a toolkit, or working with a different toolkit. In MAUI (Hill &

Gutwin, 2004), the authors compare different platforms to measure

what they defined as effort: number of classes, total lines of code, lines

written for feedthrough and development time. By comparing it to

GroupKit (a prior toolkit that supports a similar task (Roseman &

Greenberg, 1996)), and Java (no toolkit), the authors can show the

degree of improvement from the current state-of-the-art. A/B com-

parisons could test for variations within the toolkit. Lin and Landay

in Damask (2008) compared a full version of their prototyping tool to

one without the key features (patterns and layers) to determine the

improvement and preference. Finally, both Paperbox (Wiethoff et al.,

2013) and XDStudio (Nebeling et al., 2014) compare different con-

figurations of their toolkit.

124 EVALUATING TOOLKIT SYSTEMS

3. Walkthrough Demonstrations. A walkthrough demonstration con-

sists of showing the toolkit to a potential user and gathering their

overall impressions. Unlike cognitive walkthroughs (Polson et al.,

1992), walkthrough demonstrations are not about the user working

directly with the tool to identify usability problems. In a walkthrough

demonstration, the experimenter has full control and explains the

workflow to participants, together with examples and even limita-

tions. This approach is particularly suitable when toolkit creators

want to get feedback on the utility of their toolkit, as it removes the

focus from using the toolkit (as one might find in a usability study)

and shifts it towards the value of having the toolkit. While the

walkthrough technique has not been explored extensively, RetroFab

(Ramakers et al., 2016) is an example of this approach. This tech-

nique can be useful to gather feedback on the idea rather than the spe-

cific toolkit implementation, and might serve for toolkits that are not

ready for usability testing or deployment.

4. Observation. Direct observation helps inform how users ap-

proached the toolkit to solve problems ranging from closed tasks re-

quiring a specific solution to a given problem, to open tasks where

participants formulate the problem and use the toolkit to create their

own solution. While our analyzed papers rarely presented any in-

depth discussion of participants’ processes or workflows, they did

provide examples of the toolkit’s use. HapticTouch (Ledo et al.,

2012) tested participants’ ability to transfer concepts about haptics,

which were provided at varying levels of abstraction, into an interac-

tive application: its authors assessed the paths of least resistance the

toolkit afforded to solve both open and close-ended tasks. Our analy-

sis also saw observational studies used within short-term (Let Your

 DAVID LEDO, 2020 | 125

Body Move Toolkit (Pfeiffer e.t al, 2016)) and long-term (C4 (Kirton

et al., 2016), and Intuino (Wakita & Anezaki, 2010)) workshop set-

tings involving multiple participants. For example, Pfeiffer et al.

(2016) asked participants to brainstorm ideas and create Wizard-of-

Oz prototypes using the toolkit. Their video analysis discusses the

applications created, as well as in-depth details of how their creations

were made. In C4 Kirton et. al (2013), participants attended 3-week

workshops, with some staying further for a 4-week artist residency:

observation informed its creators on how design decisions held up in

the implementation.

5. Take-Home Studies. Some external validity (McGrath, 1995) can

be acquired by conducting experiments outside lab settings. While it

is difficult to deploy a toolkit before it has gained broader acceptance,

researchers can provide their toolkit to “early adopter” participants.

Participants receive the toolkit (and all necessary components and

documentation) to create any applications of their liking within a

given timeframe (e.g., a week). Phidgets (Greenberg & Fitchett,

2001), jQMultiTouch (Nebeling et al., 2012) and the Proximity

Toolkit (Marquardt et al., 2011) are iconic examples where students

in an advanced HCI class were given access to the toolkits and neces-

sary hardware components to create interesting examples as a

prompt. They all demonstrate how students could easily work with

the proposed constructs, where they focused on design aspects of the

assignment versus low-level coding.

 WAYS TO ELICIT USER FEEDBACK

6. Likert Scale Questionnaires. Likert scales provide a non-paramet-

ric value pertaining to a question. The questions can later be analyzed

126 EVALUATING TOOLKIT SYSTEMS

either through non-parametric tests or by examining the median val-

ues. In toolkit research, while often acting as validation of claims

(e.g., ease of use), Likert scales can formalize the results to clarify a

hypothesis. For instance, in Exemplar (Hartmann et al., 2007), the

authors were unsure as to whether the system empowered both ex-

perts and non-experts, as the performance between these two can dif-

fer considerably. By using Likert scale questionnaires, participant re-

sponses confirmed that both experts and non-experts felt empow-

ered, thus validating their hypothesis. Other examples like Damask

(Lin & Landay, 2008), d.tools (Hartmann et al., 2006), Paperbox

(Wiethoff et al., 2013) and Panelrama (Yang & Wigdor, 2014) use

Likert scales to quantify user feedback on their system. This feedback

often complements other usability results.

7. Open-Ended Interviews. In our sample, 12 papers ask participants

about their experiences or challenges performing their tasks, which

provided the authors with insight in terms of processes, successes

and shortcomings of the toolkit (e.g., Prefuse (Heer et al., 2005),

Physikit (Houben et al., 2015) and PanelRama (Yang & Wigdor,

2014)). Interview questions can start from a script, but are open in

that they allow further inquiry as opportunities arise, such as pursu-

ing interesting and/or unclear responses. Quoting participants gives

life and adds strength to findings (e.g., Weave (Chi & Yang, 2015),

DENIM (Lin et al., 2000), Midas (Savage et al., 2013)). Interviews

can also expose how users perceive toolkit features, and can contex-

tualize other usage data.

 DAVID LEDO, 2020 | 127

 CHALLENGES

Evaluating the toolkit’s implementation through usability tests could

distract from the conceptual ideas as well as the opportunities facili-

tated by the toolkit. Olsen (2007) warns against falling into “the usa-

bility trap”, as the three underlying assumptions for usability evalua-

tion – walk up and use, standardized tasks, and problem scalability –

are rarely met for systems research. Additionally, toolkits in HCI re-

search are still prototypes. It is difficult for a small team to create a

toolkit with the quality of a commercial product (fatal flaw fallacy (Ol-

sen, 2007)). Controlled experiments measuring usability are limited

in scope and evaluate a very small subset of what the toolkit can ac-

complish, making it difficult to generalize usage results. Further-

more, selected experimental tasks might favour elements that the

toolkit can accomplish. In achieving control of the tasks, researchers

may optimize for these tasks, or only create what a usability test can

measure (Olsen, 2007).

While observations of people using the toolkit provide information

about use, they may not assess how the toolkit fares in the real world.

McGrath (1995) discusses this as the trade-off between realism, pre-

cision and control. Even in “take home” studies, realism is compro-

mised: participants are given all necessary components, instruction,

access to resources (e.g., documentation, direct access to the toolkit

creators). This creates an idealistic scenario not necessarily present

in real-world adoption (Ledo et al., 2017). Furthermore, it is difficult

to identify appropriate participants for usage evaluations, especially

as toolkits propose new ways to solve a problem. Specialized target

128 EVALUATING TOOLKIT SYSTEMS

audiences may not even exist yet (Nebeling, 2017). Given the aca-

demic context, it is often easiest to find student populations. Students

(e.g., computer science students) are often used as a stand-in for the

target audience (e.g., developers), assuming that if students can use

the toolkit then professionals might too. However, results may not

always transfer to the intended target audience. Toolkits often re-

quire extensive use before becoming familiar. Thus, a premature

evaluation can set up the toolkit for an unfair comparison.

Another challenge in evaluating usage is that a toolkit system may fa-

cilitate unfamiliar ways to solve a problem, which may fundamentally

change how an end-user programs or solves a particular problem. For

example, if a toolkit primarily provides an API that wraps certain

functionality, a proficient programmer might quickly be able to adopt

it and work with it. In contrast, a programming by example approach

would change how a programmer solves the problem: instead of writ-

ing code the programmer has to manipulate virtual objects visually,

and define positive and negative examples. Moreover, end-users may

have months or years of training in their current tools and ecosys-

tems, which may shape their existing practices and expectations, thus

affecting how they receive the new toolkit. In this type of case, a usage

study is more about understanding whether end-users can quickly

adopt an alternative way of thinking, or to examine whether they can

create new algorithms given the new toolkit’s approach.

One last challenge of usage studies is the conceptual threshold.

Toolkit systems sometimes encapsulate research concepts (e.g.,

Proxemic Interaction) which may not be familiar to potential study

participants. As a result, it may not be possible to discern whether

 DAVID LEDO, 2020 | 129

issues or limitations of a participant’s prototype are due to technical

gaps or conceptual gaps (i.e., participants do not create a particular

type of scenario because they do not understand the concept).

 REFLECTION AND OPPORTUNITIES

Bringing Utility into the Picture. A central challenges of usability eval-

uation is its focus on toolkit usability vs. utility (Greenberg & Buxton,

2008): while a toolkit may be usable, it may not be useful. Similarly,

a toolkit may have sufficient utility to make users satisfied in spite of

usability issues being present. Walkthroughs and interviews can help

here, where questions about utility can be raised and responses ex-

plored in depth.

Selecting Tasks and Measures Carefully. While more control, more

measures and more quantifiable results seemingly provide rigour, we

argue that rigour is only of value if truly representative tasks and ap-

propriate measures are used. Rigour should come from a careful se-

lection of the method, technique, and means of executing the tech-

nique. Publications should clearly articulate why the chosen tasks and

measures support the claims made in the paper (Greenberg & Bux-

ton, 2008).

Recognizing the Consequences of Audience Choice. Toolkit authors

should critically reflect and understand the implications of their

choice of audience to study. As mentioned, the audience can be a

close approximation or a starting point, but authors need to articulate

such implications and limitations.

130 EVALUATING TOOLKIT SYSTEMS

5.6 TYPE 3: TECHNICAL PERFORMANCE
While demonstrations and usage studies evaluate what a toolkit can

do and who might use that toolkit, researchers can evaluate the tech-

nical performance of the toolkit to find out how well it works. From

our sample of 68 toolkit papers, about one third of the papers (18/68)

include technical performance studies. Technical studies are comple-

mentary to demonstration and usage evaluations, as they convey ad-

ditional information on the technical capabilities of the toolkit.

 WHY ANALYZE THE TECHNICAL PERFORMANCE?

The goal of studying technical performance is to benchmark, quantify

or analyze the toolkit or its components to verify or validate the per-

formance. Technical performance can be measured in terms of effi-

ciency (e.g., speed of the algorithm, throughput of a network proto-

col), precision (e.g., accuracy of an algorithm, fault tolerance), or

comparison against prior techniques. Overall, the purpose is, thus, to

measure some form of system performance. These measures show

whether it meets basic usage standards (threshold), or if there are im-

provements over the state-of-the-art. Technical benchmarks can

push the boundaries of the toolkit to show when it no longer works as

expected. Authors sometimes turn to software engineering metrics

(e.g., lines of code, number of classes) to show improvement over ex-

isting practices.

 TECHNIQUES AS USED IN

TECHNICAL PERFORMANCE

The Software Engineering community has a rich set of tools to eval-

uate the performance of systems (Blackburn et al., 2006). Our dataset

 DAVID LEDO, 2020 | 131

showed that toolkit authors examine a wide variety of benchmarks

such as: website loading time (D3 by Bostock et. al (2011)), spatial res-

olution (OpenCapSense by Grosse-Puppendahl et. al (2013)), framer-

ate (KinectArms by Genest et. al (2013) and C4 by Kirton et. al

(2013)), GPU usage (C4 by Kirton et. al (2013)), memory allocation

(e.g., Protovis by Bostock and Heer (2009) and C4 by Kirton et. al

(2013)), load time (Protovis by Bostock and Heer (2009)), lines of

source code (Swingstates by Appert and Beaudouin-Lafon (2006) and

Context Toolkit by Salber et. al (1999)), and the size of the binary

(Swingstates by Appert and Beaudouin-Lafon (2006)). Performance

metrics should be tied to the claims of the paper, and the needs that

must be satisfied for the toolkit to be operational or go beyond the

state-of-the-art.

1. Benchmarking Against Thresholds. For certain types of applica-

tions, systems and algorithms, there are known, tested or desirable

thresholds that serve as baseline to verify that a system meets a com-

monly accepted standard of use (e.g., accuracy, latency). For in-

stance, 30 fps is often used for real-time tracking systems (New-

combe et al., 2011). Both KinectArms (Genest et al., 2013) and Ea-

gleSense (Wu et al., 2017) present new tracking systems bench-

marked at this 30 fps rate. Thresholds can be derived empirically,

technically or from experience using the tools.

2. Benchmarking Against State-of-the-Art. Benchmarking often

looks for improvements over existing state-of-the-art solutions. This

comparison approach is often similar to algorithm contributions in

HCI, such as the $1 Gesture Recognizer (Wobbrock & Wilson,

2007), where a toolkit’s capabilities are compared against well-

132 EVALUATING TOOLKIT SYSTEMS

known baselines, or the best algorithm for that purpose. For instance,

in OpenCapSense (Grosse-Puppendahl et al., 2013), the authors

compared the toolkit’s capacitive sensing performance to the earlier

CapToolKit (Wimmer et al., 2007). While not a toolkit (and thus not

part of our dataset), the $1 Gesture Recognizer (Wobbrock & Wilson,

2007) is an excellent example of benchmarking against the state-of-

the-art: the benchmarks showed that it was considerably close to the

state-of-the-art, yet much simpler to implement (about 100 lines of

code). D3 (Bostock et al., 2011) compared page load time to a prior

toolkit and to Adobe Flash. Page load time was deemed important

given their use-case: rendering visualizations created with the toolkit

on the web.

 CHALLENGES

Technical benchmarks often complement demonstrations or usage

studies. Measuring technical benchmarks in isolation may highlight

some human aspects of using a toolkit (e.g., frame rate, latency), but

do not account for what it is like to use the toolkit. For instance, rep-

resentative examples may still be difficult to program, even if requir-

ing few lines of code. Similarly, a paper may not always (explicitly)

clarify the benchmark’s importance (e.g., 30 fps in EagleSense (Wu

et al., 2017)). Another challenge is that benchmark testing relies on

comparisons to an existing baseline. If performance specifications

have not already been published, authors must access state-of-the-art

systems to perform the comparisons. Given the prototypical nature

of HCI toolkits and the fast-moving targets of technology (Myers et al.,

2000), many pre-existing baselines may already be deprecated or re-

 DAVID LEDO, 2020 | 133

quire extensive reimplementation by the toolkit authors. Alterna-

tively, a baseline may not exist, as the technical challenge may not

have been solved before (Olsen, 2007). Research HCI toolkit devel-

oped by a single person or a small team may be far from optimized.

Thus, sub-optimal performance does not signify how the system

could fare. For instance, early versions of GroupKit (Roseman &

Greenberg, 1996) had slow network performance and suffered from

multiple race conditions, as the authors were placing their efforts

elsewhere. Yet, these bottlenecks were not fundamental to the toolkit

– many research concepts were still explored and realized working

with GroupKit, such as GroupWeb (Greenberg & Roseman, 1996),

and TeamRooms (Roseman & Greenberg, 1996b).

 REFLECTION AND OPPORTUNITIES

Contextualize and State Technical Limitations. HCI toolkit researchers

often have quite different goals from commercial toolkit developers.

For example, researchers may want to show how interaction concepts

can be packaged within an easy-to-program toolkit (e.g., its API),

where the underlying – and perhaps quite limited – infrastructure

only serves as proof of concept. Significant limitations should be

stated and contextualized to explain why they do not (or do) matter.

Risky Hypothesis Testing. Toolkit authors should openly discuss the

rationale behind the tests performed and whether the tests are a form

of stress testing. Similar to some of Greenberg and Buxton’s argu-

ments (2008), perhaps the best approach is to actively attempt to

break the toolkit’s proposed technical claims (e.g., EagleSense’s abil-

ity to accurately track up to four people in real-time (Wu et al., 2017))

to truly understand the toolkit’s technical boundaries. One way to

134 EVALUATING TOOLKIT SYSTEMS

test these boundaries is to stress-test the system’s scalability for a

chosen metric.

Open Source and Open Access. As toolkit researchers, we can facilitate

comparison and replication by making our work available to help fu-

ture researchers, as done by toolkits such as D3 (Bostock et al., 2011),

the Proximity Toolkit (Marquardt et al., 2011), Midas (Savage et al.,

2012). Ideally, this goes beyond the academic publication or the

toolkit source code and documentation, but also includes the bench-

marking data so that others can run the tests (e.g., on different com-

puters or as baselines for future studies).

Discuss Implicit Baselines. While a toolkit paper may assume standard

metrics to determine that a system works (e.g., 24 fps, or few lines of

code to accomplish a task), it may help to mention why this metric is

relevant. Thus, less familiar readers can better understand the per-

formance implications.

5.7 TYPE 4: HEURISTICS
Heuristics in HCI are typically associated with Nielsen et al.’s (e.g.,

Molich and Nielsen (1990), Nielsen (1993)) discount method to in-

formally assess interface usability. Given the challenges of toolkit

evaluation, toolkit researchers have devised toolkit-centric heuristics

(guidelines) to assess the end-result of a toolkit, such as Blackwell et.

al’s Cognitive Dimensions of Notations (2000) and Olsen’s discus-

sion on evaluating interactive systems research (2007). The toolkit is

then inspected against these heuristics, which in turn serves to inform

strengths, weaknesses, and reflection of the toolkit’s potential value.

 DAVID LEDO, 2020 | 135

The heuristics have been extracted from tried and accepted ap-

proaches to toolkit design and have been used by others. In the da-

taset, Blackwell et. al’s heuristics (2000) are used in Protovis (Bos-

tock et al., 2009) and Exemplar (Hartmann et al., 2007), whereas Ol-

sen’s heuristics are used in WatchConnect (Houben & Marquardt,

2015), Intelligibility Toolkit (Lim & Dey, 2010), D-Macs (Meskens,

et al., 2010), Gummy (Meskens et al., 2008), XDKinect (Nebeling et

al., 2014), and Society of Devices Toolkit (Seyed et al., 2015). In our

sample, heuristics always complemented other methods.

 WHY USE HEURISTICS?

Heuristics are used as a discount method that does not require human

participants to gather insight, while still exposing aspects of utility.

Olsen’s ideas of expressive leverage and expressive match (Olsen, 2007)

resonate with Greenberg’s view of toolkits as a language that facili-

tates creation (2007), or Myers’ themes of successful systems helping

where needed and creating paths of least resistance (2000). Heuristics

are based on tried success (Olsen, 2007) or theories (e.g., cognitive

dimensions (Blackwell et al., 2000)).

Blackwell et. al’s (2000) Cognitive Dimensions of Notation (CDN)

was initially offered as a set of discussion points that designers could

also use as heuristics to verify system usability. Their primary goal

was to create a vocabulary for experts to make early judgements when

designing, and to articulate decisions later. The authors describe it as

a synthesis of several sources that can partially address elements of

the interface design process. CDN also included a questionnaire ap-

proach (Blackwell & Green, 2001) to guide and structure user feed-

back sessions.

136 EVALUATING TOOLKIT SYSTEMS

Olsen’s heuristics (2007) aimed to bring the focus of toolkit evalua-

tion back to what he saw as the value of UI systems research, which

corresponds to our aforementioned reasons why HCI researchers

build toolkits. Olsen provided terminology and means to support

common claims made in toolkit papers. Interestingly, Olsen states

that given a set of claims, one can demonstrate how the toolkit sup-

ports them, which may explain why our data shows prevalent combi-

nations of Type 4 evaluations together with Type 1 (demonstrations).

Following a comprehensive list of heuristics can help identify areas

not addressed by the toolkit. Some heuristics might be more crucial

(e.g., problem not previously solved (Olsen,2007)). Conversely, some

may not be relevant for the proposed toolkit (e.g., secondary notations

(Blackwell et al., 2000)). Heuristics can and should be omitted when

appropriate (Molich & Nielsen, 1990).

 EVALUATION TECHNIQUES FOR HEURISTICS

I identified three ways to carry out a heuristic evaluation: checklists,

discussion, and as a basis for usage studies.

1. Heuristic Checklists. The checklist approach consists of selecting

a heuristic evaluation approach and going through individual heuris-

tics one at a time. In doing so, authors can reflect on whether the

toolkit satisfies the heuristic or not, and the extent of meeting it. For

instance, Hartmann et al. (2007) followed Blackwell and Green’s

CDN through a questionnaire (2001). In evaluating each item, they

found that many the limitations of the system were due to the inability

to show many sensor visualizations at once. Similarly, Meskens et al.

 DAVID LEDO, 2020 | 137

(2010) follow Olsen’s heuristics to determine which elements of the

interface are lacking (e.g., ability to generalize and reuse).

2. Discussion / Reflections based on Heuristics. In contrast to the

checklist approach, Olsen’s heuristics (2007) are also used as reflec-

tion points in the discussion of a toolkit paper. This reflection allows

the authors to better understand the limitations and whether there

are issues in the toolkit that are not addressed. Both Gummy (Mes-

kens et al., 2008) and WatchConnect (Houben & Marquardt, 2015)

are examples of this approach, where authors reflect on shortcomings

(and ways to address them) as well as compare their toolkits to the

state of the art.

3. Basing Usage Studies on Heuristics. Heuristics can help determine

what is useful to evaluate. XDKinect (Nebeling et al., 2014) tailored

their usage study to some of Olsen’s guidelines (2007), such as re-

ducing solution viscosity and ease of combination.

 CHALLENGES

A danger of heuristic evaluations is falling into self-fulfilling prophe-

cies, where authors stretch definitions of the heuristics to justify their

claims. Alternatively, authors might choose to only focus on: (1) heu-

ristics that their toolkit addresses; or (2) how the toolkit addresses

them without acknowledging the negative aspects or compromises

(e.g., increasing flexibility at the expense of expressive match). Some-

times the heuristics are not relevant to a particular toolkit. For exam-

ple, CDN (Blackwell et al., 2000) covers a breadth of applications,

where some heuristics only apply to one group (e.g., visual program-

ming environments). Omitting heuristics without clear rationale

138 EVALUATING TOOLKIT SYSTEMS

could lead readers to believe that the authors are cherry picking heu-

ristics. Heuristic evaluations are often carried out by the authors, who

may have an implicit bias. While heuristic evaluation in HCI suggests

that external evaluators add value to the process (Molich & Nielsen,

1990; Nielsen, 1993), it proves difficult for toolkits given that external

evaluators would need to be competent in the toolkit domain and un-

derstand the associated design and research concepts. None of the

surveyed papers used external evaluators.

 REFLECTION AND OPPORTUNITIES

Using Heuristics as Design Guidelines. Heuristics can serve comple-

mentary purposes: they can inform design as well as help evaluate de-

signs. Thus, toolkit authors can conceptually consider how to support

aspects of creation early on through best practices (e.g., API practices

(Stylos et al., 2008)). As examples, the Intelligibility Toolkit (Lim &

Dey, 2010) and HapticTouch (Ledo et al., 2012) both discuss heuris-

tics inspiring some of their design goals.

Using Heuristics to Inform Techniques from Prior Types. Given the vo-

cabulary provided by heuristics, authors can consider how demon-

strations or usage studies might stem from the heuristics themselves.

For example, toolkit authors could choose to evaluate the expressive

match (Olsen, 2007) within one part of the toolkit, which could be

executed through a usage study (e.g., A/B comparison, observation).

Olsen (2007) suggests that one way researchers might evaluate ex-

pressive match is to perform a “design flaw test”, where participants

are asked to remedy a flaw using a design with “good expressive

match” and a baseline deficient design with “bad expressive match”.

 DAVID LEDO, 2020 | 139

As an example, Olsen uses colour selection within a drawing applica-

tion, where a researcher might compare using a mouse-based colour

picker to manually entering hexadecimal code values into a textbox.

Transparency. Toolkit authors can disambiguate cherry picking ver-

sus ignoring irrelevant heuristics by articulating why a heuristic is or

is not considered. This will increase transparency and possibly ex-

pose gaps in the evaluation.

5.8 DISCUSSION
The meta-review in this chapter reveals 4 strategies to evaluate toolkits:

(1) demonstrations (what a toolkit can do), (2) usage (who can use the

toolkit and how), (3) technical evaluations (how well a toolkit performs),

and (4) heuristics (to what extent the toolkit meets standard guidelines).

My co-authors and I wanted to get a more detailed sense of the data,

which prompted us to re-code the papers considering and interpreting

the types of contribution. We performed two passes to the data to en-

sure consistency. Figure 5.3 summarizes the entirety of the data ana-

lyzed, including the distribution of the individual evaluation tech-

niques. The next section offers several opinions, formed from: the

building experiences of myself and my collaborators; the meta-review

analysis; and the writings of other toolkit researchers.

 RETHINKING EVALUATION

Rather than considering some methods as better than others, we be-

lieve that it is more important to use methods that best match the

claims of the toolkit paper, and what that evaluation method might

yield. One way to determine this might be for authors to ask them-

selves: if the evaluation technique were to be removed, what is the impact

140 EVALUATING TOOLKIT SYSTEMS

to the paper? In answering that question, authors might realize the es-

sential methods, and which ones are secondary or even unnecessary.

Evaluation by Demonstration?

One central observation in our review is that demonstrations are by

far the most common way to communicate the functionality of the

toolkit. Demonstrations vary in complexity, ranging from small ex-

amples to complex interaction techniques and systems. 19 toolkit pa-

pers used demonstration as the only way to communicate or evaluate

the toolkit’s capabilities. Novel and replicated examples are quite

common due to their easy implementation and description. However,

further analysis showed that it is rare to find more systematic explo-

rations of the capabilities of toolkits through case studies concurrent

to the time of publication, or design space explorations. Moreover,

many toolkit papers combine examples with code snippets and how-

to scenarios to help the reader understand what the toolkit supports.

While demonstrations are often not considered a formal evaluation,

they show evidence through “research by design” (Hevner et al.,

2004) and are highly effective in communicating the principles, con-

cepts and underlying ideas of the toolkit. In fact, using the toolkit to

create prototypes can lead to refinements in the toolkit itself, as was

done in SATIN (Hong & Landay, 2000). When linked back to the

five goals of toolkit research, demonstrations provide the most com-

plete and compelling evidence for achieving the goals of designing the

toolkit. The wide adoption of evaluation by demonstration indicates

that such well explored examples can be a measure of success for the

underlying concepts and ideas of a specific toolkit implementation.

 DAVID LEDO, 2020 | 141

Usability Studies (Still) Considered Harmful Some of the Time

Half of all toolkit papers in our sample conducted usage studies.

These include compelling examples examining how people work with

a toolkit; how a toolkit is used and appropriated in a realistic environ-

ment; or how toolkits enable creativity and exploration. Although us-

age studies play a fundamental role in establishing who can use a

toolkit, our analysis shows that many authors still fall into the ‘usabil-

ity trap’ (Olsen, 2007). Despite Greenberg and Buxton’s warning

that usability studies can be ‘harmful’ if not applied to the right prob-

lem (2008), many papers in our sample performed usability studies

to evaluate complex toolkits. Such studies may employ artificial tasks,

small sample sizes, and non-representative user groups to evaluate a

small subset of solution paths offered by the toolkit. While still yield-

ing results, these are limited to that specific task, and rarely general-

ize to the entire toolkit capabilities, development paths, broader au-

dience that would use the toolkit, and the context around toolkit

learning and use.

Echoing prior work discussing that usability studies are not always

required for toolkit research, including Hudson & Mankoff (2014) as

well as Olsen (2007), we believe narrow usability studies as currently

done by most toolkit authors at best play only a minor role establish-

ing or evaluating the novelty or significance of the toolkit and its un-

derlying ideas. If done narrowly, they should at least be combined

with other techniques: all but one paper in our sample also included

demonstrations or technical evaluations. Even so, we consider this a

widespread application of a weak mixed method approach, where re-

searchers may make – perhaps unwarranted – generalized usability

142 EVALUATING TOOLKIT SYSTEMS

Figure 5.3. Summary of the entire dataset for toolkit evaluation. Each row represents the different toolkit goals and their (interpreted)
method distributions, while the last row shows the entire data distribution.

 DAVID LEDO, 2020 | 143

claims across the entire toolkit. Careless usability evaluations can be

costly, as they may evaluate the wrong possible futures and lead to

false conclusions (Salovaara et al., 2017). Usability studies can evalu-

ate some parts of the toolkit, but they must be designed and con-

ducted with care.

Successful Evaluation versus Successful Toolkit

In our dataset, we observed a diverse range of toolkits that address

various sub-fields within the HCI community, where there is no indi-

cation that the success of the toolkit was necessarily tied to the suc-

cess of the evaluation. Some of these toolkits have had enormous im-

pact within the research community. For example, the Context

Toolkit (Salber et al., 1999) has had a transformative effect on re-

search within the space of context awareness, as evident from the

1326 citations. Other toolkits have moved on to become successful

outside of the research community. For instance, D3 (Bostock et al.,

2011) has been widely adopted for web-based interactive visualiza-

tions. Their paper already suggested that the evaluation may not be

indicative of success: “while we can quantify performance, accessibility

is far more difficult to measure. The true test of D3’s design will be in user

adoption” (Bostock et al., 2011). Success can also lie in enabling new

research agendas. The Proximity Toolkit (Marquardt et al., 2011) op-

erationalized proxemic interaction concepts into concrete building

blocks and techniques. Many downloaded the toolkit for research or

to learn how to build proxemic-aware applications.

Non-Coding Toolkits

It is possible to filter out the dataset to only account for toolkits in

which end-users do not have to write code. Through visual inspection

144 EVALUATING TOOLKIT SYSTEMS

of this very limited dataset (Figure 5.4), there are 2 speculations that

can be made. First, how-to-scenarios (10/14 papers) might be an ef-

fective strategy to communicate the tool to readers. Non-program-

ming toolkits often provide a user interface that guides the end-user

towards generating different solutions. In a user interface, the paths

of least resistance are more clearly delineated than in code, since a vis-

ual interface can force specific ordering of operations. In that sense,

the tools can more explicitly limit the flexibility in favour of a higher

expressive match with more potentially predictable outcomes. Sec-

ond, there appears to be a high ratio of usage evaluations (8/14).

There might be two possible explanations for this high ratio. Non-

programming toolkits typically have an explicit audience (e.g., inter-

action designers), which might instigate reviewers’ expectations for

usage studies. On the other hand, non-programming toolkits typically

leverage known technical details into a new functionality and work-

flow. Given that the research community tends to favour technical

novelty (Fogarty, 2017), non-programming toolkits likely have no

choice but to include usage studies to satisfy expectations in peer-re-

view. Prototyping tools have idiosyncrasies that make evaluation par-

ticularly tricky, as discussed next.

Figure 5.4. Distribution of evaluation strategies for non-coding toolkits. Highest value on the chart is 14 papers.

 DAVID LEDO, 2020 | 145

Meta-Development

Unlike a traditional system implementation, a prototyping tool needs

to create more than one possible interactive solution. This means that

a researcher cannot simply go from a sketch to a prototype. Instead,

the researcher must build a general-enough approach that can gener-

ate a desired prototype. By general-enough, I mean that the tool has

to generate the desired prototype while: (1) accommodating alternate

versions, and (2) integrating the authoring process of that prototype

into the desired path of least resistance. If the researcher incrementally

updates the tool to increase the vocabulary and the number of possi-

ble outcomes, the entire tool needs to evolve as well. Alternatively,

the researcher would need to know all the building blocks ahead of

time, and then build the tool. The second approach is more difficult,

given that the understanding of the problem space, the vocabulary,

and the target prototypes are often part of a reflection and evolution

that takes place while the tool is being built.

Existing Scaffolding

When creating a traditional programming toolkit, researchers can

rely on an existing platform (in this case, the programming language)

to act as the existing scaffolding for future end-users. This means that

if, for instance, a toolkit is built extending JavaScript, then: (1) the

rules and syntax of the language are pre-existing and well-defined, (2)

re-ordering of operations would lead to an error, and (3) there is in-

stant power in combination (Olsen, 2007), as other web-based

toolkits can be integrated. In contrast, a novel tool requires (1) creat-

ing specific rules from scratch, (2) ordering of operations should be

explicitly defined and may or may not immediately scale, and (3)

146 EVALUATING TOOLKIT SYSTEMS

power in combination is constrained to how the tool can leverage ex-

ternal resources beyond the application itself.

One way of enabling this power in combination is by having the tool

only address a portion of the process. For instance, Sauron (Savage

et al., 2013) converts inputs captured by a camera into a range of ex-

plicit values which are sent as socket data to external applications. As

a result, custom applications (or applications using a similar protocol)

can retrieve this data to create interactive prototypes, often requiring

end-users to write code. Alternatively, the tool can explicitly use

other applications to provide additional functionality. For example,

Retrofab (Ramakers et al., 2016) was programmed using the Mesh-

mixer API to communicate with Meshmixer (an external 3d model-

ling application) so that the tool could appropriate 3d modelling func-

tionality. Tools can also leverage the operating system, as done by

PreFab (Dixon & Fogarty, 2010), where the system reverse-engi-

neers the operating system screen to overlay new outputs, and pro-

vide new input transformations by manipulating the operating sys-

tem’s mouse events. Lastly, a tool may simply be self-contained,

meaning that all of the functionality resides within that application.

An example includes Sketch-n-Sketch (Hempel & Chugh, 2016),

which allows programmatic generation of SVGs. While Sketch-n-

Sketch relies on external libraries, its functionality remains self-con-

tained to that application.

When considering these strategies to achieve power in combination,

it becomes clear that there are additional challenges for evaluation.

Interface elements need to all support the paths of least resistance,

and the design and testing of the interface must account for many

 DAVID LEDO, 2020 | 147

combinations of user input, which may be harder to fix given the

meta-development approach. If the prototyping tool leverages an ex-

ternal program, it has to adapt the external tool’s path of least re-

sistance, to the one of the prototyping tool. This might limit the pos-

sible user actions, or the types of actions that can truly be tested.

Lastly, if a tool requires designers to write code to generate outputs

(e.g., as done in systems that send encoded network messages), then

there are fewer claims that can be made about the building blocks and

ways of thinking afforded by that tool.

End-User Practice

While it is true that many times systems are designed to support a

particular practice, it is also the case that tools shape what is possible

and provides a way of thinking for that practice, a thought echoed by

Greenberg (2007) and Myers et. al (2000). This means that over

time, practices can become exclusively about what the current tools

can support. As a result, a new tool will often conflict with the exist-

ing approach, either because that element of the practice is not com-

mon at the time, or because it offers an alternative, unfamiliar way to

solve a problem. Comparisons, in that case, would be unfair, as end-

users have had extensive time learning existing tools, compared to an

immediate exposure to a new prototyping tool.

The Need for HCI Infrastructure Research

This chapter argues that toolkits have profoundly influenced HCI re-

search and will continue to do so in the future. Going back to the pi-

oneering work of Engelbart (1968), Sutherland (1980), or Weiser

(1991), we observe how invention through building interactive sys-

148 EVALUATING TOOLKIT SYSTEMS

tems, architectures and frameworks enabled early researchers to ex-

plore completely new spaces. Since then, there has been an enormous

growth in toolkits exploring technical realizations of concepts, tech-

niques and systems in many emerging areas within the field (e.g.,

physical computing, tangible interfaces, augmented reality, ubicomp)

and demonstrating new possible futures.

HCI systems and toolkit research serves to further develop and real-

ize high-level interaction concepts (e.g., proxemic interactions (Mar-

quardt et al., 2011)). Consequently, toolkits make these conceptual

ideas very concrete, and enable further conversations and follow-up

research. For instance, the Context Toolkit (Salber et al., 2000) was

a very successful toolkit that moved research in context-aware com-

puting (Want et al., 1994) forward by enabling developers to rapidly

prototype context-aware applications. The toolkit provided a compo-

nent-based architecture separating context inference from the appli-

cations that used context information and allowing developers to re-

spond to context changes in an event-driven way. By making these

ideas (and their realization in software) very concrete, the Context

Toolkit also fueled criticism from researchers who argued that a com-

putational representation of context, as encapsulated in the toolkit,

did not capture the complexity of how people behave in the real

world. Greenberg (2001) argued that many contextual situations are

not stable, discernable, or predictable, and argued for context-aware

applications to explain the inferred context and how they respond to

it (what Bellotti & Edwards refer to as “intelligibility” (2001)). Inter-

estingly, these discussions led to development and integration of

these ideas in future systems and toolkits, such as the Situations

 DAVID LEDO, 2020 | 149

Framework (Dey & Newberger, 2009) and the Intelligibility Toolkit

(Lim & Dey, 2010).

5.9 LIMITATIONS
My co-authors and I make no pretense that our overview of evalua-

tion strategies for toolkits is complete. First, to ensure that our meta-

review focused on forms of evaluation that are relevant to currently

accepted standards, we limited our sample to recently published

toolkit papers. Thus, we may have missed forms of evaluation used

in past toolkit research. Second, many research projects make multi-

ple contributions not captured in a single paper. Our analysis only re-

flects what is described in that single paper. For some of the toolkits

in our meta-review, additional evaluations were described in later

publications (e.g., Prefab (Dixon & Fogarty, 2010)). Finally, my co-

authors and I have all built and designed toolkits. While our reflection

on toolkit evaluation strategies is likely strengthened by our first-

hand experience, it may also have introduced bias.

5.10 APPLYING EVALUATION STRATEGIES: WHY
THE REPORTED DISSERTATION RESEARCH
IS NOT YET READY FOR USER STUDIES

The results of this work indeed show that one can combine a variety

of methodologies to evaluate research concepts. Moreover, under-

standing the evaluation practices can also help in becoming better at

designing interactive systems in the context of HCI research. In par-

ticular, as discussed in §5.8, demonstrations cover a variety of aspects

of showing the expressiveness, ceiling, and approach when working

with a tool. Demonstrations perhaps remain as either the single most

150 EVALUATING TOOLKIT SYSTEMS

used evaluation method in systems research, or that dominates when

used with other methods for triangulation. This is because ultimately,

a system or artifact is in itself a manifestation of the research idea and

has its own merit as a contribution. However, demonstrations have

two downsides. The first is that it can easily act as a “sales pitch”,

meaning that it highlights only the positive elements of a system. This

is why it is key for researchers to take a critical stance towards the

work they create, and spend time in the discussion really showing the

limitations and what is not possible with the system. This is where,

incorporating elements of the heuristics can aid in the authors’ criti-

cal thinking, as there are clear prompts one can reflect upon, such as

looking at the trade-off between ease-of-use, flexibility, and complex-

ity. The second downside is that demonstrations stay in a hypothet-

ical, almost utopic, state, where the usage scenario is bounded by the

researchers’ points of views and assumptions. Thus, understanding

use and strategies is critical: even the best demonstrations can fail be-

cause the intended audience is unable to exploit the system effec-

tively. Instead, potential users may develop strategies which go far

beyond what a demonstration anticipated when outlined. These strat-

egies in the end exemplify a set of reappropriations, which can

prompt further reflection on the value provided by a system.

In my experience, usage evaluations tend to work best at later stages

of development, when the majority of usability issues have been ad-

dressed and the conversations can focus on the research concepts ra-

ther than the tool use. Given the scaling necessary to go from a pro-

totype that shows concepts to a functional system that can be used,

 DAVID LEDO, 2020 | 151

as well as the high interdependence between multiple platforms, eval-

uating the systems in this dissertation with users in this thesis is par-

ticularly challenging, and in the current state would not yield mean-

ingful results. Exploring and documenting people’s usage strategies

are key points for future work.

While user studies are beyond the scope of the thesis’ prototyping

tools, my work has looked to carefully consider designers and their

practices, and I use demonstrations to envision what is possible in a

hypothetical future of designing interactive behaviours for smart ob-

jects. I augment these demonstrations with other methods to add a

critical reflection on the implications of these technologies. These

methods are summarized in Figure 5.5. As a result, the tools that I

will discuss in Part 3 of the thesis: Pineal (Chapter 8) and Astral

(Chapter 9), primarily rely on a demonstration approach. While these

are early tools to assess performance, I discuss some of their perfor-

mance elements, but most importantly, I try to take a critical stance,

often leveraging some of the Olsen’s heuristics (2007), to question

the extent to which the two systems work. Consequently, while my

work lacks the traditional end-user evaluations through some form of

Figure 5.5. Evaluation strategies as used in this dissertation.

152 EVALUATING TOOLKIT SYSTEMS

usage, I employ a variety of methods to ensure the systems can envi-

sion the future while still highlighting some of the caveats and com-

promises from these approaches.

5.11 CONCLUSION
Research toolkits have fundamentally influenced and shaped the way

interactive technology is built, and will continue to do so. Despite the

impact and success of toolkits, evaluating them remains a challenge.

In this thesis, I consider the strengths and weaknesses of the various

evaluation methods as discussed above when deciding how to evalu-

ate the prototyping tools discussed in subsequent chapters. In partic-

ular, I considered the claims I make with each prototype, and whether

a particular evaluation method would help substantiate those claims.

PART 2
SOUL–BODY
PROTOTYPING

 SOUL–BODY PROTOTYPING

This thesis proposes repurposing existing hardware (i.e., mobile phones

and watches) and software to enable designers to create live interactive pro-

totypes for smart interactive objects without coding or creating custom cir-

cuitry. This chapter1 examines a way to circumvent the need for elec-

tronics and programming via what I refer to as the Soul–Body Proto-

typing Paradigm. This paradigm is a metaphor that suggests placing

mobile devices inside of fabricated enclosures to create new smart ob-

ject prototypes. The mobile device (“the soul”), with its sensors and

outputs, acts as a centralized means to power the prototype and pro-

vide the functionality, while the enclosure (“the body”) provides the

1 Portions of this chapter published in:

Ledo, D., Anderson, F., Schmidt, R., Oehlberg, L., Greenberg, S., & Grossman,

T. (2017). Pineal: Bringing Passive Objects to Life with Embedded Mobile De-

vices. Proceedings of the 2017 CHI Conference on Human Factors in Computing Sys-
tems, 2583–2593. doi: 10.1145/3025453.3025652

https://doi.org/10.1145/3025453.3025652

156 SOUL–BODY PROTOTYPING

object with meaning both from a visual standpoint, as well as by fea-

turing the means of interaction (e.g., buttons). Specifically, this chap-

ter seeks to answer the first research question posed in Chapter 1:

RQ1. How might designers repurpose mobile devices to proto-

type smart interactive objects?

The foundation of Soul–Body Prototyping acts as a starting point to

then create prototyping tools that enable the authoring of interactive

behaviours. I begin this chapter by distilling the designer challenges

learned from the first two chapters (§4.1). To address these chal-

lenges, I derive a design rationale with key points that drive this dis-

sertation research (§4.2), which then are operationalized through

Soul–Body Prototyping (§4.3). I present the design space of Soul–

Body Prototyping, showcasing the different dimensions for input and

output, power and connectivity, and lastly, how to modify inputs and

outputs (§4.4). I show how existing work also follows some of the

principles outlined in this chapter.

6.1 MOTIVATION: DESIGNER CHALLENGES
Chapter 1 describes many of the challenges faced by interaction de-

signers today, which can be described as follows:

Need for multiple specializations. Interaction design is a fairly young

discipline, which often results in people from other areas (e.g.,

graphic design) fulfilling an interaction design role. Given require-

ment to create interactive behaviour (Cooper et al., 2014), the cur-

rent way to achieve behaviours is through coding. This means that

interaction designers are working outside their typical training and

 DAVID LEDO, 2020 | 157

strength and investing a large amount of time and effort into a me-

dium that: (1) they are not well-versed in, and (2) where the building

blocks have not been created to facilitate their quick explorations. In

such a case, the consequence is that due to time and budget con-

straints, designers have to resort to lower resolution sketches, or to

work with the tools that they have available, thus creating wireframes

in tools such as Adobe XD. This problem is further exacerbated if the

prototype needs to be a physical prototype (such as a smart interac-

tive object). To create higher resolution prototypes, the designer

would require to create custom circuitry, program it to realize the in-

teractive behaviours, and then place the circuitry into a custom form

that looks or feels similar to a final version of the physical product.

These are all highly specialized skills which would be unreasonable to

expect from a single interaction designer. Collaboration with other

experts might be one way to address this challenge, but not one that

makes sense if the goal is for the designer to explore varieties of alter-

native designs and discover nuances in the creation process. In fact,

it achieves the opposite, stripping the designer of their agency to dis-

cover new solutions.

The democratization of graphic design software exemplifies how

software tools can disrupt and shape an entire industry. I believe that

a similar result could be achieved in interaction design, if the tools

can allow designers to come up with functional prototype represen-

tations. Graphic design was a discipline in which designers had to cre-

ate a lot of material by hand (including high quality rendered fonts),

which was very time consuming. Different pieces had to be cut out,

arranged and then delivered to printing professionals who would

158 SOUL–BODY PROTOTYPING

screen print it and create duplicates. Graphic design software re-

moved the need to create things by hand and took away the depend-

ency on print specialists, time delay from waiting and difficulties it-

erating on the design once it had been printed, as it was already a high

time and money investment. Now with graphic design, software de-

signers could create and vary their designs and in turn could go from

start to finish in creating a high-resolution prototype. Then, the final

product became a matter of taking the latest prototype, applying fin-

ishing touches and creating all the specifications for printing in the

form of a brief. Thus, one way to reduce the need for specialization is

to have the right tools in place for people to achieve their tasks.

Lack of Tool Support. Design tools are limited to desktop-based in-

teractions, which favour simple state transitions. While a lot of inter-

actions can be summarized in simple storyboards as trigger-action

pairs (e.g., tapping a button to go to the next screen), interactive be-

haviours are much more nuanced (Myers et al., 2007). People per-

form actions beyond clicking or tapping (e.g., using fingers to pinch,

flick or swipe, or tilting the device altogether), and nowadays can

even use physical gestures or even speech input. Consequently, sys-

tem design needs to distinguish the visual structure/form from the

behaviour and interactivity taking place. Systems require more fine-

grained real-time feedback for people to understand the effect of their

actions, and believe that the system appears responsive and alive, as

well as designed with care. A lot of these interactions today only seem

to be possible to accomplish through coding, as described in Chapter

4 when I outlined the different kinds of prototyping tools.

 DAVID LEDO, 2020 | 159

Need for Close-to-Product Representations. Given that prototyping

is a learning and discovery process in which designers learn by doing,

the more they can approximate a close-to-product representation, the

greater the variety of questions that they can probe. More specifi-

cally, the continuous responses of an interface or an interactive object

can only be assessed if the designer can touch and hold the object/in-

terface. Holding and manipulating the object or interface itself allows

designers to subjectively determine if the interaction is successful or

whether it needs further nuance. Designers can also give the proto-

type to others and see how people respond to the authored behav-

iours. This is of particular importance with behaviours that go beyond

trigger-action, given that elements of awareness and feedback rely on

animations, sounds or lights that may play as the user performs the

action: these animations are driven by the interactions. Moreover, the

close-to-product representation allows the designer and the rest of

the team to see the interaction in context.

To exemplify the extent of these challenges, consider a smart speaker

with a digital assistant. When a person calls the smart speaker, the

speaker may light up to communicate that it is currently waiting for a

command or question (e.g., “what time is it in Caracas?”). Once a

command is issued, the speaker may change its pattern to convey that

it is now searching online for a response and to acknowledge that it

has not simply shut down. The lighting pattern (and perhaps even

colour) changes again once the speaker is answering, where the

brightness of the light may be synchronized to the speech emitted by

the speaker. The light colour may reflect the speakers’ confidence or

state (e.g., turning red if it is unable to find the answer). Perhaps the

speaker features buttons that light up it is picked up, and specific

160 SOUL–BODY PROTOTYPING

lighting patterns or sounds may execute once the person presses the

different buttons to provide feedback.

In terms of specialization, a designer would struggle to create a phys-

ical prototype to try out the potential smart speaker. In fact, the rep-

resentations would likely be limited to sketches and storyboards that

do not reflect the nuanced behaviours taking place simultaneous with

the actions. A savvy designer might resort to a video editing tool to

try and create a video that carefully reflects all the small transactions

as well as the live feedback for a particular scenario. However, there

is no way to make a physical prototype that can show the behaviours

in context without resorting to creating custom circuits and program-

ming. Thus, the designer has to rely on other specialized team mem-

bers whom each have their own tasks. This added reliance on other

team members brings additional strains to the design cycle: the de-

signer has to wait for the prototypes to be realized, and the designer

cannot learn by doing, they can only try out the current version they

are provided, only being able to suggest changes and revisions.

6.2 DESIGN RATIONALE
One theme reflected in the literature and often discussed by the HCI

community is that one cannot achieve interaction design complexity with-

out coding. While it is true that coding can be used in a truly flexible,

malleable and expressive manner, prototyping tools can provide

higher levels of programming without the need for code and probe

specific aspects of the interaction design process. Given that tools af-

ford different building blocks and vocabularies, they each influence

the types of solutions that are possible, as well as the most suitable

way of thinking to generate such solutions. Thus, I believe that there

 DAVID LEDO, 2020 | 161

is a need to explore a broad variety of prototyping tools and integrate

them to work together to: (1) help address some of the challenges pre-

sent in interaction design practice, as well as (2) reach broader audi-

ences and support different ways of thinking.

In my thesis work, I explore a specific subset of these types of tools in

the context described in §4.2, ones that can support both exploration

of, and ability to try out interactive behaviours, while still preserving

some of the structural elements of the prototype. I apply this to smart

interactive objects, where the physical form also plays an important

role. To do so, I operationalize the aforementioned challenges

through the following design decisions:

Enabling Close(r) to Product Representations. To be able to truly try

out a behaviour, a representation that is closer to a product helps in

that designers examine the nuances of the experience and see how the

behaviour plays out. This means being able to work with mock-ups

that feel like the real thing – in terms of forms, visual elements and

the interactions with them. This also means extending prior work in

working beyond mouse-based interactions or wireframes, and ex-

tending to other areas of physical computing and mobile interaction.

Minimizing the Need for Coding. Given designers’ varied back-

ground, the expectation of them needing to code is one that needs

mitigating. Moreover, if the tool does not require coding, the designer

can focus on the design activity itself and not have to think about

more intricate programming constructs that can interrupt the pro-

cess, as well as consume time and effort.

162 SOUL–BODY PROTOTYPING

Eliminating Circuit Building. Circuit building can become even

more complex than coding given that the building of the circuit and

its programming go hand-in-hand. If the designer wants to create a

physical prototype for a smart object, circuit building is a require-

ment. In fact, Booth et al. (2016), show some of the learning barriers

in physical computing, and more importantly how circuit bugs often

introduced more software bugs. According to Booth et al. people find

it hard to tell if the system does not work because of the circuit or

because of the code, often leading people to think it is due to pro-

gramming issues when in fact it was because of issues in the circuitry.

As a result, eliminating the need to collect different components,

mount them on a board through soldering, and program them can

simplify the process as a whole.

Enabling Authoring of Interaction-Driven Animations. Trigger-ac-

tion behaviours, such as clicking on a button to go between screens,

can be easily prototyped in a sketch or storyboard (Myers et al.,

2007). Yet, a fundamental component of interactive systems is the

continuous response as a result of a person’s action. In the digital

form, this can be exemplified through interactions such as pinch-to-

zoom, where contents of the screen can change size (and progres-

sively show or hide information) as a function of the user’s distance

between fingers. A video game character may transition from stand-

ing, tip-toeing, walking or running depending on the amount of mo-

tion applied to a controller’s joystick. Lastly, in the physical world

these become even more important given the increased amount of

sensing a device has: being able to know if a smart speaker is effec-

tively listening to a command, showing feedback as an oven’s knob is

physically turned, or even how a smart lightbulb might progressively

 DAVID LEDO, 2020 | 163

increase brightness as a person walks into a room. These types of in-

teractions all entail rethinking animations with a new kind of abstrac-

tion: animating as a function of interaction (animation while actions

are happening) as opposed to an abstraction of time (animation after

the action happens).

Live Changes on Prototypes. Given the focus on being able to try

things out, designers should be able to manipulate the prototypes in

a plastic manner: change them and fine-tune them as they create

them. Ideally, designers can author the prototype and not have to

switch an interface or mind-set between editing and testing, which is

often a shift that takes place when programming: one way of thinking

is required to author a behaviour, then the code needs to be compiled

and run, and then finally the designer can try out the behaviour.

6.3 SOUL–BODY PROTOTYPING PARADIGM:
THE MOBILE DEVICE AS A PROTOTYPING
ENGINE

To address interaction designers’ challenges and achieve the afore-

mentioned goals, this thesis proposes using mobile devices in place of

custom electronics, and creating fabricated passive ‘enclosures’ that

define the object’s form while exposing the necessary inputs and out-

puts. Designers can moreover leverage and repurpose mobile sensors

and outputs in new interesting ways. A mobile device such as a phone

or a watch can act as the ‘soul’ to a temporary fabricated ‘body’ that

holds the form and functionality of a smart interactive object. The

164 SOUL–BODY PROTOTYPING

Nintendo Labo2 (Figure 6.1), which was released in 2018, is an ex-

ample of a commercial application already applying some of these

principles, where the Nintendo Switch’s motion controllers and tab-

let can be enclosed in a cardboard structure to create new interactive

experiences. The cardboard shape provides the necessary cues on

how to hold the object and provides input mechanisms (e.g., but-

tons). Mobile devices are well suited as a prototyping engine, as they

are ubiquitous and readily available and make for an excellent tempo-

rary stand-in for prototyping different smart objects.

While a concern is the high cost of mobile devices, there are two

prime reasons as to why Soul-Body Prototyping is feasible. The first

is that as part of a prototyping process, the mobile devices are only

intended for use temporarily, meaning that only one (or a few) might

be necessary to test a concept. Second, given the current technologi-

cal advances, some mobile devices can be purchased with a low

budget (e.g., $35). Some of these lower cost devices only provide a

few sensors, but most seem to provide the basic: touch display, mi-

crophone, and accelerometer. Alternatively, a designer can use their

own phone or watch, or repurpose an older phone or watch. Moreo-

ver, newer prototyping technologies are also adopting these ideas of

becoming self-contained devices with basic sensors and outputs.

M5Stack3, shown in Figure 6.2, uses Arduino technology in a modu-

lar case resembling a smart watch. It consists of a base module con-

taining a speaker, touch display, USB port, SD card slot and buttons.

2 Nintendo LABO https://labo.nintendo.com/ – last accessed February 2020

3 M5Stack https://m5stack.com/– last accessed February 2020

Figure 6.1. Nintendo Labo from 2018 ena-
bles players to insert the Nintendo Switch
tablet and controllers into cardboard enclo-
sures. Different controller sensors (e.g., the IR
camera) are used to sense user input as de-
fined by the enclosure.

https://labo.nintendo.com/
https://m5stack.com/

 DAVID LEDO, 2020 | 165

Additional modules (e.g., battery, GPS, prototyping board) can be

stacked using a Lego-like connection. While many mobile devices

share the basic sensors and outputs, it is important to note that more

expensive devices will feature newer sensors (e.g., iPhone X’s depth

sensing front camera) or higher quality parts (e.g., brighter displays

with higher resolutions and lower latency).

It is worth noting that the definition of a mobile device is somewhat

open-ended. The idea is to centre the discussion on readily available,

self-contained computers with added sensors and outputs, and hav-

ing all physical extensions be passive, meaning that there are no addi-

tional electronic connections or added processing power outside the

device. Under such conditions, a mobile phone, a watch, or even a

tablet device are already commodity devices present in many design-

ers’ everyday work and home environments. However, one could

loosely consider other platforms that follow similar principles to also

be Soul–Body Prototypes. For example, a platform such as Lego

MindStorms4, which also features a “core” computational device

(the EV3 Intelligent Brick5) that powers additional electronic compo-

nents, also fits the metaphor despite not being discussed in this the-

sis. Consequently, while the primary discussion is centred on more

sophisticated mobile devices which have access to many technical im-

plementations aspects that can be exploited for interaction design

(e.g., speech recognition), other custom devices might also be con-

sidered provided they follow the metaphor. However, the danger of

Accessed August 2020:
4 https://www.lego.com/en-ca/themes/mindstorms
5 https://www.lego.com/en-ca/product/ev3-intelligent-brick-45500

Figure 6.2. M5Stack device. The image
shows the M5Stack base module featuring a 2
inch x 2 inch touchscreen, 3 buttons, USB
port, and a Lego-compatible peg at the bottom
to attach other modules. The bottom three im-
ages show the modules for battery, prototyping
and GPS. Image adapted from
http://www.m5stack.com/

https://www.lego.com/en-ca/themes/mindstorms
https://www.lego.com/en-ca/product/ev3-intelligent-brick-45500
http://www.m5stack.com/

166 SOUL–BODY PROTOTYPING

keeping the metaphor so general is that the goal is not to make it so

any physical user interface is a Soul–Body Prototype. Additional dis-

cussion on the boundaries of the paradigm can be found in §6.5.

There are many benefits to using mobile devices instead of custom

electronics in the context of prototyping, which are discussed below.

Extensible Geometry. Mobile devices are fairly standardized in their

form. Designers can now work with a flat cuboid shape and build

more complex forms around it, where the phone or watch becomes

the ‘soul’ of the smart interactive object prototype.

Rich Sensing and Outputs. Mobile devices are self-contained, and

house a myriad of sensors and outputs present in many smart objects

(e.g., touchscreen, microphone, accelerometer). Designers can use or

repurpose sensors in interesting ways. For examples, designers can

use a diffuser or light pipes to create light sources from the phone

screen or the camera flash, or use conductive materials (e.g., copper

tape) to move the location of a touchpoint to a new location in the

physical enclosure (the body).

Access to Complex Functionality. Mobile devices also feature inter-

net connectivity, which adds further opportunities for Internet of

Things applications. These include voice recognition, as well as web

APIs (e.g., weather and Twitter). This also means that it is possible

for mobile devices to communicate with other mobile devices or

smart objects within the larger ecology of devices.

Low Threshold and Less Technical Hurdles. Replacing custom elec-

tronic circuits with mobile devices dramatically lowers the threshold

for entry. Working with a mobile device removes the need to solder

 DAVID LEDO, 2020 | 167

and embed components onto the form, and mitigates the concurrent

and tricky ‘circuit vs. code’ debugging previously discussed. Moreo-

ver, given the computational power of mobile devices, there is a de-

creased need for low level programming constructs, such as memory

management.

6.4 DESIGN SPACE OF SOUL–BODY
PROTOTYPING

Mobile devices are equipped with different kinds of sensors and out-

puts that provide users with means for direct and implicit interaction.

While the output space of mobile devices is fairly simple (i.e., only

encompasses touchscreen, speakers and vibration motor, and some-

times could consider the camera flash), the variety of sensors is much

higher. In the context of software development, a sensor might refer

to the physical electronic component (e.g., accelerometer). Sensors

can also refer to a virtual abstraction combining different physical

sensor readings (e.g., orientation sensor, resulting from combining

information from the accelerometer, magnetometer and gyroscope).

Developers can access these different sensors through events6.

There are sensors that are treated more independently in software

development given their common use and higher relevance, these in-

clude: the touchscreen, camera, and microphone. These sensors tend

to provide richer information compared to more simple sensors and

thus may follow different programming paradigms. For example,

6 In programming, events refer to functions that execute once an input takes place.

168 SOUL–BODY PROTOTYPING

touchscreen events might be directly attached to a user interface ele-

ment (e.g., a button) or might also be accessible via an event. Another

example is the camera, where some libraries might provide raw cam-

era images once they arrive, while others call the camera application

to retrieve a photo (e.g., Android through its intents platform).

Scope. In this review of mobile sensing and output, summarized in

Table 6.1, I will focus on common physical sensors (i.e., excluding

virtual sensors such as the pedometer, which is simulated via the ac-

celerometer) as outlined in current APIs including iOS7, Android8

and Windows9. I exclude virtual sensors given that: (1) these sensor

abstractions in software are inconsistent across operating systems,

and (2) one can achieve these virtual sensor readings in custom soft-

ware, thus they can be considered as a building block where relevant.

The goal of this section is not one of enumeration of sensors but inte-

gration of information. I bring in the aspects of both technical devel-

opment, as well as discuss some applications carried out in HCI. This

informs opportunities of what prototyping tools could support, and

also helps understand the existing building blocks from the imple-

mentation phases that then become accessible to designers so that

we, as researchers, can also think of what might become building

blocks in the tools of tomorrow. Additionally, the takeaway may vary

depending on the reader – while many technical readers may know

Accessed March 2020:

7 https://developer.apple.com/documentation/coremotion

8 https://developer.android.com/guide/topics/sensors/sensors_overview

9 https://docs.microsoft.com/en-us/windows/uwp/devices-sensors/sensors

https://developer.apple.com/documentation/coremotion
https://developer.android.com/guide/topics/sensors/sensors_overview
https://docs.microsoft.com/en-us/windows/uwp/devices-sensors/sensors

 DAVID LEDO, 2020 | 169

some of this information, I have found in my experience teaching HCI

courses that some elements, such as the fact that accelerometers pro-

vide orientation information, are often not known by computer sci-

ence graduates.

Table 6.1. Table summarizing common basic mobile device inputs and outputs

170 SOUL–BODY PROTOTYPING

 MOBILE SENSORS

Capacitive Touchscreen. The primordial feature in mobile devices

for over the last decade is their large capacitive touch screens. Direct

touch is the main way in which people interact with mobile devices,

where they can tap on different parts of the screen to transition be-

tween different states of the interface. Users might also be able to use

continuous actions while touching the display such as pinching or

sliding, which can continuously modify the contents of the display.

The display might also feature specialized widgets such as buttons or

sliders which suggest specific means of interaction. Alternatively, in-

teractions can be more direct and actually operate directly on the vir-

tual object of interest, such as dragging and dropping an object.

Touch interaction also provides different kinds of gestures such as

drawing explicit shapes to trigger a command (as shown by the $1

Gesture Recognizer (Wobbrock et al., 2007)), or through variations

on the tapping gesture (single tap, double tap, press and hold). Some

touchscreens may provide additional information such as the contact

area and orientation (Moscovich, 2009; Boring et al., 2012), which

can be used to provide additional richness to the input and seamlessly

alternate between different modalities, such as previewing versus ac-

tion (Moscovich, 2009) or panning versus zooming on a map (Boring

et al., 2012). Wang and Ren (2009) provide a more in-depth discus-

sion on the input space of the finger on a touchscreen.

Accelerometer. As the name suggests, accelerometer provides read-

ings on the acceleration of a mobile phone in three-dimensional

space, thus acting as a motion sensor. Since the accelerometer obtains

a reading resulting from the force of gravity and its direction it can

 DAVID LEDO, 2020 | 171

provide information on the orientation. For example, one can know if

a mobile device is in portrait or landscape orientation and arrange the

content accordingly (Hinckley et al., 2000). Orientation can also tell

a mobile device when to dim a screen. For example, phones can know

when they are placed faced down (e.g., against a table) and can then

reduce the level of notifications, while smartwatches will show the

time when the wrist is flicked towards the person’s head (upright po-

sition) and otherwise dim the screen. The accelerometer can provide

other means of context sensing through its motion readings. For ex-

ample, mobile devices can sense a deliberate shake gesture – Apple’s

iOS will trigger an undo command when shaken10. The accelerometer

is also often used in synchronous gestures (Hinckley, 2003), where

more than one device can match sensors readings to determine an ac-

tion, such as knowing when two devices are bumped against each

other. If a smartwatch is attached to a person’s hand, it is possible to

know when that hand interacts with another interconnected device

through the accelerometer reading as shown by Chen et al. (2014),

Hinckley et al. (2017) and Horak et al. (2018).

Gyroscope. The gyroscope measures orientation and provides a dif-

ferential (delta) value for three dimensions. The gyroscope is often

used in mathematical transformations combined with the accelerom-

eter and magnetometer. The reason for these combinations is that gy-

roscope information is often integrated over time to obtain rotation

information, but often gyroscopes have noise and drifts in their data

10 https://developer.apple.com/design/human-interface-guidelines/ios/user-interac-

tion/undo-and-redo/

https://developer.apple.com/design/human-interface-guidelines/ios/user-interaction/undo-and-redo/
https://developer.apple.com/design/human-interface-guidelines/ios/user-interaction/undo-and-redo/

172 SOUL–BODY PROTOTYPING

that introduce errors over time and need to be compensated11. Thus,

the gyroscope alone is perhaps not directly useful for designers.

Magnetometer. The magnetic field sensor monitors changes in the

earth’s magnetic field. Thus, the magnetometer can provide some

positional information about the device. For example, it is possible to

read the magnetic field with respect to the earth’s magnetic north and

thus determine the cardinal direction of the device, thus acting as a

compass. With the three-dimensional reading, it is possible to also get

additional orientation information by integrating with the accelerom-

eter and gyroscope. Additionally, given the magnetometer’s ability to

read magnetic field, it means a mobile device can sense the presence,

strength and direction of a nearby magnet. Some rudimentary appli-

cations of the magnetometer with a magnet include Google Card-

board, where a magnet in the cardboard lets the mobile phone know

that the enclosure has been closed; and phone cases with covers,

where the cover contains a magnet that tells the phone when to turn

off the display. In fact, many Android devices will turn off their

screen by default when sensing a magnet on a particular location.

Ambient Light Sensor. The ambient light sensor is often placed near

the front edges of the display. While it can achieve very sensitive

readings and changes in overall lighting, very nuanced readings can

be error prone. The ambient light sensor is used as a rough proximity

sensor to know when a person holds the phone against their ear

11 https://developer.android.com/guide/topics/sensors/sensors_motion#java

https://developer.android.com/guide/topics/sensors/sensors_motion#java

 DAVID LEDO, 2020 | 173

(thereby dimming the display), or to adapt the screen brightness to

the environment.

Microphone. Mobile devices today typically contain two micro-

phones which are fused into a single signal. Microphone information

is collected via sampling, where multiple amplitudes are captured in

an array over a very small fraction of time (defined by the micro-

phone’s frequency). The array can then be interpreted to obtain ei-

ther the overall amplitude (or loudness) of the signal, as well as the

actual audio captured. One can also operate on the array to obtain the

audio frequency (pitch) or use services such as speech recognition to

retrieve different kinds of voice commands.

Camera. Today’s mobile phones and tablets are equipped with high

resolution cameras, typically one at the front and one at the back. A

single camera image contains a lot of information within the pixels,

which can be accessed and interpreted through different computer

vision algorithms. Therefore, a variety of contextual information can

be picked up by this sensor, such as movement through optical flow,

people’s faces, actions near the device, physical gestures, finger

touches on a surface, etc. If the device is placed inside a form, it is

possible to track the movement of different pieces (see modifiers in

§6.4.4). An example of this type of implementation is Sauron (Savage

et al., 2013), which embeds a camera inside a 3D-printed object to

track how people interact with it.

Global Positioning System (GPS). An important element of under-

standing people’s contextual information and use is to know their

current location. Even at a broad scale, it is possible to determine if a

user is, for instance, at home or at work, or see their current travel

174 SOUL–BODY PROTOTYPING

patterns if they are walking, driving, or riding a bike. One can envision

future improvements to GPS where one can detect, for instance, the

current room in a building, to adapt a prototype to an appropriate

context of use.

 MOBILE OUTPUT

Current mobile devices are also equipped with a variety of output mo-

dalities, which designers can leverage in their prototyping. How well

the output is provided depends on the body which encloses the device.

Display. Most devices are equipped with a high-resolution, full-col-

our display, and are able to render text, images and video. When cre-

ating an enclosure, it will need to expose the display to provide access

to this modality.

Speakers. Many mobile devices contain one or more speakers with

the ability to output both human-perceivable audio, as well as ultra-

sonic frequencies. This can be used to prototype objects that provide

audio feedback for interactions, notifications, sound effects, as well

as emitting speech.

Vibration. Small, vibrating motors are embedded into most commer-

cial mobile devices to allow them to provide haptic feedback. De-

pending on how the mobile device is embedded into the target body,

the tactile information can be passed onto the entire target object, or

localized areas. This feedback can be used to enable discreet notifi-

cations, or direct feedback to user operations.

 DAVID LEDO, 2020 | 175

 POWER AND CONNECTIVITY

Connectivity. Currently, most mobile devices have a variety of wire-

less capabilities, allowing them to connect to the internet and other

devices via Wi-Fi and Bluetooth. With this connectivity, devices are

able to retrieve information about current events, the environment,

and a wide range of other information that the user or system can act

on. Thus, any prototype is wireless and web-enabled.

Power. A core requirement of the vast majority of interactive devices

is power. Mobile devices are by default equipped with a battery, as

well as a connection port to recharge them. Moreover, one can also

use an external power source if the prototype needs to be used for

more extended periods of time.

 INPUT AND OUTPUT MODIFICATION

In addition to using the sensors of a mobile device for their intended

purpose, my work extracts an additional layer of inputs and outputs

through examining the existing literature. I refer to these as modifiers.

Modifiers expand the sensing and output capabilities of the mobile

device. Modifications can take the form of rerouting modifiers, or

transducing modifiers.

Rerouting Modifiers

Rerouting modifiers preserve the nature of the sensing or output, but

change the location where it takes place. Rerouting can be particularly

useful if input and output is desired on different locations of the target

object, which extend beyond the physical size of the mobile device.

For instance, light pipes can be used to reroute light output to differ-

ent physical locations as done by Savage et al. in PipeDream (2014).

176 SOUL–BODY PROTOTYPING

Input can be rerouted in a number of ways, for instance, capacitive

touch sensing can be moved to off-screen buttons using conductive

pathways as done in Clip-On Gadgets (Yu et al., 2011), Extension-

Sticker (Kato et al., 2015), and Midas (Savage et al., 2013). Touch

sensor can thus be placed in a more convenient or appropriate loca-

tion. Similarly, light pipes can be placed over the ambient light sensor

to sense lighting in remote locations of the physical prototype.

Transducing Modifiers

Transducing modifiers are those which allow for different types of

interaction that extend beyond the base capabilities of the mobile de-

vice. This fosters a new set of interaction modalities. For instance,

Acoustruments (Laput et al., 2015) leverage the microphone and

speakers to sense how tangible controls are being manipulated, thus

adding novel input mechanisms to a mobile device. Microphones can

also enable gestural or tangible interactions around the object, as

done with Lamello’s custom 3d printed widgets (Savage et al., 2015),

or by detecting the discrete audio patterns when interacting with the

object or the environment and responding accordingly (Lopes et al.,

2011; Harrison et al., 2011).

Beyond audio, the magnetometer can be used to sense the movement

of a magnetic field as input from buttons, such as with Nenya (Ash-

brook et al., 2011) and Google Cardboard12. One can create different

kinds of physical widgets such as switches and sliders with embedded

magnets as done in MagGetz (Hwang et al., 2013). Alternatively, one

12 https://arvr.google.com/cardboard/ Accessed February 2020

https://arvr.google.com/cardboard/

 DAVID LEDO, 2020 | 177

might sense the intensity or the orientation of the magnet (Hwang et

al., 2013b; Cheung et al., 2019).

The vibration motor can be used to move the prototype, as demon-

strated by the Nintendo Labo, where a cardboard bug toy moves

through the vibration of two attached game controllers.

These are only some examples of ways in which sensors and outputs

can be repurposed. By integrating the types of sensing and knowing

the ways in which they can be repurposed, designers are conceptually

equipped with new ways of designing smart object prototypes that

leverage mobile devices and their inputs and outputs.

Modifiers are overall powerful prototyping tools, as they can push the

inputs and outputs beyond the touchscreen of the mobile device. In-

creasingly, both industry and research continue to explore potential

avenues to provide new inputs and outputs with the currently availa-

ble sensors. Sensors such as the touchscreen, accelerometer and mi-

crophone are unlikely to go away. Over time, new capabilities may

become available on mobile devices. For example, newer phones such

as the Google Pixel 4, have already included radar sensing technol-

ogy, which is low cost and shows promise in sensing not only physical

gestures, but also an ability to detect and classify a variety of objects,

as demonstrated by RadarCat (Yeo et al., 2016). In that sense, the

design space of Soul–Body Prototyping is likely to grow as these sen-

sors become commonplace.

6.4.5. SURROUNDING PHYSICAL FORM (BODY)

The advantage of a self-contained device, such as a mobile phone, is

that creating a surrounding physical form is quite simple, as designers

178 SOUL–BODY PROTOTYPING

can leverage a variety of materials, some which are outlined in §4.1.1,

as well as through examples of screen-poking described in §4.3.10.

The level of sophistication can vary depending on the goal, though of

course the input and output modifiers need to be sturdy enough to

operate. However, unlike a static physical prototype, having the mo-

bile device inside instantly provides some functionality, even if it is

just using an existing application (e.g., a media player or displaying a

photo or website). The next chapter shows different examples of how

these materials can used to create prototypes, while Pineal (Chapter

8) shows higher resolution results through 3D printing. I next outline

a few materials that could be used to create Soul–Body prototypes.

Foam Core and Cardboard. Both foam core and cardboard are com-

mon materials that are easy to cut, fold, and layer. One can use a knife

to cut out cavities that expose different outputs, such as the screen or

the speakers, and one can also customize the visuals through markers

or paper printouts. With more expertise or software tools, designers

could perhaps create more complex cardboard cutouts, such as the

ones illustrated by the Nintendo Labo depicted in §6.3, Figure 6.1.

Lego. The Lego bricks provide an open-ended approach in which one

can construct a surrounding physical form that encloses a mobile de-

vice. Because Lego are common-place, it is possible to acquire a vari-

ety of sizes and colours and designs. In fact, the specifications of Lego

blocks are well-understood, and many fabrication software can gen-

erate Lego-compatible attachments. In particular, FaBrickator by

Mueller et al. (2014) shows how Lego bricks can interplay with 3D

printed objects to create more complex forms.

 DAVID LEDO, 2020 | 179

Foam. Professional industrial designers rapidly prototype by cutting

or sanding down large blocks of foam. In doing so, designers can cre-

ate quite sophisticated forms with changes in volumes and geomet-

rical shapes. However, this usage of foam is highly specialized, which

requires practice, expertise and access to appropriate tools. Using a

reductive approach to create a foam model makes it so industrial de-

signers can account for aspects of aesthetics and ergonomics.

3D Printing. A higher resolution approach one could work with is to

use a 3D printer to generate an object. With a 3D printer, any designer

can work with an existing CAD modeling software to generate a phys-

ical form. While there are challenges to design around a mobile de-

vice, Pineal in Chapter 8 shows how one can retrofit prior 3D models

to accommodate a mobile device and expose the appropriate inputs

and outputs. 3D printers can work with a variety of materials beyond

hard plastic, including conductive and soft/elastic materials.

Existing Objects. The easiest prototyping method is to work with an

existing object. Attaching the mobile device to something like a toy

or an appliance immediately changes how one perceives that object.

Moreover, the existing object features some functional aspects,

which the phone could leverage. In Chapter 10, I elaborate on some

examples through sketches which show one can make everyday ob-

jects smart, such as by attaching a phone to: a coffee maker to sense

its usage; a door to sense when it is opened, knocked, or track the

activity on the peephole; or detecting energy consumption on a light.

Attachments. There are a variety of ways to attach mobile devices to

the environment, either by modifying the case, or by modifying forms

to enable attachment to say, walls. For example, one can use hooks,

180 SOUL–BODY PROTOTYPING

butterfly clips, hook and loop (commonly referred to as Velcro)

straps, suction cups, magnets, etc. This makes it so people can try

different arrangements mobile device with the space, and simulate

other objects that for example may be mounted to a wall, such as a

thermostat or an intercom.

Given the variety of materials, working with a mobile phone or watch

makes it so designers can easily create new physical prototypes in an

accessible manner, and still be able to deal with the different aspects

of interactive behaviour.

6.5 DISCUSSION
The Soul–Body Prototyping paradigm proposes one way in which de-

signers can think about their interactive systems. Because it is a par-

adigm, the goal is not to define or provide a strict constraint, rather

prompt designers with an alternative way of thinking about prototyp-

ing problems. As a result, it is difficult to draw a clear line of when a

prototype, housing a mobile device within a physical form, goes be-

yond the boundaries of the metaphor. Thus, it is necessary to provide

some loose definitions of when something is no longer considered a

Soul–Body prototype (§6.5.1). From that, it becomes possible to ex-

plain how one might extend the metaphor (§6.5.2), and how it is spe-

cifically applied to this thesis (§6.5.3).

6.5.1. METAPHOR BOUNDARIES

Considering the Soul–Body Prototyping paradigm as simply a mobile

device with a surrounding form and passive modifications already

shows that it is possible to create a variety of interesting prototypes.

 DAVID LEDO, 2020 | 181

These are demonstrated by looking at some of the example applica-

tions of the existing sensing techniques, or by looking at the resulting

smart object prototypes in upcoming chapters. The smart object pro-

totypes encompass student examples, both retrofitted from an early

implementation before the paradigm was devised (Chapter 7, §7.1),

and through an in-depth exploration (Chapter 7, §7.2), well as the

smart objects generated for Pineal (Chapter 8, §8.6) and Astral

(Chapter 9, §9.5.3). That said, the question of when a Soul–Body Pro-

totype no longer fits the metaphor remains fuzzy. It is up to designers

to assess when their prototype has deviated so far from the metaphor

that it is no longer suitable. However, this could lead to potential is-

sues of terminology or re-appropriation that veer too far from the

concept, as descriptions can become vague. In the context of this dis-

sertation, I suggest a few key conditions to preserve the Soul–Body

paradigm, as outlined below. While the paradigm could be extended

in future work, these conditions provide scope to how I operational-

ize Soul–Body Prototyping as a concept.

Single Soul. There should be one computational core that drives the

functionality. If there is more than one mobile device, for example,

the metaphor breaks. Similarly, if there are additional plug and play

components, such as a motor, but they are attached to a computer

that is external to the prototype, then the metaphor has broken as

well. On the other hand, if the motor is connected to the mobile de-

vice, or has a small, embedded micro-computer which only drives the

motor and connects wirelessly to the mobile device, then the para-

digm is being preserved, since the added attachments are not routing

elsewhere. Given this loose definition, it then also does not make

sense to have multiple mobile devices within a form and still qualify

182 SOUL–BODY PROTOTYPING

it as a Soul–Body Paradigm. This does not mean that these types of

prototypes are not possible or interesting, it only reflects that the con-

ceptual metaphor has gone too far away.

Tool and Software Support. Given that the rationale is to target in-

teraction designers, reduce coding and eliminate the need to create

circuits, any additional external components or sensing would need

to be supported by a prototyping tool. As a result, inputs and outputs

have to be accessible by the mobile device through its existing Appli-

cation Programming Interface (API). This requires appropriate en-

capsulation in software to make the sensing or output accessible to

the designer themselves as some kind of building block. While future

inputs and outputs can be added, such as an external motor, if the

designer has to step into a more technical role, or requires technical

implementations by another person, then the purpose of the para-

digm is compromised and the prototype is no longer a Soul–Body

Prototype.

6.5.2. EXTENDING THE METAPHOR: MOBILE DEVICES

AS MOVING TARGETS

One reality of mobile devices is that they are rapidly changing tech-

nologies, with new types of sensors being added and removed as ap-

plications and use cases evolve. The current overview of sensors is

rooted in the commodity mobile devices of today, but §6.4.4 suggests

new sensors are already being added to mobile devices. Radar sen-

sors, as well as depth cameras are examples of how mobile devices are

looking to track additional context information from the surround-

ings of the mobile device. In particular, while depth cameras are pri-

marily being used for Augmented Reality, they provide additional

 DAVID LEDO, 2020 | 183

richness beyond what a single camera can track. The possibilities of

image processing are already quite sophisticated, and adding the

sense of depth features flexibility that could be accounted into new

types of prototyping tools.

As mentioned in §6.3, there is no reason why the paradigm needs to

be constrained to mobile phones and watches other than the scoping

of this specific dissertation. An object resembling a smart vacuum

cleaner, a drone, or even a remote-controlled car could also become

potential “souls” for Soul–Body Prototyping provided there are tools

to access their functionality and make it accessible for interactive be-

haviour design. In that context, these devices provide added possibil-

ities, such as the ability to move in three-dimensional space. Moreo-

ver, additional modifiers could be created to change the kinds of pos-

sible outputs. For example, a camera flash could power an attached

solar-battery-powered object. One could vary different light patterns

to change how an attached object is powered. Another example would

be to use multiple plastic pieces to reflect the display and create hol-

ograms, as shown by Pratte’s explorations of the Pepper’s Ghost Il-

lusion applied in computer science (Pratte, 2018). That said, explor-

ing these new types of attachments or extensions would then require

tools that offer the building blocks in hardware and software to author

suitable prototypes. The building blocks can be simple. For example,

Savage et al. (2013) show how a fabricated object could use and fit

mirrors to enable a camera embedded in a passive form to see inputs

beyond the field of view.

For this reason, an electronics-based solution, such as Lego Mind-

storms, Phidgets (Greenberg and Fitchett, 2001), or .NET Gadgeteer

184 SOUL–BODY PROTOTYPING

(Villar et al., 2013) could be considered Soul–Body implementations

if (1) they follow that there is a single core “soul”, and (2) that the

tool provides physical components and a way for designers to exploit

these without the need to code.

6.5.3. APPLYING SOUL–BODY PROTOTYPING IN THE

CONTEXT OF THIS THESIS

The Soul–Body Prototyping paradigm opens up new opportunities

for a class of prototyping tools to author interactive behaviours for

smart objects. While the next chapter shows initial inspirations as

well as a fully-fledged implementation of the concept, it is the systems

themselves that provide designers with building blocks to author in-

teractive behaviours for smart objects, while also affording different

ways of thinking about form and behaviour. Thus, the two tools in

Part 3 of this dissertation (Chapters 8 and 9) show two instantiations

for very specific contexts. Pineal (Chapter 8) focuses on behaviour-

driven automatic form modification of an existing 3D model, geared

towards 3D printing. Astral (Chapter 9) focuses on behaviour proto-

typing in a broader perspective than Soul–Body implementations,

looking also at interactive behaviour design more generally. That

said, there are many other aspects of behaviour design that could be

covered, such as other form-giving approaches, different types of pro-

gramming environments, and dealing with different interplays or

combination of the resulting tools. Ideally, these tools would incre-

mentally add to a suite of approaches that can be used in different

contexts and combinations to generate new smart object prototypes.

Therefore, the power in combination (Olsen, 2007) of more tools are

 DAVID LEDO, 2020 | 185

what could truly influence interaction design practices once these

tools become common-place.

The two prototyping tools, Astral and Pineal focus on mobile devices

of today as well as their current capabilities, and to support the pro-

totyping context in which the designer is creating and envisioning the

smart object, for example, while sitting at a desk. Thus, I do not focus

on more usage-related aspects of prototyping such as trying out the

smart objects in different social situations. As a result, the resulting

prototypes are ephemeral and short-term, and thus the selection of

sensors and outputs has to reflect that. For this reason, a sensor such

as the Global Positioning System (GPS) is excluded.

I do not consider additional electronic components in the current ver-

sion of the paradigm. The idea is to exploit and repurpose the sensors

and output of the mobile device, and to apply passive or mechanical

modifiers where necessary.

In addition, the camera, while an important physical sensor, is explic-

itly excluded from the current tools I build for several reasons. First,

cameras have been widely explored as done in fields of computer vi-

sion and image processing, and can realize a large amount of sensing

through mathematical operations, creating a very large scope which

would shift the focus towards creating a prototyping tool providing

building blocks to deal with camera images. Moreover, the way in

which the camera operates across operating systems is not yet stand-

ardized or consistent – in fact, the raw camera image can in some

cases be very difficult to access. However, Laput et al. (2017) demon-

strate that many of the other physical sensors can be used together

186 SOUL–BODY PROTOTYPING

and achieve similar versatility and accuracy as one can when using a

mobile device camera.

6.5.4. KEY TECHNICAL LIMITATIONS WHEN NOT USING

DEDICATED ELECTRONIC SENSORS

Given that the intent of Soul–Body Prototyping is not to create fully

functional objects, there may be cases where coding or custom cir-

cuitry are required. I believe that with the paradigm, the threshold to

create a smart object prototype, even by putting together cardboard

with a carved-out area for a display, already can lead to interesting

explorations. However, the ceiling is dependent on the task that one

wants to accomplish, but more importantly on the available tools. In

particular, this is true if one needs to achieve a more finished or func-

tional prototype. In such a case, coding becomes necessary so one can

explore detailed aspects of usage that go beyond individual behav-

iours. With the current implementation of Soul–Body Prototyping

there are two caveats to consider, the complexity of the form and how

far out components extend, and how much one can overload the ex-

isting sensors should there be multiple inputs.

Physical Range of Modifiers

If one is not using electronic circuitry of any sort, the physical input

and output modifiers are limited by their own physical range and the

strength of the signal they can interpret. In such a case, if one is to

have, for instance, tactile buttons that either transfer a touch-point

through a copper tape, or by making a sound, the input signals need

to reach the mobile device sensors, which is not possible if the rerout-

ing or transduction points are too far away from the sensor. Addition-

ally, there is little physical output in current mobile devices, which

 DAVID LEDO, 2020 | 187

means that today, one would have to rely on additional attachments,

such as electronic motors. Again, for these to be compatible, proto-

typing tools have to accommodate for them. These shortcomings be-

come clear in the next chapter, where I show how I retrofit the para-

digm from a variety of student examples which used electronic com-

ponents in conjunction with mobile devices to create rich and inter-

esting physical prototyping applications.

Association Between Sensors and Modifiers

Another fundamental challenge in Soul–Body Prototyping is what

happens if one is using multiple sensors and needs to overload them.

This can take place in two ways, one is when a sensor is fully occupied

and another input needs to use that sensor, and the other is when

multiple inputs require the same sensor association. For the former

case, consider the example of an input that uses the mobile device

light sensor, located near the front camera. Such choice can become

a problem if another input needs to use that sensor, as it likely is phys-

ically bound (e.g., through a physical cavity) to that input. The latter

challenge has to do with sensors that are more flexible in their physi-

cal range but that might need to be overloaded. For example, suppose

multiple physical inputs rely on the microphone: what happens when

two microphone inputs take place at the same time? The reality is

that assigning a modifier to a specific input is a challenge that requires

understanding and learning, or strong software support to avoid mak-

ing less optimal choices. The sensor used also matters, as some may

be prone to accidental inputs than others. An instance of a high-error

sensor in my experience is the light sensor, since simple changes in

188 SOUL–BODY PROTOTYPING

the ambient light of the overall room may affect the interpretation of

the sensor data, leading to false positive inputs.

6.6 CONCLUSION
This chapter presented the Soul–Body Prototyping paradigm, which

is a metaphor that proposes using mobile phones as a ‘soul’ inserted

into a physical ‘body’ which acts as a temporary enclosure to simulate

a physical prototype with meaningful form and exposing only the nec-

essary inputs and outputs. The ideas behind Soul–Body Prototyping

are compatible with any sensing technique that can be used with a

mobile device sensor, which fosters a variety of novel inputs and out-

puts that can be used. Moreover, given that many commercial prod-

ucts and research projects already have applied these means of inter-

action, it shows that is feasible and has the potential to become com-

monplace. The next question is whether Soul–Body Prototyping as a

paradigm is something that can be adopted easily, and how to make it

to bring it as close as possible to a walk-up and use paradigm for de-

signers as well.

 SOUL–BODY PROTOTYPING

CASE STUDIES

Soul–Body Prototyping is one way of repurposing existing hardware

and software to enable designers to prototype interactive behaviours for

smart interactive objects. It is particularly feasible, as mobile devices

are commonplace and can act as temporary placeholders for proto-

types. As I progressed through my dissertation research, the ideas be-

hind Soul–Body Prototyping evolved, and additional products and

projects from different sources emerged. From the early stages, how-

ever, it was possible to see a lot of the expressive power that the mo-

bile device provided through its portability and also through the so-

phisticated inputs and outputs. This chapter1 presents case studies

1 Portions of this chapter have been published in:

Hung, M., Ledo, D., & Oehlberg, L. (2019). WatchPen: Using Cross-Device Interaction

Concepts to Augment Pen-Based Interaction. Proceedings of the 21st International Conference
on Human-Computer Interaction with Mobile Devices and Services, 1–8. doi:

10.1145/3338286.3340122

https://doi.org/10.1145/3338286.3340122

190 SOUL–BODY PROTOTYPING CASE STUDIES

that demonstrate the feasibility, flexibility and expressive leverage

provided by Soul–Body Prototyping.

I revisit two different case studies of Soul–Body Prototyping which

focus on the mobile device as a prototyping platform, which were cre-

ated by computer science students. As a result, rather than showing

what designers could do given the right tools, it focuses on what could

be possible if the authoring barrier was dramatically reduced. Before

the conception of Soul–Body, I first explored how computer science

students learning design might bring together mobile devices and

Phidgets (Greenberg and Fitchett, 2001), which are modular plug-

and-play electronics that do not require soldering. The resulting pro-

totypes served as a heavy inspiration for the paradigm, and show the

expressive power once a sophisticated device, such as a mobile

phone, comes together with added sensors and attachments to create

new objects (§7.1). Moreover, rather than describing the prototypes,

I retrofit the concept to discuss how these prototypes fit the Soul–

Body paradigm if one tried to replicate the prototypes without elec-

tronics. This reflection helps highlight what can be accomplished

with Soul–Body prototyping, as well as highlighting how far the pro-

totypes can go before there is a need for electronic components. The

second case study, three years later, shifts to Soul–Body Prototyping

and exploring how the sensor and output could be exploited. Watch-

Pen2 (§7.2), is an undergraduate research project I supervised, in

which the student successfully applied Soul–Body Prototyping to cre-

ate a smart stylus that connects to a tablet device, and can handle a

2 A video figure for WatchPen can be found at: http://davidledo.com/projects/pro-

ject.html?watchpen

http://davidledo.com/projects/project.html?watchpen
http://davidledo.com/projects/project.html?watchpen

 DAVID LEDO, 2020 | 191

variety of sensors at once. WatchPen also explores a more fleshed out

application in that it shows how a variety of tools can be accommo-

dated in the context of a drawing application. These case studies also

as a result show promise and foster reflection (§7.3) on the extent one

can use Soul–Body Prototyping to (1) continue to push HCI research

forward; and (2) enable interaction designers to use Soul–Body Pro-

totyping, with the right tools, to create a wide variety of rich and in-

teresting prototypes.

7.1 STUDENT EXPLORATIONS BEFORE
REALIZING SOUL–BODY PROTOTYPING

Before the realization of Soul–Body Prototyping, I explored ways to

repurpose mobile devices to create new objects. I asked students in a

second HCI computer science class (CPSC 581: Advanced HCI3) to

create smart object prototypes using mobile devices and electronic

components. Students worked with Windows Phones (Nokia Lumia

735), programmed in C#, together with Phidgets components (which

included a kit with sliders, pressure sensors, servo motors, buttons

and others) connected to a desktop computer (also developed in C#).

The electronics were to be placed on top of, or around the mobile

device in a new custom form. To connect the electronics and mobile

devices, I created a networking library4 and set up a relay server that

would enable students to easily send messages between the mobile

3 I was co-instructor for CPSC 581 in Fall 2015 together with Prof. Sonny Chan at

the University of Calgary
4 Kevin Ta formalized the library into a Github repository for a future installment of the

course: https://github.com/kevinta893/NetworkIt

https://github.com/kevinta893/NetworkIt

192 SOUL–BODY PROTOTYPING CASE STUDIES

application and the desktop. Students had five weeks to create a pro-

totype, and had to deliver prototypes in different stages: 20 concept

sketches and variations, a narrative storyboard, a non-functional form

prototype using materials such as foam core and paper to explore the

form, a first demo to test the implementation and get feedback, and a

final prototype demo and video. Students posted the results in their

public web portfolio and were asked for permission to discuss their

projects with attribution once the course was over. The course fol-

lowed Greenberg’s studio approach (2009), where there were small-

group critiques, as well as presentations to the class throughout the

five-week span.

The assignment prompt was as follows:

Mobile devices have become common-place. A consequence of this

ubiquity is that they have become largely standardized with high

resolution touch displays. While this brings forth the advantage of

software flexibility, there are also new limitations from these types

of interactions. For this assignment, you will work to create a phys-

ical augmentation of a mobile device. This means you are to use

other hardware to extend your phone or tablet so that it solves a

well-defined problem. Three possible approaches include: solve a

technology-centric problem of mobile device interaction; solve an

application-centric problem focusing on a task; or solve a people-

centric problem, where you create a special device for someone.

From 15 students, I have selected 5 representative prototypes that

can exemplify potential Soul–Body Prototyping applications and be

retrofitted to work with mobile devices directly. These show: (1) an

interesting breadth of early ideas that were developed and functional;

 DAVID LEDO, 2020 | 193

and (2) the feasibility for computer science undergraduates taking

their second HCI course to create Soul–Body prototypes. Indeed,

there are a few factors to keep in mind. First, these students are

trained programmers with little design experience, who are working

with electronic components (albeit not requiring to solder or perform

major circuit building). Second, the class setting is an artificial set-

ting, where students are working towards earning a grade. Lastly, the

use of electronic components means that there was little use of the

built-in sensing and output of the mobile device, and that potentially

some components (e.g., servo motors) could not have an equivalent

Soul–Body Prototyping counterpart.

It is worth reiterating, that the Soul–Body Paradigm did not exist at

this point in time, and thus it was not taught to the students as a way

to think about prototyping. Students were instead taught other tech-

nical skills in Human–Computer Interaction, which include: sketch-

ing, mobile sensing, interaction techniques, how to use hardware

components, physical prototyping using foam core and cardboard,

how to work with C# and Blend, and how to design animations. I next

describe the selected prototypes, and show how they can be con-

verted into the current paradigm of Soul–Body Prototyping.

194 SOUL–BODY PROTOTYPING CASE STUDIES

 GYMBUDDY BY MIKE CHUBEY

The Prototype. Gymbuddy (Figure 7.1) is a workout assistant which

could be attached to any workout equipment via a hook-and-loop

(Velcro) strap. The form of the device was heavily padded in case the

device would fall or get hit during intense workout activities. Within

the padded body, a distance sensor would measure when a gym-goer

performed a particular repetition for a workout, such as performing a

pull-up, a push up, or using a workout bench. The GymBuddy assis-

tant would guide users through workout routines, keeping count of

repetitions and sets, and suggesting new exercises.

Converting it into a Soul–Body Implementation. Because the

GymBuddy system primarily uses a distance sensor to sense when a

person performs an exercise repetition, there are a few alternative

mobile sensors one might use to create a testable version of the pro-

totype. One can use the ambient light sensor to know when the gym-

goer is close to the device by looking at the fluctuation of illumination

on the front of the mobile device. However, this might prove error-

prone, as any change in lighting might trick the system into thinking

Figure 7.1. Gymbuddy (by Mike Chubey) is a mobile device which can be attached to
gym equipment (e.g., bench press) and provides training and assistance through the dis-
play. The system keeps track of repetitions via a distance sensor.

 DAVID LEDO, 2020 | 195

that a repetition has been achieved. Alternatively, one can use the de-

vice’s accelerometer to sense the directional motion. The accelerom-

eter solution would work in the case of some workout equipment,

such as doing weights on the bench, where the mobile device is at-

tached to the bench itself. In the case of the push-ups, where the mo-

bile device is placed on the floor, there is no way to sense the person’s

motion with the accelerometer. In that case, perhaps one might have

to modify the design itself, and require the user to strap the mobile

device to their body (e.g., to their chest or arm) to sense the upwards

and downwards motion.

 PATHOLOGIST DEVICE BY TERRANCE MOK

The Prototype. One of the students developed a special device for his

wife, who is a pathologist (Figure 7.2). The device featured a caliper

for measurements: turning a knob would cause a servo motor to op-

erate the rack and pinion caliper. A pathologist could navigate

through a human body silhouette on the phone and choose an area to

mark, where they could use the device’s calipers to measure the mark

(e.g., a tattoo), enter additional information, comments, or photos

and store them.

Converting it into a Soul–Body Implementation. The only challenge

in this prototype is that the caliper in this implementation relies on a

servo motor to power the rack and pinion mechanism. One way to

address this is to simply move the rack and pinion with an analog

knob. To keep a record of the measurements, one can add a capacitive

marker that reaches the touchscreen and use the coordinates of that

contact point to map the value to the correct measurements.

Figure 7.2. Pathologist device (by Ter-

rance Mok). The device features a caliper

powered by a knob and a servo motor
which is used to record measurements on

different body features (e.g., a tattoo or a

scar). The application allows pathologists

to select different parts of the body to en-

ter the recorded information.

196 SOUL–BODY PROTOTYPING CASE STUDIES

 SMART DOCKS BY ORKHAN SULEYMANOV

The Prototype. Another student developed a set of docking stations

which would provide different kinds of physical controls and af-

fordances to the mobile device (Figure 7.3). Placing the mobile de-

vice in these stations temporarily transformed the functionality of the

phone. One docking station acted as a music station, which opened

the music app and provided physical controls to play/pause, navigate

through songs or mute. Another station acted as an alarm clock for

the bedside table, which could be set, snoozed or dismissed. The

phone was augmented with an RFID (Radio Frequency Identifica-

tion) tag, while the docking stations contained RFID readers to detect

when the phone was stationed.

Converting it into a Soul–Body Implementation. There are two main

things that need to be converted in this prototype: one is the need for

physical controls, and the second is the ability to recognize the cur-

rent docking station. For prototyping purposes, one can allocate the

Figure 7.3. Smart Docks by Orkhan Suleymanov provides physical controls at differ-
ent locations of a home with specialized usage contexts: a music station, as well as an
alarm clock.

 DAVID LEDO, 2020 | 197

magnetometer for one of the two functionalities. For example, the

different buttons can have an associated magnet, then the mobile de-

vice can read changes in the magnetic field vector orientation changes

once one of the buttons is pressed. Alternatively, the docking stations

can have different magnet strengths which are then used to recognize

the identity of the stations. In that case, the buttons perhaps can have

different sound signatures which are then picked up by the device mi-

crophone. One might also consider using NFC5 (Near Field Commu-

nication) tags if the phone supports reading these tags, though this

functionality is typically reserved for higher end mobile phones.

 HUGGABLE PHONE BY SARA WILLIAMSON

Prototype. A stuffed animal holds a phone which performs video calls

to parents who are at a different physical location (Figure 7.4). Chil-

dren can squeeze the stuffed animal’s hands to call a parent who

might be away due to travel. If the parent was not available, a video

greeting of the parent would show up, and then allow the child to

leave a video message.

Converting it into a Soul–Body Implementation. The main physical

means of interaction at play in this prototype is through squeezing the

plushie’s hands, which hid a pressure sensor. A quick alternative to

this approach is to use copper tape to reroute touch input from the

toy’s hands to a location on the mobile device touchscreen. If the de-

signer wishes to make a more finished version of this, they can try

different forms of conductive fabric and thread that can reroute the

5 Mobile devices today often have an NFC reader, while Phidgets provide RFID readers

and tags. Both work similarly: an event is triggered when the tag is near the reader.

Figure 7.4. Huggable Phone by Sara Wil-

liamson presents a stuffed animal hugging
a phone. The mobile device can be used to

video call a parent who is currently away.

198 SOUL–BODY PROTOTYPING CASE STUDIES

information, all while ensuring that the contact points are large

enough to be recognized as touches by the mobile phone.

 PHOAME SWORDS BY KEVIN TA

Prototype. Phoame Swords is a physical sword fighting game (Figure

7.5) in which players wear a shirt with “hit points”. Hitting an oppos-

ing player with the sword on a hit point decreases the attacked

player’s health. The game is over when a player’s health hits zero,

and one remains. The players wield a sword which holds a mobile

phone showing the current health points and playing sound effects

when a player is hit, or when the sword is swung. The hit points on

the special shirt were implemented by having RFID readers in each

one. The sword had an RFID tag attached to its tip, so the system

could recognize when a player is attacked.

Converting it into a Soul–Body Implementation. This is perhaps the

hardest prototype to realize in a full Soul–Body implementation de-

Figure 7.5. Phoame Swords by Kevin Ta is an augmented physical game in which play-
ers engage in a sword fight until they run out of health. The mobile device plays sound
effects and keeps track of player’s health / hit points.

 DAVID LEDO, 2020 | 199

void of electronics. The reason behind this challenge is that the dis-

tance between the mobile device and the tip of the sword makes it

difficult for the mobile device to sense contacts and also preserve the

identity of which hit point and which person was hit. Perhaps one

could reroute touch points of the screen to the sword’s tip (via copper

tape or conductive ink), and make the targets also with conductive

material, thus instigating touch events on a specific region of the mo-

bile device, which is then used to compute the new health values.

This of course assumes that there are only two players, where a more

sophisticated implementation would be required to fully experience

more complex gameplay.

7.2 WATCHPEN: LATER STUDENT EXPLORATION
WatchPen (Hung et al., 2019), shown in Figure 7.6, was an under-

graduate student project led by Michael Hung under my mentorship,

implemented over the course of three months as part of an HCI re-

search course in the fall semester. This particular project examined

the role of an augmented stylus for interacting with tablet devices and

its benefits with added sensing and outputs. More importantly, how-

ever its implementation was a Soul–Body Prototype which enabled a

comprehensive exploration of what interactions with tablets might

look like in the context of a drawing application. Specifically, the aug-

mented pen leverages different smartwatch sensors and outputs, as

well as their combinations, to envision possible features that could be

added to a tablet stylus, and serves as an example of how Soul–Body

Prototyping can be used to carry out in-depth explorations without

the need for specialized hardware.

Figure 7.6. WatchPen is a tablet stylus
that has been augmented with a smart-

watch. WatchPen explores how different

sensors and outputs can augment tablet

interactions in the context of a drawing

application.

200 SOUL–BODY PROTOTYPING CASE STUDIES

Tool Selection via Accelerometer Posture Sensing. The three-dimen-

sional orientation as sensed by the accelerometer can be used to de-

tect different postures in which the pen is being held. As a result, one

can envision how different grips can be used to switch between tools

in a drawing application. Given how the user holds the pen, exempli-

fied in Figures Figure 7.7-b and Figure 7.9, one can switch between:

regular brush, airbrush, stamp and eraser.

Display Controls and Awareness. One problem with direct input is

that the information about the current state of the tool is dissociated

from the location in which the action takes place. With a mouse cur-

sor, it is possible to provide feedforward informing the user of the

current state reflecting the effect of a click: the cursor can change

its appearance and become a pencil and draw or a hand to move

the canvas around. The cursor can even provide additional infor-

mation about the tool’s parameters, such as the colour or stroke size.

With touch or pen interactions, these details are often relegated to

the side of the interface, or hidden within menus. Having a display

attached to the pen can help provide additional information about the

current tool and its parameters (e.g., stroke size and colour), as well

Figure 7.8 Physical airbrush (a), and its replication in WatchPen (b) which can control the ink flow with the watch’s touchpad. The
orientation of the pen (c) changes how the paint is spread on the canvas.

Figure 7.7. The WatchPen display shows

the current colour, as well as hue, satura-

tion, and brightness and radius sliders

which can be adjusted anytime.

 DAVID LEDO, 2020 | 201

as the ability to change those parameters through different sliders

(see Figure 7.7).

Orientation-Based Airbrush. With orientation and touch sensing, it

is possible to simulate the way a physical airbrush operates (compar-

ison shown in Figure 7.8-a and b). For example, the finger can touch

the watch’s screen to control the paint flow (i.e., radius) and the ori-

entation can change how the paint is spread (Figure 7.8-c).

Microphone-Enabled Tonal Brush. With the added sensing from the

smartwatch, it is possible to explore new kinds of unusual and crea-

tive ways of operating a stylus. For example, it is possible to map dif-

ferent parameters of a brush from the sound captured by the micro-

phone. The sound frequency/pitch can be mapped to different hues,

while the amplitude/loudness can be associated to the brush size.

Stamp Tool. Holding the pen perpendicular to the tablet switches to

the stamp tool (see Figure 7.9), which can be used to apply copy and

Figure 7.9. Stamp tool in WatchPen, triggered when the pen is held upright. The

pen tool can capture contents (a) and show it on the display, and then paste cop-

ies on the canvas (b).

202 SOUL–BODY PROTOTYPING CASE STUDIES

paste operations. Moving the pen around the tablet captures an area

and displays it on the watch screen, which acts as a visual clipboard.

The user can then paste the content multiple times by pressing the

upright stylus against the tablet.

Tactile Feedback through Vibration. WatchPen also leverages tactile

feedback through the watch’s vibration motor. The vibration is used

to notify the user when a tool has been switched due to a change in

posture, as well as when erasing.

7.3 DISCUSSION
Studying how students worked with Soul–Body Prototyping pro-

vided me with a first-hand experience on how people might operate

the metaphor and paradigm and shows the expressiveness as well as

the feasibility. However, the limitations of these explorations, as well

as the lessons learned for both HCI and Design contexts provide in-

teresting insight that informs the design of prototyping tools that sup-

port Soul–Body Prototyping.

 LIMITATIONS

What Can We Extrapolate from Student Explorations?

Student explorations are beneficial in that they are one way to explore

the feasibility of a concept, especially if it is possible to provide them

with the right equipment and tools. It can be argued that students are

to some degree novices in HCI and design, since this advanced HCI

class shifted focus from methods of inquiry to learn about end-users,

to sketching and prototyping using a variety of technologies. This

means that the students are essentially beginners in design but have a

strong technical ability compared to design practitioners. At the same

 DAVID LEDO, 2020 | 203

time, there are a few artificial components to a student-based explo-

ration. The first is that participants are being driven by an assignment

that has a grade component to it. Second, students have access to help

at all times from the course instructors, and the assignment is scoped

in such a way that it can be solved if the work is put in. In both explo-

rations, I provided students with software libraries that would facili-

tate the programming experience, so they could focus on the design

component. Regardless of these limitations, there are key observa-

tions that can be made:

− Students were able to apply Soul–Body Prototyping to invent

novel smart objects

− Students were able to explore a variety of mobile inputs and

outputs and create rich experiences in a short timespan

− Students created forms around the prototypes to give them

meaning using a variety of readily available materials such as

foam or cardboard

Understanding Sensors

Perhaps the biggest challenge and limitation of these explorations,

and a lesson for Soul–Body Prototyping is that people who apply the

paradigm must either understand sensors or have some degree of as-

sistance. For example, the accelerometer is used to sense the basic

orientation information of a mobile device, yet students did not know

the accelerometer data could be used to assess orientation. Similarly,

with the microphone data, the mobile device simply returned an array

of bytes for every sample which needed to be somehow interpreted

meaningfully. Working with these kinds of sensors are very different

204 SOUL–BODY PROTOTYPING CASE STUDIES

than working with, say, the touch sensor, or a mouse cursor, which

have a specialized event where the resulting data can be understood

right away through a simple print statement on the console.

Many of the students in the class were programming on the mobile

device for the first time. While the programming platform was set up

to remain familiar to the students (e.g., using C# and Windows Uni-

versal Platform for Windows Phones), the gap was more in under-

standing what the mobile sensors were capable of and how to make

sense of the increasing amount of data. Given the need to make sense

of the array of sensor data in some way, it is perhaps why many pro-

totyping tools have opted to simply not show the available sensor data

or make it usable, as sensors beyond the touchscreen could perhaps

be simply categorized as niche applications, and get dismissed under

the assumption that only experts should delve into.

 SOUL–BODY PROTOTYPING AND

HCI RESEARCH

The explorations in WatchPen show how it was possible to explore a

design space in a short amount of time. While I had provided Michael

Hung, the lead author, with a software library that handled the net-

working and a lot of the sensing, along with examples, he recognized

the advantages of working with higher-level programming specific

components rather than low-level hardware. I have already discussed

in Chapter 5 the power of toolkits as software infrastructures, and us-

ing mobile devices instead of hardware components are no different.

One example of repurposing devices similar to Soul–Body Prototyp-

ing is Lee’s prototypes which he referred to as “procrastineering”

(2008). Lee (ibid) was able to create a variety of prototypes in a short

 DAVID LEDO, 2020 | 205

amount of time, such as an interactive whiteboard, a head-tracking

VR display and a multitouch display all using a Nintendo Wii Remote

and its infrared camera through a widely available software library. In

that sense, the infrastructures build on top of one another until they

become high-level enough that they can increase people’s ability to

participate in the prototyping activity, or people can save time that

would have been spent working with lower level components other-

wise. This leads to two obvious directions for Soul–Body Prototyping

in HCI research. The first is to continue exploiting mobile sensors in

new and interesting ways using high-level programming platforms.

The other direction is to create additional layers of infrastructure that

can simplify the design and development process and open up new

interesting paths of least resistance (Myers et al., 2000).

 SOUL BODY PROTOTYPING AND DESIGNERS

While the participants of these activities are not interaction design-

ers, they are an example of students beginning their training in design

who happen to have the technical skills to code interactive applica-

tions. The results of these explorations then suggest what could be

possible if designers did not have these technical difficulties. Moreo-

ver, the prototypes also show that simple materials such as cardboard

and foam core are enough to build a basic form and focus on the in-

teractive behaviour implementation.

With the Soul–Body Prototyping paradigm, it is possible to achieve

more closer-to-product representations, provided designers can cre-

ate a physical form of some fidelity and resolution. It removes the

need for technical expertise in circuitry and brings a few more tools

206 SOUL–BODY PROTOTYPING CASE STUDIES

to their disposal, such as mobile apps or websites which can be recon-

textualized. However, it becomes clear that there is a need for a new

class of prototyping tools that can help design interactive behaviours

beyond the WIMP (Windows, Icons, Menus and Pointers) paradigm

and shift towards different sensor-based input approaches. While

there is still a need to learn and better understand some of the sen-

sors, the tools can help conceptualize some of these challenges.

7.4 CONCLUSION
This chapter presented case studies of Soul–Body Prototyping as a

paradigm to circumvent the need for custom electronics to create

smart interactive object prototypes. I showed some early examples of

computer science students who programmed and used high-level

electronics to create rich innovative prototypes over the course of five

weeks. This shows that using mobile devices in this new prototyping

context can inspire new interesting ideas and lead to fairly sophisti-

cated implementations which demonstrate the paradigm. I then dis-

cuss how these implementations can be converted into prototypes

that use only built-in sensing on the mobile device. WatchPen (Hung

et al., 2019) then shows the power of Soul–Body Prototyping at a

larger scale and even demonstrates how a variety of sensors can be

brought together. Indeed, these implementations raise the question

of how to take this knowledge and operationalize it for designers to

create new prototypes, which is the goal of the systems in the upcom-

ing chapters. Chapter 8 shows how a system might use basic behav-

iours to automatically generate 3D printable forms (Pineal) for Soul–

Body prototypes, while Chapter 9 shows a means to author nuanced

interactive behaviours with (Astral).

PART 3
SYSTEMS

 PINEAL: BEHAVIOUR-DRIVEN

PHYSICAL PROTOTYPING

“Form follows function – that has been misunderstood. Form and function

should be one, joined in a spiritual union” – Frank Lloyd Wright

The last part proposed the Soul–Body Prototyping paradigm as a

method for repurposing existing hardware and software to enable design-

ers to create live interactive prototypes for smart interactive objects. In it,

designers place a mobile device (soul) into a temporary physical form

(body) to create a physical prototype for a smart object. The paradigm

on its own helps alleviate some of the designer challenges, such as the

need for specialization and the need for close-to-product representa-

tions. However, Soul–Body Prototyping needs tools that enable its

operationalization. Specifically, it opens up the second research ques-

tion posed in Chapter 1:

RQ2. How might designers author forms around mobile devices

to make them look and feel like smart objects?

210 PINEAL: BEHAVIOUR-DRIVEN PHYSICAL PROTOTYPING

To address this research question, I created Pineal1, a prototyping

tool capable of generating a functional smart object prototype. The

resulting prototype consists of a fabricated form (e.g., 3D printed),

which houses a mobile device which performs all the programmed

behaviours. With the aim of providing a base understanding of Pineal

and its research contributions, I begin this chapter by providing a

summary description of the system (§8.1), while also situating it

within the existing related work (§8.2). This then enables describing

the more technical details behind Pineal, such as the interface com-

ponents (§8.3), how a user might leverage these components to cre-

ate an example prototype (§8.4), and the implementation details that

realize the end-user operations (§8.5). Further validation of Pineal

and its expressiveness is achieved through a series of prototypes I cre-

ated using the system (§8.6), which cover the elements of the design

space of Soul–Body Prototyping. Lastly, I discuss Pineal’s concept,

limitations and reflections (§8.7) which are then tied together with

concluding thoughts (§8.8).

1 Portions of this chapter have been published in:

Ledo, D., Anderson, F., Schmidt, R., Oehlberg, L., Greenberg, S., & Grossman, T. (2017).

Pineal: Bringing Passive Objects to Life with Embedded Mobile Devices. Proceedings of the
2017 CHI Conference on Human Factors in Computing Systems, 2583–2593. doi:

10.1145/3025453.3025652

Video figure: http://davidledo.com/projects/project.html?pineal

Patent application:

Grossman, T., Anderson, F., Schmidt, R. M., Greenberg, S., & Ledo, D. (2018). Tech-

niques for Designing Interactive Objects with Integrated Smart Devices. U.S. Patent Appli-
cation No. 15/863,767.

https://doi.org/10.1145/3025453.3025652
http://davidledo.com/projects/project.html?pineal

 DAVID LEDO, 2020 | 211

8.1 PINEAL
Pineal is a software prototyping tool that operationalizes Soul–Body

Prototyping and enables designers to author smart interactive object

prototypes. Pineal enables: (1) programming interactive behaviours

on mobile devices (the soul); and (2) modifying a 3D model form to

house the mobile device and expose the phone or watch’s inputs and

outputs (the body). As a result, one can use an existing fabrication

method, such as 3D printing, to realize the object’s form, and insert

the programmed mobile device into it to create a new prototype that

resembles a smart object.

Pineal features two main workspaces within the same view. On one

side, there is a visual programming environment which leverages trig-

ger-action modules as node-link diagrams. The other side shows a 3D

modeling environment, which operates Autodesk Meshmixer in the

background. The 3D modeling environment serves to show the 3D

model, and also to perform all necessary automation tasks that will

modify the 3D model to make it into a physical form that supports

Soul–Body Prototyping. Thus, the form can fit the mobile device and

facilitate inputs and outputs which connect to said mobile device.

Pineal works through four steps, summarized in Figure 8.1:

1. Importing an Existing 3D Model. Designers can import any stand-

ard 3D model file format (e.g., STL or OBJ) into the 3D modeling

environment. As a result, one can work with existing models down-

loaded from the web (e.g., through a model-sharing site such as

Thingiverse.com), or with a custom model created from scratch on

Figure 8.1. Overview of Pineal.

212 PINEAL: BEHAVIOUR-DRIVEN PHYSICAL PROTOTYPING

any 3D modeling tool (e.g., Meshmixer, Autodesk Fusion 360, Solid-

Works, OpenSCAD).

2. Programming Interactive Behaviours for Mobile Devices. The vis-

ual programming environment provides a set of building-blocks for

trigger-action behaviours that leverage mobile device sensors and

outputs. Pineal features a mobile device client which connects to the

desktop application to author interactive behaviours. The design of

the visual programming is such that designers can immediately test

and modify the behaviours in a live manner: a change in the visual

program is reflected on the mobile device in run-time (Figure 8.1-2).

3. Modifying the 3D Model. The programmed behaviours send mod-

ification instructions to the 3D modeling environment, which the de-

signer can step through to customize the form (Figure 8.1-3). For ex-

ample, if the visual program requires the mobile device screen to be

visible (e.g., a module output displays text), the 3D modeling envi-

ronment will add a step to create a cavity to expose the screen. The

designer can then select the location of the 3D model where they wish

to create the screen cavity. Once all steps are finalized, the system

takes these constraints and automatically modifies the original 3D

model: it splits it into two pieces that can be assembled, creates room

for the mobile device, and exposes the inputs and outputs specified

by the visual program, such as exposing the device’s screen in the

previously selected location.

4. Fabricating and Assembling the Model. The modified 3D model is

exported as a file to any folder, and is now ready for fabrication via a

designer-chosen slicer software. The designer can realize the physical

forms (e.g., through 3D printing) and place the mobile device. Once

 DAVID LEDO, 2020 | 213

the device is inside, the programmed behaviours run as expected,

thus temporarily turning the mobile device into a smart object proto-

type. Interaction designers can use the prototype to envision the be-

haviour in the context of a physical form that can closely resemble

real world use (Figure 8.1-4).

8.2 RELATED WORK AND CONTRIBUTIONS
Pineal integrates different technologies to author smart object behav-

iours. In particular, there are two main benefits over prior work, dis-

cussed below.

1. Leveraging a Single Mobile Device Rather than Many Electronic

Components. By repurposing mobile devices, designers can have all

the primary functionality of a smart object through the myriad of mo-

bile sensors, all contained in an easily extensible geometry. Existing

work to date focuses on the creation of custom circuitry. Different

platforms exist that lower the thresholds for programming electron-

ics, where the focus is on removing the need for circuit building, but

still require end-users to code and create the surrounding physical

form. For example, Phidgets (Greenberg & Fitchett, 2001), Smart-

Its (Gellersen et al., 2004), and .NET Gadgeteer (Villar et al., 2013)

offer a set of premade electronic boards with sensors and resistors

that programmers can easily “plug and play”, all while coding in fa-

miliar object-oriented, event-driven environments, such as C#. As a

result, an expert programmer can author physical user interfaces that

can sense human input or contextual information from the environ-

ment. Other platforms, such as Trigger-Action Circuits (Anderson et

al., 2018) and PaperPulse (Ramakers et al. 2015) leverage more inex-

214 PINEAL: BEHAVIOUR-DRIVEN PHYSICAL PROTOTYPING

pensive electronics (e.g., Arduino), provide simplified visual pro-

gramming, and automatically generate a full circuit diagram to help

with assembling the circuit based on the pre-programmed behav-

iours. In the case of PaperPulse, the circuit diagram can be printed

with conductive ink using a modified printer. Micro:Bit2 packs a set

of basic sensors (accelerometer, temperature sensor, compass, Blue-

tooth, and two buttons) and a 5x5 LED display, thus containing hard-

ware building blocks on a single board. Micro:Bit can be programmed

with TouchDevelop (Ball et al., 2016), web-based visual program-

ming language that helps novices such as makers and children to au-

thor basic behaviours. However, the Micro:Bit was designed to teach

children programming, and thus has a few arrays of low-cost sensors

and outputs. Thus, while Micro:Bit removes the coding complexity

and the circuit building, the range of what can be created with the few

sensors and outputs is limited. By tapping onto the mobile device’s

sensors and outputs, Pineal brings forth a wider variety of program-

mable sensors and outputs, while accessing more complex functions

such as web operations through its internet connection, or built-in

services such as speech recognition.

2. Using Programmed Behaviours to Automatically Modify 3D Mod-

els. Creating 3D models from scratch is difficult, especially when

those models have to match existing, real-world geometries. A num-

ber of projects have examined integrating electronic components

with 3D models. For instance, RetroFab (Ramakers et al., 2015) au-

tomatically generates enclosures for electronic components which

2 https://microbit.org/ – Accessed December 2019

https://microbit.org/

 DAVID LEDO, 2020 | 215

are used to actuate existing physical interfaces. PipeDream (Savage

et al., 2014) allows users to easily author internal pipe structures

within 3D printed objects, which can be applied to a range of inputs

(capacitive sensing) and outputs (haptic feedback, light pipes) but re-

lies on the author to define the location and purpose of these pipes.

MakersMarks (Savage et al., 2015) allows users to physically sculpt

and create an object by hand using clay and use tags to specify physi-

cal input mechanisms. Objects are then 3D scanned, and the model

combines the tagged markers to create a solid model that reflects both

the overall form as providing cavities to fit the electronic compo-

nents. Enclosed (Weichel et al., 2013) is a modeling environment to

create enclosures for electronic objects. While it allows for custom

shape creation, its focus is on incorporating the shape of the elec-

tronic components, not on working with existing 3D models. MixFab

(Weichel et al., 2014), CopyCAD (Follmer et al., 2010), and

KidCAD (Folmer et al., 2012) all allow novices to begin to perform

3D modelling operations using real-world objects. The objects are

scanned in via cameras or sensors and brought into a 3D modelling

environment which, simplifies the modelling process. In many of

these approaches, the modelling techniques are simple enough for

novice end-users to use. Pineal builds on these prior works by auto-

mating the 3D modelling tasks necessary for embedding devices into

3D objects. Pineal leverages prior algorithms such as creating internal

pipe structures to route fiber optic cables (Savage et al., 2014), while

introducing new functionality such as automatic splitting of 3D mod-

els to physically insert mobile devices inside the form. Moreover, this

automation is entirely dictated by the behaviours specified by the de-

signer, thus reducing the need for manual 3D modeling operations

216 PINEAL: BEHAVIOUR-DRIVEN PHYSICAL PROTOTYPING

while still providing customization opportunities. As a result, users

technically do not need much understanding of 3D modelling, thus

simplifying the creation of smart object forms.

8.3 INTERFACE AND WORKSPACES
The system contains a visual programming authoring environment

(Figure 8.2, left) and a 3D modeling workspace (Figure 8.2, right).

After authoring the behaviours, the system guides the users through

simple steps to modify the model as dictated by the behaviours. To

aid in the visual programming process, designers can test behaviours

in real-time on the mobile device independently of the 3D model.

 VISUAL PROGRAMMING ENVIRONMENT

Designers author the behaviour of their smart object using a high-

level node-based visual programming language interface. Inputs can

be placed on the canvas and linked to outputs to enable the creation

of basic behaviours. The mobile device, which runs the Pineal mobile

client, is always checking the state of the visual programming canvas,

and accordingly updates and allows for live testing. The visual pro-

gramming language is composed of the following components.

Input Modules

Pineal provides support for several inputs commonly found on mobile

devices, including discrete inputs (those that have an explicit ‘trig-

ger’) and continuous inputs (those that respond to changing, always-

available values).

 DAVID LEDO, 2020 | 217

Button (discrete). Triggers an event when the generated button is

pressed by remapping the user’s touch directly to the touch screen

via conductive material. Buttons can be of arbitrary shapes, and must

be printed in conductive plastic.

Speech (discrete). Triggers an event when the specified word is sensed.

Speech recognition is done by the mobile device, with events being

sent to the server once the word is detected. Multiple speech modules

can be placed onto the canvas, and thus the system can detect and

respond to various words.

Figure 8.2. Pineal consists of (1) a simplified visual programming language to author basic behaviours for mobile devices

(left); and (2) a 3D modeling environment, which allows designers to import custom models that can be 3D printed (right).

Pineal’s programmed behaviours then automatically modify the 3D models so they can indeed house the mobile device and
expose the necessary inputs and outputs once 3D printed. This figure shows a Toy Firetruck model, which is used as a run-

ning example, where pressing a button makes the truck flash its lights and play a siren sound.

218 PINEAL: BEHAVIOUR-DRIVEN PHYSICAL PROTOTYPING

Shake (discrete). Triggers an event when a device is shaken. To recog-

nize shakes, Pineal processes the accelerometer data and triggers the

event when the magnitude of the acceleration exceeds a pre-defined

threshold.

Orientation (discrete & continuous). Triggers an event when the speci-

fied axis of orientation (azimuth, pitch or roll) exceeds a given value,

or reads a continuous value that can be mapped to another module.

Web (discrete & continuous). Triggers an event when a specified web

event occurs (e.g., a hashtag is tweeted about), or provides a contin-

uous value corresponding to the temperature forecast for a given city.

Currently, only these two web functionalities are supported, but this

feature could be extended to other services. The web service is se-

lected by a dropdown menu.

Output Modules

A number of types of output are supported by Pineal to allow the

smart objects to have expressive characteristics.

Text Display. Displays a text sequence when an action takes place.

This sequence is fetched from a specified sequence every time the

module is activated. The module also shows a set of sequencing op-

tions to iterate through the list, in increasing or decreasing order, or

in a random fashion.

Image. Displays an image selected from the pre-loaded library of im-

ages. The image location (x and y) can be updated via the input. The

input is assumed to be screen coordinates, and appropriate mapping

must be done by using the appropriate module sending the input.

 DAVID LEDO, 2020 | 219

Simulated LEDs (small light points). Simulates the effect of an LED

turning on when triggered by routing light from the screen to another

location on the object via light pipes. The module takes a list of col-

ours as input, and each time the module is triggered it reads the next

element in the circular sequence.

Light Diffusers (large light sources with 3D form). Changes the colour of

the display pixels when triggered. This enables the smart object to

function as a low-resolution ambient display. Conceptually, this is

similar to the simulated LED module, except it allows the user to im-

port another 3D model to be placed on top of the base model as a light

rather than having the light reroute to appear as an LED.

Sound. Plays a wave formatted file selected from the pre-loaded li-

brary when triggered.

Mapping Modules

Mapping modules support the input and output modules by provid-

ing means to store values and invoke timers. Currently Pineal sup-

ports two mapping modules:

Retrievable Sequences. Text sequences and colour groups are lists that

contain multiple entries. A calling module (e.g., input module) re-

trieves a value, which can be provided in increasing order, decreasing

order, or random order, as specified by the user.

Timer. Fetches a retrievable value from a sequence for a specified du-

ration at a given interval in milliseconds. A discrete input value can

start a timer.

220 PINEAL: BEHAVIOUR-DRIVEN PHYSICAL PROTOTYPING

 MODELING ENVIRONMENT INTERACTION

As the behaviours are put together, the modeling environment loads

a set of instructions to modify the 3D model and creates a new form

suited to the mobile device. In this section, I describe the types of

interactions that the user can partake when interacting with the 3D

modeling environment. The specific implementation details are later

discussed in §8.5. While Pineal does a lot of automation to modify the

3D model, the system relies on an interplay with the designer to en-

sure they can customize the model to the way they want it to look and

feel like once it is 3D printed (e.g., allowing them to consider where

to place the screen, buttons, etc.).

The user can explore the 3D model within the environment (e.g.,

panning and zooming within the workspace). The Pineal interface

displays a series of steps that the designer can take to continue mod-

ifying the 3D model, following the pattern of a traditional user inter-

face Step by Step Wizard (described in Chapter 4, §4.3.8). As a step

is loaded, the instruction to the designer is shown on the interface on

top of the 3D modeling workspace (Figure 8.2-left). Once the de-

signer agrees to step through the modeling tasks (by clicking the

green checkbox to engage in that step), the system will automatically

select the appropriate tool to enable the designer to customize the

model (e.g., to place the screen of a device, the model of the screen is

dropped and can be dragged across the surface of the base imported

 DAVID LEDO, 2020 | 221

3D model). In addition to the standard panning (right click and drag)

and zooming (scroll wheel), there are three types of interactions de-

signers can perform, where the current tool or modality is determined

by the current instruction. These interactions are defined by the Au-

todesk Meshmixer interface.

Hover

Designers can hover on top of 3D models (Figure 8.3-A), which

shows the cursor as well as additional feedback (a circle projected

onto the 3D model mesh coordinates) to suggest the point one is tar-

geting.

Brush Selection

To place a button (Figure 8.3-B), the user “paints” a selection on the

surface of the 3D model. Alternatively, double clicking will select the

immediately surrounding “face” of the mesh. The system will ex-

tract that portion of the model, and extrude it upwards, creating the

model for the button.

Object Placement

Screen/Light Placement. A model of the mobile device screen is placed

atop the surface of the existing model (Figure 8.3-C), where the de-

signer can drag and drop the model of the screen around and it will

always be perpendicular to the mesh. The screen model then is trans-

lated towards the centre of the model and defines the splitting plane.

In the case of a light, the system places a small sphere that acts as an

anchor point for the light’s end-point.

Model Placement. Users are prompted to import a new 3D model (e.g.,

one which will become a light diffuser), which gets inserted into the

Figure 8.3. Interactions in the 3D

modeling environment are of three

types: (a) hovering the cursor shows

where an operation will take place; (b)

pressing down the left button and drag-
ging allows the user to paint a selec-

tion; and (c) placing an imported

model. Operations are always relative

to the surface of the 3D model mesh.

222 PINEAL: BEHAVIOUR-DRIVEN PHYSICAL PROTOTYPING

modeling environment and incorporated as part of the larger model.

The designer then can move the imported model around the original

model via drag and drop. The drag and drop operation, like the screen

placement, moves the imported model’s base always relative to the

surface of the original model.

8.4 USAGE SCENARIO: CREATING A TOY FIRE-
TRUCK

To show how a potential user might work with Pineal, I illustrate a

walkthrough of the various steps a designer takes to create a func-

tional prototype. This scenario demonstrates a prototype with some

degree of sophistication given that it uses a variety of inputs and out-

puts, and serves to highlight Pineal’s threshold (i.e., how easy it is to

get started). In particular, Pineal brings the focus of the authoring to

the trigger-action interactive behaviours. The authored behaviours

then serve as instructions to generate the appropriate form, as re-

flected in Figure 8.2. Note that the specific implementation details

Figure 8.4. Components of the complete firetruck model.

 DAVID LEDO, 2020 | 223

of how the behaviours and the form modification take place are ex-

plained after the scenario, in §8.5.

Pre-Conditions. To accomplish any prototype, designers must have:

(1) a desktop computer to work with Pineal; (2) a mobile device to

test the programmed behaviours and act as the prototype’s “soul”;

and (3) a means to realize the prototype’s “body”, such as a 3D

printer (to fabricate Pineal’s generated 3D model).

The Scenario. A designer creates an interactive firetruck toy where

pressing a button plays a siren sound and triggers two flashing lights

which are illuminated in alternating red-and-white colours. As a re-

sult, this scenario exemplifies a smart object with one physical input,

and three different outputs, which lead to a form with multiple mod-

ifications, resulting in the physical components shown in Figure 8.4.

 STEP 1: IMPORTING THE BASE FORM 3D MODEL

Prior to interacting with Pineal, the designer acquires a 3D model of

a firetruck that they wish to make interactive and imports it into Pin-

eal. This model can be downloaded from common online repositories

such as Thingiverse.com, or can be created using other tools (e.g.,

using Autodesk Fusion 360 or Meshmixer). The designer also selects

the type of mobile device that they are working with (phone or

watch), which defines the dimensions of the mobile device for future

mathematical operations.

 STEP 2: AUTHORING THE BEHAVIOUR VIA VIS-

UAL PROGRAMMING

After importing the model, the designer begins to create the behav-

iour of the device using the visual programming interface. The visual

224 PINEAL: BEHAVIOUR-DRIVEN PHYSICAL PROTOTYPING

programming components can be selected from a palette of inputs

and outputs and arranged in the central canvas within the program-

ming environment. The program flow for the Firetruck is visually

represented as a schematic in Figure 8.5. Every time the visual pro-

gram is modified, the new instructions are sent to the mobile device

live: the system adjusts what inputs to listen for, interprets them

based on the visual program, and prompts the mobile device to pro-

vide the appropriate outputs accordingly. As a result, the designer

can try out and modify the program continuously.

To create the program for the firetruck, the designer first selects the

‘Button’ input from the palette and drags it onto the canvas. Then,

they drag the ‘Sound’ output from the toolbar onto the canvas and

select a siren-sound from Pineal’s library of sounds and connect the

sound output to the button press. To create the lights, the designer

wishes to alternate between different colour patterns. The designer

drags two ‘Light’ modules, along with corresponding ‘Colour’ mod-

ules onto the canvas. The designer then specifies the lists of colours

of the two colour modules, showing different arrangements of white,

red and blue, which are set to sequence linearly. To make the lights

change colour, the designer connects the button to a timer, which

runs for 5000 milliseconds and updates every 100 milliseconds. As a

result, whenever the button is pressed, the timer starts. The timer is

then connected to the colour groups, and each colour group is con-

nected to the corresponding light. Each time the timer updates, the

next colour in the list is sent to the corresponding light. Once the se-

quences run out of colours in the list, they go back to the beginning

 DAVID LEDO, 2020 | 225

and continue pushing a new colour every 100 milliseconds until

reaching the 5000-millisecond duration.

 STEP 3: GUIDING THE MODELLING PROCESS

Once the user has defined a behavioural description of the object, Pin-

eal guides them through the process of placing the physical compo-

nents within the virtual model. The system runs through the visual

program to determine the necessary manipulations the designer can

make. While the generalized order of modelling steps is described in

§8.5.2, Figure 8.6 shows a schematic of the interplay between the

designer and the system to generate the desired 3D model for the fire-

truck prototype. Given the set of instructions, Pineal automatically

splits the firetruck into two pieces about the centre of the model, and

creates a cavity for the phone along on the bottom half. The system

also generates four alignment pins so that the two parts can be assem-

bled together later on: four posts in the top half, and four holes in the

bottom half. Pineal then instructs the user to specify the location of

Figure 8.5. Schematic of visual program to create interactive firetruck.

226 PINEAL: BEHAVIOUR-DRIVEN PHYSICAL PROTOTYPING

the two lights, which the designer does by directly clicking on the sur-

face of the 3D model within the 3D modelling workspace. Following

this, Pineal automatically creates a curved tubular path from the sur-

face of the model, through the object, terminating at the screen of the

mobile device. Each half of the mobile device will display the colour

for each light. The generated tubular path provides a channel where

the designer will insert light pipes that will redirect light from the

screen’s pixels to the desired location. Next, the designer adds the

button by selecting and painting the desired region on the surface of

the model. This selection defines the shape and location of the but-

ton. Finally, since the user will be using audio output, Pineal creates

an array of ‘speaker holes’ through the object to better allow sound to

travel out of the device.

 STEP 4: OBJECT GENERATION

Once the designer completes their walkthrough, Pineal automatically

generates the following objects that the designer can export: (1) the

top of the fire truck (with alignment pin posts, a button cavity, and

two hollowed channels for the lights); (2) the bottom of the fire truck

(with a phone cavity, holes for the speakers, and alignment pin holes);

(3) a button; and (4) a spring. The spring 3D model is automatically

Figure 8.6. Steps taken by the designer to customize the firetruck 3D model from the moment it is imported until all mod-

ifications have taken place. The figure also shows the operation that the system performs in the background.

 DAVID LEDO, 2020 | 227

generated, which can be attached to the bottom of the button to pro-

vide a more realistic button feel if desired.

 STEP 5: OBJECT ASSEMBLY

The top and bottom of the firetruck can be printed in any material,

while the button requires conductive material for the phone’s

touchscreen to detect when it is pressed (e.g., using conductive

PLA). The optional spring is printed in an elastic material (e.g., Nin-

jaFlex). The spring can wrap around the button to require activation

force so that the button triggers a contact event. After printing, the

designer can begin assembly. Assembly is relatively simple (final

pieces shown in Figure 8.4), with this example taking approximately

5 minutes to assemble. The phone is placed in the cavity, and the two

halves of the model snap together. The alignment pins, as well as

implicit affordances (e.g., overall shape) help guide the assembly.

Next, the light pipes can be inserted into the channels carved out for

them, and the button can be placed into the corresponding hole in the

back of the truck. The firetruck is now ready for use, and when the

button is pressed, it will play a siren sound and flash its lights.

8.5 IMPLEMENTATION
Pineal is comprised of a visual programming language, allowing de-

signers to author high-level behaviours using a drag and drop inter-

face. An interactive 3D modelling canvas updates as the user modifies

these high-level behaviours. When changes in the visual program-

ming language require modifications to the model, the interface dis-

plays the required actions above the modelling environment to guide

the user through the process.

228 PINEAL: BEHAVIOUR-DRIVEN PHYSICAL PROTOTYPING

 SYSTEM OVERVIEW

Software Components. The Pineal system (Figure 8.7) includes a

smartwatch, smartphone and desktop PC, each running custom soft-

ware. Currently, only the Google Nexus 5 phone and a Samsung Gear

Live smartwatch are fully supported and both run a custom applica-

tion implemented in Java for Android (SDK 23), as they were the de-

velopment devices available. The smartphone application connects

to a NodeJS relay server on the desktop PC, which in turn connects

to the Pineal C# (WPF) desktop application featuring the visual pro-

gramming and modelling environments. This C# application con-

nects to an instance of Autodesk Meshmixer, using the Meshmixer

API3. This API allows Pineal to perform all the necessary automated

modelling steps.

3 https://github.com/Meshmixer/mm-api – last accessed July, 2020

Figure 8.7. System architecture of Pineal, showing connections between smart

phone, watch, NodeJS Server, C# client and Meshmixer

https://github.com/meshmixer/mm-api

 DAVID LEDO, 2020 | 229

To realize the implementation of the watch application, a worka-

round needed to be devised. Given that this particular watch (the

Samsung Gear Live) does not feature WiFi connectivity, the only way

to communicate between the watch and the desktop is by first reach-

ing the mobile phone via Bluetooth.

Deciding How to Deal with Inputs and Outputs. The application

running on the mobile devices streams all sensor data to the C# desk-

top application, where the data is processed. The desktop application

takes charge of interpreting when inputs from the mobile device took

place by looking at the current input modules on the visual program.

For example, if a shake module is added, the system checks the accel-

erometer data in real time, and triggers an event when a significant

change in accelerometer data is detected. When input events take

place, the application runs through all the visual programming path-

ways created that are connected to that input. If any output action is

to be taken as dictated by the visual program (e.g., play a sound, dis-

play an image), the C# application sends a message back to the mobile

device indicating what action is to be taken. This constant streaming

of data through the central C# application via the relay server allows

for live debugging and interactive re-programming of the smart ob-

ject. As a result, the designer can test the program as they write it

without the need to compile the code.

Making the 3D Modeling Environment Part of the Application. Pin-

eal does not actually have a native 3D modelling environment. In-

stead, it borrows an instance of Meshmixer on the desktop to create

an interactive experience. Pineal leverages WPF’s ability to work

with transparency within the operating system, which means that

Figure 8.8. Visual description of win-

dow transparency: the 3D modeling en-

vironment in Pineal is an instance of

Meshmixer that sits behind the Pineal
window.

230 PINEAL: BEHAVIOUR-DRIVEN PHYSICAL PROTOTYPING

gaps in the application’s interface (i.e., the holes) can be clicked-

through and click events go to other windows behind Pineal’s inter-

face. As a result, one can click through the window’s hole and interact

directly with the Meshmixer interface, as shown in Figure 8.8. Thus,

the interaction with Meshmixer takes place in two ways. First, the

system leverages the API to send instructions to Meshmixer so that

it can modify its 3D models. Second, users can interact with the 3D

modeling environment (e.g., pan and zoom), as well as manipulate

the model itself once Pineal sends the model manipulation instruc-

tions through the API (e.g., placing the LED lights, adding a screen,

painting the button).

 AUTOMATED MODEL CONFIGURATION

Pineal steps the user through different actions that modify the 3D

model to fit the mobile device and any new modifications (e.g., but-

tons). The types of operation vary depending on the authored behav-

iours, and are summarized visually in Figure 8.9. To generate the

forms, the system relies on applying a series of Boolean operations4

that get applied to the user-imported base-model (e.g., the firetruck).

This process is not fully automated, as the user has the flexibility to

provide input for locating the inputs or outputs.

Defining the Mobile Device Screen Position on the Form and

Placing the Mobile Device

By default, the device is placed in the centre of the 3D model. Images,

text, and light diffuser modules require the display to be exposed, and

4 Boolean operations are a set of instructions to combine two polygons into a new shape.

One can add two shapes together (union), subtract them, or intersect them.

 DAVID LEDO, 2020 | 231

thus are configured by the user in the modelling workspace. As shown

in Figure 8.9-A, once the user places the screen on the model, the de-

vice model is moved 2 cm towards the centre of the base model. This

distance is the result of tests I conducted with multiple 3D prints to en-

sure that the screen is visible while still being securely fastened within

the object. If there are no instructions to place the screen in a custom

position, the system places the device model inside the base 3D model’s

centre, facing upwards and parallel to the ground. The top surface of the

device model acts as a cutting plane. The system then cuts a plane on

Figure 8.9. Operations performed by Pineal on the 3D models include: (A) Positioning the screens; (B) Carving out the

screen and placing alignment pins; (C) Speaker and other sensor holes; (D) Buttons; (E) Simulated LED lights through light

pipes and (F) Light Diffuser.

232 PINEAL: BEHAVIOUR-DRIVEN PHYSICAL PROTOTYPING

the base model, creating two pieces: top and bottom. The device model

is subtracted from the bottom piece of the cut to create a cavity.

Screen Cavity and Alignment Pins

As shown on Figure 8.9-B, Pineal can create openings on the device,

as well as alignment pins. This is done through Boolean operations

between the base model and new models (invisible to the user) gen-

erated at runtime: 30 x 30 x 50 mm for the watch screen (measure-

ments that fit most smartwatches without a strap), 0.9 x 0.9 x 11 mm

for the alignment pins. The system aligns the watch screen carving

object with the screen centre of the device model, and then subtracts

it from the top piece of the base model.

Alignment pins work in a similar fashion. Each alignment pin is du-

plicated to create one post and one hole for each alignment point. The

hole is scaled by a factor of 1.1 in every dimension for clearance, so

that the new printed object will fit together. Finally, the alignment

objects are centered on the division plane in different locations with

respect to the mobile device model (3 mm from the edges of the de-

vice cavity). The system performs a Boolean union between the top

model and the posts, and a Boolean subtract between the bottom

model and the holes. The number of alignment pins can be changed

programmatically within Pineal’s code from 4 up to 8. However, 4

seemed to be enough for generating stable attachments. The pins are

placed parallel to each edge about the centre of the segment, and to

place more than 4 the new pins are placed about the top and bottom

of the edges.

 DAVID LEDO, 2020 | 233

Speaker and Sensor Holes

In the same way that Pineal supports alignment pins and screen carv-

ings, it also supports carvings for other sensors (Figure 8.9-C). Cur-

rently supported configurations include speakers and camera, but one

can also imagine creating holes for the microphone, volume buttons,

etc. which can be easily integrated into the current system. In the cur-

rent implementation, the phone volume description includes a set of

tags that define the relative size and position of the camera and speak-

ers. Indeed, for these holes to be generalized one would need to tag the

models for mobile devices to define where the sensors are (if applica-

ble). This can be done with built-in functionality of Meshmixer, by

adding and naming pivot points by hand onto a device model.

Button Creation

Pineal can accommodate modifiers that transduce or reroute input

(defined in Chapter 6 §6.4), such as buttons, as shown in Figure 8.9-

D. To place a button, the user paints a brush selection in a region

above the display location (since it requires capacitive input). This

selection is smoothed by the system and then is extracted as a flat,

separate object. This object is then extended downward to meet the

screen, and is duplicated. The duplicate is subtracted from the top

piece of the base model, while the original, now the new button, is

rescaled by a factor of 0.9 for clearance. The system finds the centroid

for the button face touching the screen, and adds a 7.5 x 7.5 x 5 mm

cylinder. The button model can then be printed using a conductive

material (in our case 1.75 mm Proto Pasta PLA). The conductive

PLA is a reliable trigger when contacting with human skin. To create

restoring force, Pineal creates an optional spring model to be printed

Figure 8.10. Example of the optional

spring around the button as done in the

Firetruck prototype. The spring is soft

and elastic and requires the user to ap-

ply an activation force for the button to
make contact with the mobile device

screen.

234 PINEAL: BEHAVIOUR-DRIVEN PHYSICAL PROTOTYPING

with a flexible material such as Thermoplaster Elastomer (in our case,

NinjaFlex). The spring model wraps around the button’s cylinder, as

shown in Figure 8.10.

LEDs Simulated with Light Pipes

Another modifier is achieved using light pipes (fiber optic cables).

The current prototypes use 1.5 mm diameter fiber optic cables from

Industrial Fiber Optics. From different trials conducted, I found

these to have the best light transfer and variety of available thick-

nesses as many cables can be bundled together. The light transfer is

dependent on the screen brightness, with newer and higher-end

phone models emitting much brighter lights. While the light pipes are

only 1.5 mm wide, the system generates 5 mm tubes, so that the user

can fit multiple cables within one opening.

To add the lights, the user selects a location on the model, as shown in

Figure 8.9-E. The Meshmixer client then creates a tube from that loca-

tion to a screen coordinate of the mobile device. The system attempts to

have the lights distant from each other to avoid the tubular cavities from

crossing each other. To achieve this, the system will favour the corners

of the screen. The mobile application then subdivides the screen into the

number of lights placed, as determined by the program logic. For exam-

ple, if two lights are placed, the screen will be divided in half. Each region

of the mobile device will change colour as defined in the visual program-

ming instructions.

Diffusers

As shown in Figure 8.9-F, a user can import models to create custom

shaped ambient lights that are illuminated by the mobile device’s screen.

These ambient light models attach on top of the base model that have

 DAVID LEDO, 2020 | 235

already been cut by the system. The user can import a new model and

place it on the base model within the 3D modelling workspace. The sys-

tem then creates an opening so that the mobile device light can shine

through it. The light structure model is hollowed to a depth of 1 mm, and

then printed using clear material (in our case MakerBot Natural PLA).

 RAW SENSOR VIEW

To aid in the debugging and understanding of the constructed smart

objects, Pineal includes an interface which displays raw sensor values

that are live-streaming from the mobile device (Figure 8.11). Cur-

rently, Pineal provides raw views to acceleration, orientation and

touch input data.

8.6 RESULTING PROTOTYPES
To illustrate the breadth of use-cases and functionality supported

with Pineal, I built five prototype objects. These sample objects are

shown in Figure 8.12. The selection of these prototypes show differ-

ent levels of complexity and functionality, while also covering differ-

ent aspects of the design space of the Soul-Body Prototyping Para-

Figure 8.11. Live accelerometer data from the mobile device as visualized by Pin-

eal. The visualization plots the raw X, Y and Z values.

236 PINEAL: BEHAVIOUR-DRIVEN PHYSICAL PROTOTYPING

digm, as illustrated in Table 8.1. As a result, the prototypes demon-

strate Pineal’s expressiveness by collectively covering a variety of in-

puts and outputs, and even web-based connectivity through novel

and replicated examples.

 TOY FIRE TRUCK

The sample walkthrough, described earlier, describes the workflow

used to create the toy fire truck (Figure 8.12-A), which lights up and

plays a sound when a tactile button is pressed. The firetruck is an ex-

ample of using the mobile device to enable visual and audio output. It

is also an example of transducing input – translating the phone's ca-

pacitive sensing into a physical button that provides tactile feedback

when pressed.

 MAGIC 8 BALL

A Magic 8 Ball (Figure 8.12-B) is a ball with a display that reveals a

random answer to a question when shaken. To construct this smart

object, a designer first creates a model of a sphere and loads it into

Pineal, which will adapt the model to a smartwatch. Once the sphere

model is loaded, the designer uses the visual programming language

to create a module to sense when the object is shaken, and sets an

Figure 8.12. Sample of smart interactive objects created with Pineal, which includes: (A) Toy Firetruck; (B) Magic 8 Ball;

(C) Level; (D) Ambient Light Planter; and (E) Voice-Activated Light Bulb

 DAVID LEDO, 2020 | 237

output to display one of the following strings randomly: ‘yes; ‘no’;

‘maybe’; ‘try again’; ‘never’. The modeling steps can then be carried

out, in this case consisting of specifying the location for the display

and then clicking ‘generate model’. The model is automatically generated

and can be exported for printing. The print creates two halves, with

alignment pins, that house the watch. When the ball is shaken, a new

response appears on screen. After testing the device, the designer can

add a new response by editing the text field within the output module to

include ‘wrong question’. The logic updates in real-time. This example

shows the use of discrete motion input triggers and visual output.

 LEVEL

A level (Figure 8.12-C) provides visual feedback to indicate when a

surface is parallel with the ground. Currently there are existing mo-

bile apps to simulate the functionality of a level, however, the form

factor of a phone is not well-suited to being used as a level as it will

easily fall over. To create a level in Pineal, a designer imports a model

for a level, to which they add the smartwatch. The visual program-

ming interface is used to map the horizontal location of a bubble im-

age to be proportional to the watch’s sensed orientation. The de-

signer can then select the location of the screen on the model and ex-

port it for printing. This prototype demonstrates how Pineal is able

to create linear mappings between inputs and outputs, and shows

how motion-based input and visual image-based output can be used.

 AMBIENT DISPLAY PLANTER

An ambient display (Figure 8.12-D) changes its colour in response to

data – in this case, live Twitter data. To develop an ambient display

238 PINEAL: BEHAVIOUR-DRIVEN PHYSICAL PROTOTYPING

with Pineal, the designer first imports a base model (a rounded box).

They can then use the visual programming language to follow the

Twitter hashtag #CHI2017. They add a diffuser module and import

another model for the light diffuser, a Bulbasaur planter. Finally, they

add a colour group module and populate it with a list of colours, con-

nect the Twitter module to the colour group module, and connect the

colour group module to the diffuser module. Each time a new tweet

is detected, the light scrolls through to the next colour from the list,

thus actively changing colour. This means that if there are many col-

our changes happening in a short amount of time, there is a high

amount of activity online. Pineal also supports other live web data

sources such as weather information. This ambient planter replicates

an existing commercial product, the Ambient Orb5.

 VOICE-ACTIVATED LIGHT-BULB

A voice controlled light bulb (Figure 8.12-E) could add ambience to

a room, allowing the user to change the colour of the light by speaking

to it. To create a smart lightbulb that responds to voice commands,

the designer creates different speech modules with different words:

“off”, “yellow”, “blue”, “red”, “white”, “green”. Each of these is

respectively mapped to a different colour group containing an indi-

vidual item: black, yellow, blue, red, white, and green. All of these

colour groups attach to the light diffuser module. Now, each time a

word is recognized, Pineal will send the appropriate colour to the

light command, to which the phone will respond by changing the

screen’s colour. The designer then modifies the model by importing

5 https://ambientdevices.myshopify.com/products/stock-orb – Accessed July, 2020.

https://ambientdevices.myshopify.com/products/stock-orb

 DAVID LEDO, 2020 | 239

a lightbulb model and placing it on top of a round base model which

houses the phone.

8.7 DISCUSSION
The purpose of Pineal was to operationalize Soul–Body Prototyping.

Consequently, the focus of the research was to explore the concep-

tual components of the system and implement them in a way such

Table 8.1. Soul–Body Prototyping design space as fulfilled by Pineal. High-

lighted areas in green show which dimensions of the design space were explored

by each prototype.

240 PINEAL: BEHAVIOUR-DRIVEN PHYSICAL PROTOTYPING

that the functionality supported the concepts. Given the technical

complexities present in the system, there are limitations which I will

discuss next. Despite such limitations, Pineal plays an important role

in prototyping by allowing designers to focus on the interactive be-

haviours, and also having a corresponding physical form as part of the

prototype. Moreover, the lessons from the architecture implementa-

tion served to inform my next prototyping tool, Astral, which is de-

scribed in the next chapter. In fact, I found that even after Pineal’s

completion, I still turned to it to generate forms for future systems,

including Astral and early versions of WatchPen. I describe the limi-

tations (§8.7.1) and discuss ways in which they can be addressed, or

the potential compromise should the approach need adjusting. This

leads to broader reflections on Pineal’s role as a prototyping tool, its

fit to current practices, and some of the decisions behind the ap-

proach (§8.7.2).

 LIMITATIONS

There are two key types of limitations pertaining to Pineal. One is the

limitations of the concepts and approaches taken when creating Pin-

eal, and the other refers to the more technical implementation details.

Conceptual Limitations

Pineal’s conceptual limitations refer to the reflection on what Pineal

as a tool can and cannot do given how it was designed and what its

purposes were. These result from aspects such as how the visual pro-

gramming environment was realized, the lack of error checking, as-

sumptions about the 3D modeling approach and scale in terms of the

knowledge Pineal needs about 3D modeling geometries, as well as the

variability among many mobile devices.

 DAVID LEDO, 2020 | 241

Creating a Generic Visual Programming Approach that can Inform

Form Generation. The visual programming language was the result

of a three-step process. First, I ideated and generated sketches of po-

tential prototypes using different types of sensors and outputs, and

incorporated ideas and suggestions from collaborators. Next, we se-

lected and prioritized a representative sample of the sketches that

could explore a significant part of the Soul–Body Prototyping design

space. Finally, I implemented the components for the visual pro-

gramming as I generated the prototypes, making sure that: (1) the

previous prototypes still functioned, and (2) that it would be possible

to achieve variations within the prototypes.

The incremental approach when developing a toolkit is beneficial in

that it ensures recombination of building blocks still works. For ex-

ample, the Magic 8 Ball prototype was the first prototype developed

and thus the shake and text modules were the first and only building

blocks. When first designing and testing the colour module, I tested

the system using the shake module to change colours of the screen

whenever the phone was shaken. I then scaled the system so that it

integrated speech recognition for the Voice-Activated lightbulb. At

this point, I was able to test different combinations of shake and

speech inputs to display colours or text. This process continued for

each new prototype and set of modules that were being created. As a

result, the system is capable of generating the prototypes presented

in §8.6, as well as crossed variations resulting from manipulating the

different building blocks. That said, the visual programming environ-

ment was a means to explore the concept rather than a fully fledged

implementation. While it is possible to realize the prototypes shown

in this chapter, as well as variations, there is no guarantee that more

242 PINEAL: BEHAVIOUR-DRIVEN PHYSICAL PROTOTYPING

complex programs or specific variations will all function. Thus, what

is possible is not exhaustive and is directly tied to the current example

prototypes.

Focus on Trigger-Action Behaviours. Visual programming is limited

in terms of the behaviours that it can create. Pineal’s design was in-

spired by other trigger-action systems, such as IFTTT6, which led to

the expectation that following a standardized approach would cover

a large range of interactive behaviours. As I created more of the pro-

totypes, I realized some of the limitations of trigger-action behav-

iours, which led to the creation of the Mapping Modules to facilitate

more continuous actions and responses. In particular, I became at-

tuned to how different commercial applications or even games cre-

ated rich experiences through nuanced behaviours. As a result, these

lessons shed light on the opportunities for nuanced behaviours result-

ing from looking at the continuous data provided by multiple sensors.

This led to further investigation of the meaning of interactive behav-

iour, and what is currently possible with authoring tools, which seem

to be simplifying interaction design to such an extreme degree that

flexibility has been compromised in favour of high standardization.

When interfaces become highly standardized, there is less room for

error, as there is more likelihood that the end-result will match the

requirements. However, it becomes difficult to create something

new, which again creates a need for specialization to allow the de-

signer to work at a lower level and break the pattern of standardiza-

tion. This is why there is a need for many prototyping tools that can

6 https://ifttt.com/ – accessed January 2020

https://ifttt.com/

 DAVID LEDO, 2020 | 243

fit different ways of thinking, and support a variety (of sometimes

overlapping) results. These reflections became integral points in the

development of this dissertation, both for future systems and in fur-

ther devising the theoretical foundations.

Lack of Error Checking. Because Pineal communicates with Mesh-

mixer via its API, Pineal has no awareness of the geometry of the 3D

model. Therefore, it will try and perform all operations (i.e., send

mesh operations as commands) even if the model is unfit or will not

work (e.g., it is too small to fit a mobile device). As a result, there is

no way to know if the designer has chosen an appropriate model for

the task. Furthermore, while the visual programming is a way to en-

sure the automation to modify the 3D model is done in an appropriate

order, it does not guarantee that the end-result will work. Conse-

quently, more complex models that leverage more than one place-

ment operation (e.g., LED lights, exposing the display, adding a light

diffuser) will likely not work, as it would lead to conflict (e.g., reset-

ting the splitting plane once a new instruction comes in). This limits

the ceiling of the prototyping created with Pineal, but it also means

that Pineal is not the appropriate tool for higher levels of complexity.

There is also no error checking for the visual programming, so noth-

ing prevents a designer from erroneously linking two outputs to-

gether (something that should not be possible). Checking for errone-

ous inputs, or issues in geometries, is important should the system

move on to a sturdier implementation as a product, but does not af-

fect Pineal’s concept as a whole. That said, a potential avenue for fu-

ture work is to explore ways for designers to better see the effects of

their actions. For example, one could have an augmented reality

244 PINEAL: BEHAVIOUR-DRIVEN PHYSICAL PROTOTYPING

model visible from a mobile phone camera or head mounted display

that shows a preview of what a particular visual programming step

will do, how a mobile device might fit inside the model, as well as the

effect of an input before the model is officially printed.

Geometry assumptions. It is important to note that Pineal makes im-

plicit assumptions about the underlying 3D models. For example,

Pineal assumes a 3D model is complete, meaning that there are no

gaps, or self-intersecting triangles in the meshes. This can pose a

problem when an object is for example, 3D scanned, and it will man-

ifest itself in any 3D CAD environment. Next, it is important to dis-

tinguish the construction of the mesh in the 3D model. Meshmixer is

also optimized for manipulating meshes via actions such as sculpting,

addition, and subtraction of multiple 3D geometries, which is differ-

ent from precise parametric design used to create professional indus-

trial design models. The models that are best suited for Meshmixer

should have a large number of triangles which are as evenly distrib-

uted as possible. This goes against the paradigm followed by many

tools that favour optimization (e.g., Fusion 360 or OpenSCAD), as

they optimize for the fewest triangles possible, and thus do not dis-

tribute the triangles evenly.

When the meshes have few triangles and uneven distribution, mesh

operations tend to fail. Meshmixer provides tools to solve this prob-

lem through operations that redistribute the triangles and increases

the triangle density of a mesh. However, there is no simple way of

telling what kind of mesh a 3D model has when browsing online, and

thus the designer often would have to check and fix these models

 DAVID LEDO, 2020 | 245

ahead of time. Meshmixer also provides additional features to opti-

mize mesh operations, such as “generating face groups”, which looks

at the overall collection of triangles and defines where the faces of the

object are. As a result, having a good understanding of 3D modeling

and of a tool like Meshmixer greatly improves the likelihood of work-

ing with acceptable 3D models. In discussions with an industrial de-

signer colleague, we discovered that the best suited models for Pineal

are often those generated by tools that favour sculpting approaches,

such as Cinema4D, ZBrush, Blender, or Maya. This is because

sculpting-based tools have even distribution of many triangles as op-

posed to trying to optimize for the fewest possible triangles and per-

fect parametric design. These sculpting tools, however, are more tai-

lored for character design for animation, where the aesthetic aspects

come before the precise measurements of an object and their scalabil-

ity. As a result, designers who want full customization and control

when using Pineal need to understand how 3D models work and how

different tools generate them. This level of understanding is not the

same as becoming an expert with the tools like, say, an industrial de-

signer. However, a lot of this understanding is required if one wishes

to engage in activities such as 3D printing. If this becomes a deterrent,

3D printing may not necessarily be the best prototyping approach for

a novice.

Pre-annotating mobile device models. The current implementation

only has two models for mobile devices: a phone and a watch corre-

sponding to the models used in the implementation. For these mod-

els, while they feature a simple geometry, the models needed to be

annotated in Meshmixer to define the boundaries of the screen, as

well as locations of the speakers, cameras, etc. Some of these aspects

246 PINEAL: BEHAVIOUR-DRIVEN PHYSICAL PROTOTYPING

can be automated to some degree (e.g., one might define the screen

as being a rectangle centered on one of the faces of the prism). To

reduce the need for annotating models, one could generate a set of

models that either (1) cover a wide range of possible devices that

share similar geometries; or (2) that designers can then modify to

generate new ones. Alternatively, Pineal could register the dimen-

sions of a mobile device, and ask about the locations of specific parts

(e.g., volume buttons) as a step-by-step wizard, thus allowing the

specification of mobile device models.

Mobile Device Variance and Limitations. Depending on the mobile

device being used, the hardware limits the types of prototypes that

are possible. For instance, the smart watch does not have rich audio

output abilities, so designing a very small prototype that plays sounds

would not work. This limitation will be addressed as devices gain

richer capabilities and more devices are added to the system. Next,

for very complex prototypes, not all desired functionality may be sat-

isfied with a single device. For instance, if an object requires an LCD

display on the top as well as the side, a second device would need to

be added. This is not currently supported in the system but could

make for future work exploring how to create more complex smart

objects with multiple mobile devices.

Technical Limitations

Technical limitations refer to Pineal’s specific implementation de-

tails, either in terms of what is and is not possible to build, as well as

lessons learned later for future implementations.

Architecture Limitations. Looking back, one problem with Pineal’s

architecture was the constant “daisy chaining” of technologies. First,

 DAVID LEDO, 2020 | 247

the smartwatch used in Pineal was limited in that it did not have wire-

less internet capabilities. This meant that the only way for the smart-

watch application to run was to have the Bluetooth-paired mobile

phone also running the application. Thus, communication with the

PC client from the watch would have to first make it to the phone and

then to the relay server before it could reach the PC client. The relay

server using NodeJS did not pose any major challenges at the time. In

fact, the relay server from an architectural point of view, simplified

much of the development. Given that there was more than one pro-

gramming language involved in Pineal the relay server simplified the

process since: (1) socket.io libraries are available for many platforms;

and (2) the relay server creates a distributed model-view-controller

pattern, where the developer only worries about creating clients that

share specific information. However, the disadvantage is that having

a relay server creates an additional step when it comes to data transfer

such as sensor data from the phone, as it effectively doubles any de-

lay. The data first has to go through the relay server, which then goes

to the destination, as opposed to clients communicating directly.

This was an issue when working with more continuous and complex

values in the following explorations such as in Astral, discussed in the

next chapter, where I needed to transfer data such as live desktop

screen captures. The next generation of implementations I created

improved on the lessons from Pineal by: (1) using a WiFi-enabled

watch; (2) working with the same programming language whenever

possible (C# Xamarin and WPF); and (3) reducing the number of

connections, and while working at lower levels to achieve higher effi-

ciency (e.g., traversing arrays, such as images with pointers).

248 PINEAL: BEHAVIOUR-DRIVEN PHYSICAL PROTOTYPING

Flexibility vs. Simplicity. Pineal’s implementation remains close to

the Soul–Body Prototyping paradigm. As a result, one can only rely

on mobile sensors and outputs. This means that more complex func-

tions such as actuation or physical movement are not possible. Simi-

larly, there are constraints from the prototyping materials them-

selves. For example, while it is possible to reroute touch points

through conductive material, the material has to be conductive

enough to work. In the case of the firetruck prototype, the conductive

PLA print had to be of high density and it is likely that longer paths

of rerouting would not work as reliably. One possibility for future

work is to have custom electronics work in tandem with Soul–Body

Prototyping. For example, .NET Gadgeteer or other microcontrol-

lers could be integrated. However, the compromise is that the proto-

types no longer become self-contained within the mobile device. The

consequence is added complexity both in terms of implementation as

well as in terms of designer’s assembly in a “plug and play” manner,

as they would need to ensure multiple components are plugged in and

running.

 PINEAL, DESIGNERS AND PROTOTYPING

Reflecting on Pineal as a prototyping tool leads to many thoughts

about the role of what designers would need so they can adopt a tool

like Pineal; to what extent Pineal’s prototyping is rapid; how perma-

nent the resulting prototypes from Pineal should be; and to what ex-

tent tools should automate design processes.

 DAVID LEDO, 2020 | 249

Pineal, Expertise and Current Practices

Although Pineal simplifies the process of programming and form giv-

ing, now designers need to have more understanding of the underly-

ing 3D models they are working with and the added constraints. Uti-

lizing a tool like Pineal proposes a shift in mindset. First, Pineal forces

designers to think about behaviours first, as the behaviours dictate

what the form modifications will be. Thus, the only way to think

about form first is to have a concrete idea in mind of what input or

output is needed, and then create the behaviour for that particular

feature. One could argue that the input and output modules, such as

the button or the text display, are already suggesting that the designer

has a vision for the form. Still, it is different from an approach where

the designer physically sculpts a form while programming interactive

behaviours, where they can circulate back and forth much more

freely. Should one remove the constraint of behaviours-first, how-

ever, automation would no longer be possible.

Is Automation Good?

Pineal performs some degree of automation when it comes to creating

new physical forms. Computer science often values problem solving

by generating a wide variety of alternatives through automatic gener-

ation. Generative design is an example of an extreme case. As de-

scribed by Chakrabarti et al. (2011), generative design argues that

computer scientists can create a grammar that “computationally en-

code[s] knowledge about creating designs… which can be used to rapidly

generate design alternatives” (pp. 021003-2). Anderson et al. (2018)

argue that systems as a result can generate “a greater number of designs

to be evaluated, and can enable the creation of designs that could not be

250 PINEAL: BEHAVIOUR-DRIVEN PHYSICAL PROTOTYPING

possible by humans alone” (pp. 3). Indeed, technology can look at cer-

tain constraints to create solutions that would be difficult for a human

to generate, and even remove repetitive steps. For example, consider

an example of divergent generative design by Matejka et al. (2018),

where the goal of generating a monitor stand led to 16,800 alterna-

tives, which then were filtered to produce a set of 1,242 designs. Ul-

timately, choosing a particular solution is up to a person. Perhaps

those 1,242 designs may not fit some of the qualities that person is

looking for. There is no question about the value of generative design,

nor a system’s ability to generate solutions people cannot achieve eas-

ily (e.g., looking at specific and technical constraints). Yet, this means

that: (1) the systems that are automatically generating solutions for

people require heavy engineering to ensure robust solutions; (2)

there is a need for a human-in-the-loop to ensure the solutions reflect

the intention and process of the designer; and (3) in the case of any

blind spots in the generated solutions, the human needs to be savvy

enough to be able to solve it.

It is important to note that there can be a trade-off between automa-

tion and an individual’s agency. On the one hand, having a system

take care of the process can take away steps that are tedious, difficult

or time consuming. On the other hand, systems should still enable

users to craft where needed. With Pineal, it is possible to spend time

crafting a form before it is imported into the system. The automation

process takes away a lot of time-consuming steps, such as the creation

of cavities for the mobile device, or creating alignment pins when

models are split into two. However, if the designer wants to carefully

refine the model to fit a particular aesthetic, or they wish to fine-tune

 DAVID LEDO, 2020 | 251

interactive behaviours to perform a particular animation, the automa-

tion might get in the way. In that sense. it is important to identify Pin-

eal as creating prototypes that can resemble final products, but by no

means has the refinement or sophistication of a final product. This is

where it is important to have techniques or other systems that can be

used in tandem to continue evolving the prototype.

How Rapid is Pineal’s Rapid Prototyping?

One term that often remains vague when discussing prototyping is

how ‘rapid’ is rapid prototyping. It is possible to claim that Pineal

indeed reduces the programming threshold by providing simple

building blocks through its visual programming, and that Pineal in-

deed takes away the complexity of circuit building, or thinking about

the form generation itself. This by default reduces the time dedicated

to create functional prototypes. That said, the 3D printing process

still requires some technical skill in operating a 3D printer, as well as

assembling components. In addition, the 3D printing can take hours.

For example, each half of the firetruck took 18 hours to print, which

meant waiting overnight to see if the prototype fully worked. While

this idle time might be considerably lower than creating a form from

scratch, it is a time constraint that needs to be taken into account. In

such cases there are two key elements to keep in mind. First, design-

ers can use the idle time to work on another prototype or design ac-

tivity altogether, so they are not completely stopped in the process.

Second, the behaviours authored are immediately live on the mobile

device. Thus, it is possible to have a reasonable idea of what the pro-

totype will behave like, and one can use the 3D modeling environ-

ment preview to see what it will look like, so the assembly step at the

252 PINEAL: BEHAVIOUR-DRIVEN PHYSICAL PROTOTYPING

end could be mostly a reality check. That said, if for some reason the

3D print is not successful or the model does not look or work as ex-

pected, it can be disappointing. This is simply a reality of these types

of fabrication processes.

How Long Should Pineal Prototypes Live?

While the primary purpose of Pineal is to enable designers to rapidly

prototype and iterate on ideas, it is possible that the created objects

are of high-enough fidelity and resolution to serve as a permanent,

functioning object. For instance, the Magic 8 Ball is of sufficient qual-

ity that it could be used as a customized novelty object for a child’s

birthday party, for instance. Future work is needed to explore what

requirements vary when designing a ‘body’ that is intended to perma-

nently house a mobile device (e.g., considerations for charging cables

or external batteries). That way, Pineal may encourage reuse and re-

purposing of old mobile devices to create new interesting objects.

Generality

Finding an audience today that operates with both smart object form

design, as well as the design of interactions is difficult given how spe-

cialized these fields are. Perhaps industrial designers and makers to-

day could directly benefit from a tool like Pineal, but the reality is that

these are not common tasks they perform today. What remains be-

yond Pineal is the set of ideas that will go forward and inform the fu-

ture of design tools, which can eventually help construct a new set of

practices for designers. In the current implementation, the interac-

tive prototypes along with the usage scenario evaluate Pineal’s ex-

pressiveness in terms of the range of smart objects created (along

 DAVID LEDO, 2020 | 253

with their possible variations), as well as its coverage of the design

space of Soul–Body Prototyping.

8.8 CONCLUSION
Smart objects are ubiquitous, yet their design and prototyping re-

quires substantial effort and knowledge in programming, circuit

building, and form-giving. Current mobile devices, such as smart

watches and phones, possess a range of input and output capabilities

that can be leveraged to prototype interactive devices. With Pineal,

designers are able to rapidly prototype smart objects and modify both

their form and function without substantial technical skills. Pineal

uses the authored behaviours as means for automation to create new

3D models that fit Soul–Body Prototyping. The example prototype

smart objects demonstrate a wide variety and use-cases that are ena-

bled by this approach. Pineal can help designers overcome a large de-

gree of designers’ challenges of needing multiple expertise, lacking

the necessary prototyping tools and needing close to product repre-

sentations when prototyping. In realizing Pineal, it became possible

to create interesting physical prototypes that could be held and

tested. However, it also led to the discovery that interactive behav-

iour design could be much more than trigger-action behaviours, lead-

ing to the design and development of Astral.

 ASTRAL: BEHAVIOUR

PROTOTYPING VIA FAMILIAR TOOLS

“Our hands feel things, and our hands manipulate things. Why aim for

anything less than a dynamic medium that we can see, feel, and ma-

nipulate?”– Bret Victor

Recall my thesis statement: we can repurpose existing hardware (mobile

phones and watches) and software to enable designers to create live inter-

active prototypes for smart interactive objects.

Thus far, I have shown in Chapter 6 how to repurpose mobile devices

to prototype smart interactive objects, and in Chapter 8, I explored

one way in which designers can repurpose a 3D modeling tool to gen-

erate forms to realize the Soul-Body Prototyping design metaphor.

The next step is to author interactive behaviours. As described in

Chapter 6, this is challenging. Today’s design tools are modeled after

the desktop-computer paradigm and thus are limited to click-based

transitions (e.g., tapping a button shows the next screen on a web-

site). Even prototyping tools for mobile devices are still following the

256 ASTRAL: BEHAVIOUR PROTOTYPING VIA FAMILIAR TOOLS

trend of desktop-based design in spite of the added input and output

possibilities. Yet, interactive behaviours are more varied and nu-

anced, as people perform actions beyond tapping (e.g., using fingers

to pinch, flick or swipe, or tilting the device altogether). To transition

beyond the current limitation of design tools, systems require more

fine-grained real-time feedback that responds to the increasing rich-

ness of inputs. Doing so, people can better understand the effects of

their actions and the system appears responsive and alive, as well as

designed with care. To address the described challenge, this chapter

presents Astral1, a prototyping tool that allows interaction designers

to author live interactive behaviours for mobile devices and smart in-

teractive objects by repurposing existing and familiar desktop appli-

cations. Astral explores interactive behaviour generally for mobile de-

vices, and it looks to support the interactive behaviour descriptions

and design practices from Chapters 3 and 4. However, within it, As-

tral also accommodates for smart object prototyping through Soul–

Body Prototyping. More specifically, this chapter addresses the third

research question posed in Chapter 1:

RQ3. How might designers leverage existing familiar soft-

ware tools to author interactive behaviours for smart interac-

tive objects?

1 Portions of this chapter have been published in:

Ledo, D., Vermeulen, J., Carpendale, S., Greenberg, S., Oehlberg, L., & Boring,

S. (2019). Astral: Prototyping Mobile and Smart Object Interactive Behaviours

Using Familiar Applications. Proceedings of the 2019 on Designing Interactive Sys-
tems Conference, 711–724. doi: 10.1145/3322276.3322329

Video figure: http://davidledo.com/projects/project.html?astral

https://doi.org/10.1145/3322276.3322329
http://davidledo.com/projects/project.html?astral

 DAVID LEDO, 2020 | 257

To have a general understanding of Astral and its benefits, I first pre-

sent a brief overview of the system (§9.1), and contextualize the re-

search contributions within the related work (§9.2). The technical

details which break down the interface and the rule system are pre-

sented next (§9.3). These interface elements are then brought to-

gether in a usage scenario which demonstrates an example of what

can be created with Astral (§9.4). The scenario particularly highlights

Astral’s threshold and to some extent its ceiling, while also illustrat-

ing the nuances of how a designer might bring an interactive proto-

type to life. I further build on what is possible with Astral by showing

how it can integrate and extend common prototyping activities (§9.5)

such as the ones outlined in Chapter 4 (§4.4.1). In these scenarios,

Astral converts the end-results of these prototyping activities into in-

teractive prototypes working in the target device itself, such as a

phone, a watch or a physical prototype that follows Soul–Body Pro-

totyping. Finally, I delve into the low-level implementation details of

the system (§9.6) before providing a larger discussion (§9.7).

9.1 ASTRAL
Astral is a prototyping tool for authoring interactive behaviours on

mobile devices by repurposing existing desktop applications. The

premise behind reusing desktop applications when interaction design

has gone beyond the WIMP (Windows, Icons, Menus and Pointers)

paradigm might seem odd, yet the rationale is two-fold. First, desktop

applications have the power and flexibility to author many aspects of

interactive behaviour design (e.g., animations). Second, designers are

familiar with existing desktop applications both as authors and users,

where they can leverage tools such as web browsers, video editors or

258 ASTRAL: BEHAVIOUR PROTOTYPING VIA FAMILIAR TOOLS

presentation software. To exploit these assumptions, Astral enables

designers to display portions of the desktop screen on the mobile de-

vice, and provides building blocks for a mobile device’s rich inputs to

interact with the desktop.

Astral, as shown in Figure 9.1, works as two network-connected ap-

plications: a desktop and mobile client. The mobile client only has

two functions: (1) receiving images from the desktop and displaying

them live, and (2) sending the data of all sensors (i.e., potential in-

puts) of the mobile device to the desktop. On the other hand, the

desktop application enables designers to explore and convert the sen-

sor data to create commands the desktop can understand, therefore

Figure 9.1. Astral allows designers to prototype interactive behaviours by: (1) mirroring contents of a desktop region to a

mobile device, (2) streaming mobile sensor data to the desktop, and (3) remapping the sensor data into desktop input (e.g.,

mouse and keyboard events) on a designer-chosen desktop application

 DAVID LEDO, 2020 | 259

enabling manipulation of desktop contents via the mobile device.

Thus, while end-users are technically operating the desktop com-

puter in its entirety, Astral’s features create the illusion that users are

manipulating and interacting with a mobile device. Given such an ap-

proach, Astral belongs to the category of “Smoke and Mirrors” pro-

totyping tools, described in Chapter 4 §4.4.3.

To realize the illusion that end-users are interacting with a mobile de-

vice when they are in fact controlling the desktop computer, Astral

has three main functions: a portion of the desktop’s screen is con-

stantly mirrored onto a mobile device (Figure 9.1-1), the mobile de-

vice streams its sensor data to the desktop in real time (Figure 9.1-

2), and a set of building blocks enable converting the sensor data into

mouse or keyboard events to remote control the desktop computer

(Figure 9.1-3). These functions can be applied into a workflow of

three steps, as illustrated in Figure 9.2: (1) defining what one sees on

the phone, (2) exploring what the phone can do, and (3) manipulating

the desktop with the phone.

Astral’s three workflow steps can be broken down using a deliberately

simple example of converting a web game of Flappy Bird on the desk-

top into a mobile version. In the game Flappy Bird (http://flap-

pybird.io), players can make a bird flap its wings by hitting the space-

bar (Figure 9.2, top). The goal of the game is to keep the bird flying

and avoid obstacles. Suppose a designer wishes to create a mobile ver-

sion in which tapping the phone makes the bird fly. In this case, the

designer has to:

1. Define What One Sees on the Phone. As shown in Figure 9.2-1,

the designer selects a region of the desktop display, such as a web

Figure 9.2. Astral’s steps to convert a

desktop website into a mobile game.

http://flappybird.io/
http://flappybird.io/

260 ASTRAL: BEHAVIOUR PROTOTYPING VIA FAMILIAR TOOLS

browser running Flappy Bird. The contents of the desktop PC’s dis-

play are then mirrored to a connected mobile device (phone or watch)

display in real time. Consequently, the mobile device shows a live

copy of the desktop monitor’s contents, meaning that its visual out-

put is exclusively a reflection of what is seen on the desktop. Any ac-

tions taken on the desktop, such as clicking or pressing a key will af-

fect the desktop active application and therefore these changes will

be seen on the mobile device. If the desktop monitor plays an anima-

tion or a video, the changing visuals will be immediately shown on the

mobile device. In the example of Flappy Bird, the designer can see

the main screen, or a live feed if the designer chooses to play the game

on the desktop. Thus, at this stage, the mobile device only provides

visual output.

2. Explore What the Phone Can Do. All the sensor data from the mo-

bile device is streamed to the Astral desktop client (Figure 9.2–2).

As a result, the designer can see custom visual representations (e.g.,

line charts) depicting the live data for multiple types of sensors, such

as touch, acceleration, ambient light or the microphone. The designer

can find the desired mobile sensors, select them and view their live

data, as well as the individual parameters (e.g., the x-axis of the accel-

erometer). Through visual inspection of the data visualization, the

designer can decide on a range of values of interest for that particular

sensor (such as the touch-screen area, which shows the current touch

point). While the designer can inspect the mobile inputs, actions on

the mobile device do not have any effect on the desktop. Therefore,

the mobile device at this point still only displays what is in view on

the selected region of the desktop to mirror.

 DAVID LEDO, 2020 | 261

3. Manipulating the Desktop with the Phone. Now, Astral can enable

the connected mobile device to control the desktop. This is done by

simulating mouse and keyboard commands which are executed virtu-

ally on the desktop’s active application. Thus, the designer can con-

vert the selected sensor data in the data visualization into mouse or

keyboard events, which is achieved via rules. As shown in Figure 9.2-

3, the designer converts a “tap” anywhere on the touchscreen into a

spacebar keypress. Thus, every time the designer taps the phone, the

Astral desktop client recognizes this action and executes a spacebar

press and release. The active application, in this example the web

browser with the Flappy Bird game, receives the keypress and makes

the bird fly. Because the mobile device mirrors the selected portion

of the display, the prototype appears to be brought to life on the mo-

bile device: it successfully creates the illusion that tapping on the mo-

bile phone makes the bird flap its wings and the response is seen on

the mobile device screen. With very few changes, the designer in-

stantly creates a temporary mobile version of a desktop game. More-

over, the designer can now quickly modify the set of rules to test dif-

ferent sensors. For instance, the spacebar command can be rede-

fined/remapped as one blows on the microphone, or shakes the de-

vice (further exemplified in §9.5).

Because the mobile device shows a live view of the desktop, and the

mobile device inputs affect the contents of the desktop, which are all

reflected on the phone, Astral creates a closed-loop of interaction (of

input and output) between the desktop and the mobile device. This

loop of interaction can be seen in Figure 9.1, by following the flow of

262 ASTRAL: BEHAVIOUR PROTOTYPING VIA FAMILIAR TOOLS

the 3 main operations of Astral. Systems to date only consider re-

mapping inputs, or remapping outputs, without examining the inter-

play of both (see next section).

By creating a closed-loop functionality, Astral now allows designers

to have a greater range of expressiveness: they can prototype and fine-

tune interactive behaviours on a new variety of target devices

(phones, watches and even tablets) and their variety of novel and in-

teresting sensors (e.g., accelerometer, microphone, etc.). One can for

example, repurpose a video editor so that a phone’s side-to-side mo-

tion moves a mouse cursor across the video timeline on the desktop,

while the video preview plays on the mobile device’s screen at the

same time. The result is a prototype where the speed and direction of

the motion in the video are tied to the motion of the device. In this

manner, Astral exploits existing desktop applications which design-

ers already know and understand without the need to code. Moreo-

ver, Astral’s use of mobile devices means that designers can apply

Soul–Body Prototyping (Chapter 6) and extend the possibilities of be-

haviour authoring to smart objects. Overall, leveraging Astral and

coming up with new ways of appropriating desktop applications

opens the door to many new opportunities for interactive behaviour

design and live testing of these behaviours on the target device itself,

as opposed to a desktop simulation.

9.2 RELATED WORK AND CONTRIBUTIONS
Astral’s design is informed directly by: (1) prior formative stud-

ies (Maudet et al., 2017; Myers et al., 2008); (2) state of the art tools

in research and industry; and (3) personal experiences. My personal

experiences span talking with interaction and graphic designers,

 DAVID LEDO, 2020 | 263

teaching interaction design to generalist designers and computer sci-

entists, and creating prototyping tools and toolkits for interactive be-

haviour authoring in the past ten years. Based on the collected infor-

mation, I have derived following four core design rationale decisions

(R) for Astral, which corresponds to the system’s contributions:

R1. Prototyping Live Interactive Behaviour on the Mobile Device.

Fast prototyping not only relies on expressiveness, but also on how

quickly designers can preview and evaluate designs. Typically, there

is a temporal gap between prototyping and testing. When construct-

ing the interactive prototype, designers engage in some form of pro-

gramming, as discussed in Chapter 4, §4.4.2, where the programming

can take different forms such as arranging screen transitions. The

program is then compiled which enables testing. The separation of

authoring and testing forces end-users to constantly switch their fo-

cus of attention, and in consequence add difficulty to the process.

Designer are forced to go back and forth between modifying the pro-

gram and testing the prototype as part of the iterative design process.

Hancock (2003) characterizes the distinction between regular and

live programming as the difference between shooting arrows at a bull-

seye versus shooting water with a hose: the hose provides continuous

feedback with which one can aim, adjust and shoot at the same time.

I believe that by integrating the programming and testing, designers

can always keep their goal in mind while making small adjustments to

achieve the desired result. Astral acts like the hose in this case, and

supports live authoring in two ways. First, designers can leverage the

closed loop of interaction (§9.1) to simply run and execute a desktop

application onto a new target mobile device with new means of ma-

nipulating the application (e.g., converting motion sensors to arrow

264 ASTRAL: BEHAVIOUR PROTOTYPING VIA FAMILIAR TOOLS

key presses on a desktop’s web map). Second, designers can run the

rules as they are being authored all while experiencing these behav-

iours on the target device itself (i.e., the mobile device). As a result,

the designer can fine-tune and adjust the behaviours almost instantly

(exceptions and workarounds are explained in the next section).

Astral builds on prior approaches to create the live prototyping expe-

rience. Victor’s systems in Inventing on Principle (2012) show differ-

ent strategies to achieve liveness in the context of coding, such as in-

tegrating the code and the program within the same screen, or show-

ing the trails of movement history and allowing the developer to ad-

just the values while seeing that trail change given the new data. Dif-

ferent interface prototyping tools feature aspects that can help ap-

proximate live prototyping to help designers create interactive appli-

cations. In the area of mobile interaction, prior work has explored

having a live custom UI builder mirroring the desktop screen’s UI

(Meskens et al., 2008), collecting and connecting photos of sketches

which can be tested in an ad-hoc manner (de Sá et al. 2008), or

demonstrating actions in one source device and replaying those ac-

tions on a new target device (Meskens et al., 2009). The demonstra-

tion-based approach is also seen in electronics programming. Exem-

plar (Hartmann et al., 2007) leverages programming-by-demonstra-

tion as a way to associate sensor patterns to actions, which can then

trigger a key press on the desktop or control the mouse cursor.

R2. Providing an End-User Interface that Allows Designers to Ex-

plore Variations Among Mobile Sensors. Because the types of input

data provided by sensors is non-trivial, one way to make sense of sen-

sor information is through data visualizations. Such approach has

 DAVID LEDO, 2020 | 265

been followed in prior systems such as A CAPella (Dey et al., 2004),

Exemplar (Hartmann et al., 2007), and MAGIC (Ashbrook and

Starner, 2010). However, given the large number of sensors present

on a mobile device nowadays, there are two new challenges. The first

challenge is that the sensors on a mobile device are varied, and thus

benefit from different visualization approaches based on the data pro-

vided. I address this challenge by including different visual represen-

tations according to the nature of the sensor (see §9.4.3). The second

challenge is that performing a single action (e.g., shaking the device)

triggers multiple sensors that are difficult to disambiguate. To solve

this problem, I build an interface in which designers can record their

actions on video (see §9.4.6). The video recording also shows a stack

of visualizations of the sensor data values which the designer can in-

spect and select the right sensor. These two strategies help increase

the expressive match2 (Olsen, 2007), as one can choose between the

live isolated visual representation or the video analysis approach de-

pending on the task and goal. Moreover, custom visuals aim to look

and feel more like what the designer is doing with the mobile device,

such as showing a dial-like visualization for the compass, or a map of

the screen for the touchscreen.

R3. Supporting the Use and Repurposing of Existing, Familiar Ap-

plications for Prototyping. When working on top of existing infra-

2 Olsen (2007) defines expressive match as the “estimate of how close the means

for expressing design choices are to the problem being solved”. For example, when

selecting colour, a low expressive match is using hexadecimal code compared to a

higher match through picking a colour with a colour picker.

266 ASTRAL: BEHAVIOUR PROTOTYPING VIA FAMILIAR TOOLS

structures, toolkits can leverage existing functionality to quickly ex-

plore new types of interactions. In itself, this is not a new idea. For

example, Olsen (2007) already discusses how working with common

infrastructures enables new technology combinations to support new

solutions. Olsen uses a scenario where pen input behaves as mouse

input, and thus mouse-based applications can now be operated with

a pen as the input device. Through screen mirroring and keyboard

remapping, Astral introduces the closed loop of interaction, which ena-

bles designers to use their own workflows and control any familiar

desktop application to prototype novel mobile interactions.

While many prototyping tools in the research literature reappropriate

native operating system functionality, the focus of the work is often

only on one side of the equation, either focusing on inputs only or

outputs only. For example, Exemplar (Hartmann et al., 2007) and

MaKey MaKey (BM Collective & Shaw, 2012) support remapping

sensor input into mouse and keyboard events, while Icon (Dragicevic,

2004), which is a toolkit and editor, creates input-reconfigurable in-

teractive applications. On the other hand, other systems have lever-

aged screen mirroring, as done in Semantic Snarfing (Myers et al.,

2002), VNC3, and TeamViewer4, to display the desktop application’s

contents (or a portion of its visual contents) onto the mobile device.

In the case of applications such as TeamViewer, the system provides

a one-to-one mapping from touch input on a mobile device to a con-

trol a desktop’s mouse cursor.

3 https://www.realvnc.com/en/ – Last accessed April 2020
4 https://www.teamviewer.com/en/ – Last accessed April 2020

https://www.realvnc.com/en/
https://www.teamviewer.com/en/

 DAVID LEDO, 2020 | 267

R4. Supporting interaction-driven animations. While desktop-based

applications can often rely on trigger-action behaviours, they already

feature behaviours that are hard to recreate in a way that does not

require coding. For example, consider a single drag and drop opera-

tion, where one selects an item and can move it across the screen from

one location to another. Such an action has an animation which is de-

fined by more than just time, it is driven by the user’s input. Few sys-

tems have operationalized this type of authoring without code

through keyframing approaches (see Chapter 4 §4.3.6), such as Mo-

net (Li & Landay, 2005) and Kitty (Kazi et al., 2017). With newer

devices such as phones and watches, these types of interactions have

the potential to become more common given the wide variety of rich

sensors. Many operating system functions feature these types of

highly nuanced and sophisticated animations, such as Slide to Unlock

in iOS, Android’s Quick Settings, or the animations that play while

one emits a voice command to a digital assistant such as Google Voice

or Siri. Astral can achieve interaction-driven animations on a variety of

sensors thanks to fully-fledged desktop tools such as video editors

which can leverage Astral’s proposed closed-loop of interaction.

Building on interaction–driven animations, designers must be able to

see continuous live effects from their input, but moreover examine

and modify how those effects take place. One way to address this

‘how’ is through easings. Easing is a term used by Adobe Animate5

(formerly Adobe Flash) to refer to the slow-in and slow-out principle

5 https://www.adobe.com/products/animate.html accessed October 2018

https://www.adobe.com/products/animate.html

268 ASTRAL: BEHAVIOUR PROTOTYPING VIA FAMILIAR TOOLS

of animation (Thomas & Johnson, 1995). Here, the number of in-be-

tween frames are increased or decreased at keyframes between poses

to create the illusion that an object is speeding up or slowing down.

Figure 9.3 provides examples of several different easing methods and

how a circle would appear over time. Adobe Flash incorporated eas-

ings as a default linear inbetween (commonly referred to as “tween”)

that could be applied to a change in motion (i.e., through position,

scale, or rotation). Penner (2002) created scripts for Flash to change

the character of the easing through mathematical functions, which

further nuance the types of easings available. Easings, however, as-

sume the animation plays as a function of time. Prior work has applied

animations as a function of continuous sensor input, such as OctoPo-

cus (Bau & MacKay, 2008). Other work applies Penner’s (2002) eas-

ing functions as a function of continuous inputs (e.g., Ledo et al.

(2015), Kazi et al. (2017), and Reach and North (2017)).

In Astral, one can apply easing functions to continuous mouse-move

events to fine-tune animations as continuous sensor-based interac-

tions happen. This provides additional customization power to the

authoring of interactive behaviours. The easing functions can pro-

duce aesthetic experiences, as well as more utilitarian functions such

as balancing the sensitivity of an input’s effect. These continuous an-

imations with easing functions are not explored in prior programming

by demonstration approaches, as they tend to favour recognition of

discrete events from continuous sensor inputs (e.g., Exemplar (Hart-

mann et al., 2007)).

To recapitulate, Astral extends previous approaches by combining

existing techniques of mirroring, streaming and remapping to feed

Figure 9.3. Easings in animation. A
circle moves horizontally over time

(from time = 0 to time = n). Ticks on

the timeline mark the position of

keyframes.

 DAVID LEDO, 2020 | 269

into new building blocks: the creation of small, self-contained rules

that drive a lively and animated prototype. These rules allow repur-

posing familiar desktop applications in ways not seen before.

9.3 WORKING WITH ASTRAL
When using Astral, designers are working with their existing desktop

applications, which carry the bulk of the work. Designers then can use

Astral to make that prototype interactive on a phone or a watch.

Therefore, it is meant to require minimal setup and leave as little

trace as possible after its use so that designers can keep the source

material the way they had it before. Astral’s interface has few com-

ponents to it (see Figure 9.4), which I describe next.

 MIRRORING DESKTOP CONTENTS

By clicking on the camera icon (Figure 9.4-A), designers can mirror

display contents onto the connected mobile device. Next, an overlay

region, a rectangular window with the proportions of the mobile de-

vice, is shown. The window which can be moved, scaled, or rotated

around the desktop screen. The area enclosed within the region con-

tains the intended visual output for the mobile device. The pixels con-

tained within the rectangular area are captured and mirrored live to

the mobile device client.

 SPECIFYING INPUT REMAPPING THROUGH

RULES

Once desktop content is streamed to the mobile device, designers can

author an interactive behaviour by defining a rule. A rule is a software

abstraction that contains information as to how mobile sensor data is

270 ASTRAL: BEHAVIOUR PROTOTYPING VIA FAMILIAR TOOLS

converted via simple mapping to keyboard and mouse events. This

abstraction holds a source sensor type, a range of values to which the

mobile sensor data is compared, and a destination mapping (mouse

or keyboard event). To create a new rule, the designer clicks on the

‘plus’ sign to open the Rule Editor (Figure 9.4-b) – a guided pop-up

window. In the editor interface, a designer can select the source mo-

bile device sensor, define the values of interest on the live visualiza-

tion via direct manipulation, and assign a destination mouse or key-

board event. Figure 9.5 shows a schematic of a rule which will be

used as a running example. The figure depicts the mobile device’s

physical motion, the corresponding data visualization for the y-axis

Figure 9.4. Astral’s main interface as displayed on a desktop computer, showing the (a) Main View, and (b) the Rule

Editing Window, where designers can create mappings from sensor data onto mouse and keyboard events.

 DAVID LEDO, 2020 | 271

of the acceleration plotting the live response to the motion, and the

resulting mouse move event which is the destination desktop input.

To create this rule, the designer must use the Rule Editor, select a

sensor and its range of values, and create a mapping (i.e., convert the

sensor data to a mouse or keyboard event).

Selecting a Sensor and Range of Values. The Rule Editor shows a

list of sensors provided by the mobile device. A designer can choose

the individual sensor of interest (Figure 9.4-B side panel) to define the

rule. Clicking on a sensor icon reveals a live visualization of the sensor

and its values to help the designer understand: (1) the particular sen-

sor’s response as the device is being manipulated, and (2) whether

the sensor is appropriate to use. The visualization is tailored to the

selected sensor (and its parameters/individual data) to provide

higher expressive match (Olsen, 2007). Examples of these custom

visual representations are shown in Figure 9.6. In the example shown

in Figure 9.5, the designer can select the accelerometer sensor from

the Rule Editor side panel, and select which parameter to observe

(the aggregate magnitude or x-, y- or z-dimension). In this case, the

designer chooses the y-dimension. Moving the device forwards and

Figure 9.5. Rules in Astral take a sensor value, such as the accelerometer y-axis,

and map it to a desktop input such as a mouse position.

272 ASTRAL: BEHAVIOUR PROTOTYPING VIA FAMILIAR TOOLS

backwards dynamically updates the visualization, where the red line

shows the current value. They can use visual inspection to see the

range of values of interest and then constrain the sensor values to a

range such as 1.0 m/s2 and 4.0 m/s2 by clicking and dragging, which

creates a vertical selection shown in yellow. Note that the visualiza-

tion dynamically resizes as larger values are detected (e.g., if one were

to shake the phone much harder, the acceleration ranges may in-

crease significantly). Sensor readings can be further transformed by

applying prepackaged filters (e.g., extracting gravity and linear accel-

eration values from the acceleration).

Converting the Mobile Sensor to a Desktop Input via Mappings.

The designer can now map the mobile device sensor input to a desktop

input (e.g., a mouse move event). Mouse events can be constrained

on the desktop (as shown in Figure 9.5), for example, only allowing

mouse movements vertically between 100 and 300 pixels. The rule

editor offers the option to select the destination region for the mouse

motion events through a rectangular selection region similar to mir-

roring overlay. Alternatively, one can define increments for mouse

wheel events (Windows default scrolling: 120 pixels per step). For

keyboard events, designers can specify a key event (key down, key

press, or key up) and the associated key (e.g., arrow left, spacebar).

Keys can either be typed or selected from a list of operating system

defined keys (e.g., volume controls, media playback, print screen).

One can even leverage shortcuts offered by the target application

adding modifier keys (e.g., control, shift).

Astral implicitly distinguishes between discrete or continuous inputs,

in line with Exemplar’s categorization of sensor values (Hartmann et

Figure 9.6. Sensor visualizations

change depending on the currently se-

lected sensor, to enable more straight-
forward mappings. The figure shows

(A) Compass, (B) Touchscreen, and

(C) Light Sensor.

 DAVID LEDO, 2020 | 273

al., 2007). Figure 9.7 shows how Astral maps a mobile input (in this

case the accelerometer value) to a: (a) discrete input destination (e.g.,

key press), and (b) to a continuous event destination such as a mouse

move event or a scroll action. When a discrete device sensor input

(e.g., 1 or 0 for a proximity sensor) is mapped to a discrete desktop

Figure 9.7. Mapping sensor inputs to discrete and continuous keyboard/mouse

inputs. Figure shows (A) mapping to a discrete input such as a key press, and (B)

mapping to a continuous input destination (e.g., mouse position).

274 ASTRAL: BEHAVIOUR PROTOTYPING VIA FAMILIAR TOOLS

input (e.g., a mouse click), the inputs are mapped one-to-one (if one

triggers, the other triggers). When a continuous device sensor input

(e.g., an accelerometer’s x-dimension) is mapped to a discrete desk-

top input (e.g., a mouse click), it is triggered when the device sensor

input enters or exits the designer’s chosen range of values. When a

continuous device sensor input is mapped to a continuous desktop

input (e.g., a mouse move), the value is interpolated between the

source range and the destination range (e.g., from the accelerome-

ter’s y-dimension to a mouse position within a selected range).

Lastly, a discrete sensor mapped to a continuous desktop input will

simply map to the two extremes of the destination values. Note that

the system handles discrete and continuous values for both mobile

device sensor (source) inputs and desktop (destination) inputs auto-

matically based on the designer’s mapping. This means that design-

ers do not need to explicitly think about whether their source or des-

tination inputs are discrete or continuous.

Easing Functions. Mapping continuous device sensor input to mouse

motion or scrolling inputs allows designers to apply easing functions

that interpolate between both (Penner, 2002). Instead of doing a lin-

ear interpolation, a designer can choose from a list of easings (Figure

9.8) which immediately changes how the destination input behaves.

The authoring process is dynamic: designers can immediately view,

test and modify rules as they author or edit them. If they want to stop

the rule from running (e.g., because the mobile device input is taking

over the mouse cursor), they can press the ‘escape’ key to pause or

play live mapping. This is particularly important to prevent input

 DAVID LEDO, 2020 | 275

locks, where the mouse cursor is overtaken by the mobile device sen-

sor during the authoring process. When the designer is finished, they

can name the rule and finish creating it, which adds it to the active

ruleset in the main application window.

 MERGING SEVERAL RULES INTO RULESETS

A behaviour may often require several rules, potentially using differ-

ent sensors. Astral adds an additional layer of abstraction, rulesets, to

support combining rules. If a ruleset is active, rules within that set

will execute as long as the mobile device streams sensor data.

To test variations of interactive behaviours, designers can create mul-

tiple rulesets and switch between them at any time. When there is an

active ruleset, a newly created rule will be added to that set and

stacked vertically along with the others.

 DECIDING WHEN RULES ARE TRIGGERED

Astral aims for rules to be a minimal unit of mapping an input to an

output. As a result, multiple rules can be combined into rulesets.

Figure 9.8. Easing function options in Astral based on Penner (2002). These easing functions can also be inverted.

276 ASTRAL: BEHAVIOUR PROTOTYPING VIA FAMILIAR TOOLS

However, Astral provides several additional structures that expand

the expressiveness of a ruleset.

Conditional (When). When a device input meets a condition (e.g.,

values within a selected range), rules inside a conditional structure

are activated. Conditional structures are always listening for input,

and as long as the condition is met, all contained rules will execute.

Thus, it is possible to implement techniques such as the clutch

mechanism in tilt-to-zoom6 (Hinckley and Song, 2011) by nesting two

conditionals. The first condition is touch is down, which holds true

as long as a contact point is touching the screen. The second condi-

tion, which depends on the former one, is that the touch is not mov-

ing. Thus, once the conditions of touch is down and the condition of

not touch move (i.e., the negation of touch is moving) are met, it is pos-

sible to interactively map accelerometer Y-dimension from the device

to mouse scroll up/down desktop input. This is elaborated in §9.5.2.

Sequence (Next). A sequence defines a chain of rule transitions,

where different rules are chained in order, and once a rule has trig-

gered, the next one becomes active. This means that designers can

create interactions such as simple state transitions (e.g., where the

mirrored portion of the display can shift, move or resize), or support

rules that enforce an order. After a rule in a sequence is executed, it

becomes inactive and the next rule in the chain becomes active. Each

rule in a sequence can mirror different portions of the desktop screen.

6 Tilt-to-zoom is a one-handed mobile interaction technique. Users can pan across

content by sliding their finger. When the touch is held, one can zoom in and out by

tilting the device. The change in global state is referred to in HCI as “clutching”.

 DAVID LEDO, 2020 | 277

Through sequence structures, Astral can approximate state-based

approaches (as done by design tools like d.tools (Hartmann et al.

2006) and InVision7) without explicitly implementing states. That

said, the chain is only a single linear pathway.

Medley. A medley switches the currently active ruleset to the next

ruleset on the list when a device input rule is triggered. Designers can

define one medley at a time. As a result, designers can use this special

rule to quickly switch to and test different variations of a prototype

(getting the right design (Buxton, 2007)). As a result, designers can se-

quentially test a set of prototype alternatives, thus being able to check

different types of inputs and how they affect the overall experience.

Astral can thus support experimentation with any variation within

rules, including sensors, thresholds, easings, or desktop inputs.

 SENSOR SELECTOR

Astral allows designers to disambiguate between multiple sensors.

The Sensor Selector provides an overview of values from all available

sensors as stacked line charts. Figure 9.9 shows the Sensor Selector

interface, which shows a video on the top left corner (live feed of the

desktop’s web camera when recording, or the current frame of a rec-

orded video once a recording has completed). By pressing the record

button, the system records a webcam view that is synchronized with

the different sensor data. All sensor data (except touch, which shows

touch points over time) shows a corresponding line chart which up-

dates its values as the recording takes place, displaying the different

sensor values across time. Designers can scrub through the recorded

7 https://www.invisionapp.com/ – Last accessed April, 2020

https://www.invisionapp.com/

278 ASTRAL: BEHAVIOUR PROTOTYPING VIA FAMILIAR TOOLS

video by hovering on the timeline or by hovering on the line chart

visualizations. Thus, designers can go through the video and inspect

both video of the performed action and the visualization of the corre-

sponding sensor data as stacked line charts. Hovering on the charts

or the timeline updates the current video frame. The timeline fea-

tures a range slider to select the area that reflects the designer’s phys-

Figure 9.9. Sensor Selector. Designers can record and playback a video which plots the sensor data of all detected mobile

device sensors. Designers can then scrub on the video or the visualizations to see the associated video frame to that sensor

value. Designers can create a selection to automatically create a rule that uses the range of values for that sensor.

 DAVID LEDO, 2020 | 279

ical action of interest. From that selection, designers can see all sen-

sors that reacted, and select a specific sensor to create a rule. The

system will open the Rule Editor with the sensor and its recorded

ranges already filled in.

Having all sensors displayed together with the webcam view can help

designers select the relevant sensor to use. This was inspired by prior

experiences with students in computer science as well as discussions

with designers, in which people were unsure as to what sensors cor-

responds to which particular actions. For example, it often came as a

surprise that the accelerometer can detect the mobile device angle of

rotation by looking at the value of gravity (9.8 m/s2).

9.4 USAGE SCENARIO: CREATING A LEVEL
Having described Astral’s interface and the nuances of screen mir-

roring and how to convert mobile sensor data to desktop events, I now

describe a simple usage scenario to illustrate Astral’s functionality. I

showcase how a designer might work with Astral to create a lively

prototype and author its interactive behaviours without any need for

coding. For this example, the designer wishes to create a level (akin

to a carpenter’s level) on a phone. The level should portray a bubble

that is centered on the screen when the phone is level, where that

bubble moves to corresponding sides when the phone is not level.

The designer can already use Adobe Illustrator and AfterEffects – fa-

miliar image and video applications (see §4.2) to draw and realize

these visuals and nuanced behaviours. Since no coding is involved,

the designer can focus most of their time and effort on the aesthetic

elements of the behaviours (e.g., animations, visuals) as opposed to

implementation details. This scenario can also be seen in the video

280 ASTRAL: BEHAVIOUR PROTOTYPING VIA FAMILIAR TOOLS

figure for Astral, and will be described below as a sequence of steps. I

also note how long I spent in the first-time creation of the scenario,

which shows minimal time in getting the prototype to run8. Figure

9.10 shows some of the steps in the scenario as a visual summary

which includes a snapshot of the final result.

 PREPARING THE PROTOTYPE: ILLUSTRATOR AND

AFTEREFFECTS

This step occurs outside of Astral, where the designer is using famil-

iar desktop tools. The designer uses Adobe Illustrator to create illus-

tration of the level at reasonable fidelity. The “bubble” is extracted

as a separate layer that can be masked and animated (15 minutes).

The designer imports the Illustrator file into Adobe AfterEffects and

creates a simple linear animation in which the bubble moves from one

end of the level to the other as the video progresses through its time-

line (7 minutes). The designer now has a video prototype on their

desktop that communicates what happens, but not how it happens.

Normally, a designer would be stuck after this step, as they would be

unable to transform this video into an interactive prototype running

on the phone. Thus, it is not possible to truly test and interact with

the prototype on the target device, and so it is difficult to achieve any

additional sophistication acquired by fine-tuning the results. Astral

can now bridge the gap, as the designer can transform this desktop

video into an interactive prototype running on the mobile device.

8 Prior knowledge in Astral and the desktop tools influences design time. When creating

this example, I was not very familiar with Adobe AfterEffects, but I consider myself an ex-

pert in using Adobe Illustrator and Astral.

 DAVID LEDO, 2020 | 281

Figure 9.10. Visual description for Astral’s usage scenario. In the scenario, a designer authors a prototype for an interactive

level on a mobile device by repurposing the timeline on a video editing software.

282 ASTRAL: BEHAVIOUR PROTOTYPING VIA FAMILIAR TOOLS

 STEP 1: STARTING ASTRAL

The designer launches Astral on the desktop (Figure 9.10) and con-

nects the mobile device to it. The designer clicks the camera icon to

select a region of the desktop to mirror onto the device. The region is

the output video in the AfterEffects window, which will then appear

live on the device (1 minute).

 STEP 2: SENSOR SELECTOR

The designer wants the interaction to play out when tilting the phone

from side to side in a portrait orientation. Unsure of which sensor

might be used for this, the designer opens the Sensor Selector (Fig-

ure 9.9), and moves the webcam so that it can capture him in the act

of tilting the phone. The designer presses record. Astral records all

available sensor values, as well as webcam video of their actions,

which shows him tilting the device from side to side along with other

motions (2 minutes). The designer then plays back the video and sen-

sor recording, to determine which sensor is being activated as the de-

vice motion takes place. From visual inspection and scrubbing

through the video timeline, he finds that Linear Acceleration X and

Linear Acceleration Y both react to the side-to-side tilt. However, Lin-

ear Acceleration Y is also triggered when the device is tilted forward

and back and therefore is less valuable. Thus, the designer decides

that Linear Acceleration X is the sensor of interest. He narrows down

the area of interest by adjusting the range slider, right clicks on Linear

Acceleration X and clicks on the “Create Rule” option, which opens

the Rule Editor (1 minute).

 DAVID LEDO, 2020 | 283

 STEP 3: RULE EDITOR

The Rule Editor (Figure 9.4-b) automatically selects Linear Accel-

erometer X as its active sensor parameter, and already has a defined

range based on the readings from the Sensor Selector. The designer

repeats the desired behaviour (side to side motion) and sees the val-

ues up close in the Rule Editor Linear Accelerometer X live visualiza-

tion. He now adjusts the acceleration range on the data visualization

via direct manipulation of the yellow-filled range (1 minute).

 STEP 4: MAPPING MOUSE POSITION TO THE

AFTEREFFECTS TIMELINE

The designer now uses input remapping to specify how the interaction

takes place. He decides that moving the device from side to side

should be converted to mouse click and drag actions that scrub

through the video timeline so that the level’s bubble animation is

mapped to the side to side motion. The designer creates a mapping

by clicking on ‘Mouse’ and selecting the move event. The designer

next defines the range of pixels that for the mouse move event desti-

nation. Clicking the “Map to Screen Selection” button, the designer

can create a rectangular selection determining the destination mouse

coordinate range. He now creates a rectangular selection overlaying

the AfterEffects Timeline and ticks the checkbox so that the mouse

performs a mouse down (holding) whenever the move event takes

place. Because of the immediate preview, moving the phone already

causes the mouse to move (which can be activated or deactivated

from anywhere in the operating system using the escape key). As the

284 ASTRAL: BEHAVIOUR PROTOTYPING VIA FAMILIAR TOOLS

prototype is already interactive via its live preview, the designer im-

mediately sees these effects (both input and output) on the mobile

device (2 minutes).

 STEP 5: FINE-TUNING THROUGH EASING

FUNCTIONS

While the interaction is being tested, the designer might find that it

does not respond as desired, as it is very easy for the level to jump

quickly from one side to another. One way to iterate on this behaviour

is to make the bubble remain in the middle of the level for longer pe-

riods of time through an easing function. This can be achieved

through an inverse cubic-in-out easing – which would slow down the

animation towards the middle of the timeline, and speed up the ani-

mation towards the edges of the timeline. By playing around with dif-

ferent easing functions, the designer can fine-tune and instantly test

the qualities of the interaction-driven animation and improve the in-

teraction. This can take as long as the designer wishes to engage in

the process. The designer may also decide to readjust the input pa-

rameters or the mouse region for further fine-tuning (2 minutes).

The prototype is now complete. The designer can modify it further

as desired (e.g., its looks, additional functions, etc), or try other

variations. The designer can also have others try it out.

 DAVID LEDO, 2020 | 285

9.5 INTERACTIVE PROTOTYPES
MADE WITH ASTRAL

While the previous scenario shows one possible application of Astral,

I also examined how Astral can support different types of design ac-

tivities, derived from insights in Chapter 2. I specifically explore con-

verting video into interaction-driven animations (§9.5.1), converting

existing input/output into new device-specific interactions (§9.5.2),

and bringing sketches to life (§9.5.3). Note that these exploration cat-

egories are meant to provide additional structure and do not imply

mutually exclusive solutions to problems that designers might

achieve when using Astral.

 CONVERTING VIDEO INTO INTERACTION-DRIVEN

ANIMATION

Video-Based Prototyping

Both our own experiences and past literature have shown designers’

inclination towards working with high-resolution video9 to convey

prototype ideas to developers e.g., Maudet et al. (2017), Subtrac-

tion.com (2015) and UxTools.co (Palmer, 2018). While video can

show state-based animations, it does not enable direct interaction.

One can use a video editor in conjunction with Astral to bring inter-

activity to these prototypes on the target devices, in these cases, a

mobile phone. I use the same workflow as the scenario in §9.4.

9 Here, video-based prototyping refers to the take by Maudet et al. (2017) where designers

use video editors to animate high fidelity illustrations and specify how systems should be-

have in terms of animations. This is not to be confused with MacKay (1988): Wizard-of-Oz

style play-acting of prototypes in video format.

Figure 9.11. Video based prototypes in

addition to the level phone app used in

the scenario. (A) shows a compass,
while (B) shows a re-implementation of

Android’s quick settings menu, where

one can change the phone brightness.

286 ASTRAL: BEHAVIOUR PROTOTYPING VIA FAMILIAR TOOLS

Level Mobile Phone App. The level prototype described in the previ-

ous section belongs to this category of prototyping. In particular it

emphasizes: (1) how the Sensor Selector can help designers deter-

mine which sensor corresponds to an action (in this case determining

tilt by acceleration); and (2) the power of easing functions to change

the ‘feel’ of an interactive behaviour.

Compass. I created a simple animation of a compass needle rotating

360 degrees (Figure 9.11-A), including a separately-animated needle

shadow that creates a three-dimensional effect when in motion. I then

created a rule that provided a linear mapping of the device’s compass

angle to the position on the video timeline.

Quick Settings. The Android Quick Settings menu contains a nu-

anced animation where multiple icons change size, position, and

opacity, to reveal available operating system functions to a mobile

user. With Astral, it is possible to map a downward sliding gesture to

progressively reveal controls. Furthermore, one can add an additional

interaction of controlling the screen brightness by mapping a side

swipe on the top of the mobile screen, which shows a slider (Figure

9.11-B), to another portion of the video timeline on the desktop in

which the screen fades to black. This shows how even within video

timelines Astral can support multiple interactions. While it is not a

full approximation to state transitions, it is still possible to create in-

teraction-driven animations within those limited states.

 DAVID LEDO, 2020 | 287

 CONVERTING EXISTING DESKTOP INPUTS/OUT-

PUTS INTO NEW DEVICE-SPECIFIC

INTERACTIONS

Authoring Open-Ended Interaction Techniques

With Astral, it is also possible to prototype interaction techniques

that provide more open-ended ways of interaction than the video-

based prototypes.

Tilt to Move. I used Astral to create a one-handed map navigation by

mapping the different tilt directions from a phone’s accelerometer

data to the cardinal arrow keys in Google Maps. The rules are set so

that key commands are triggered when the acceleration crosses a cer-

tain range (x: 4 to 7 triggers right, x: -4 to -7 triggers left, y: 4 to 7

triggers down, y: -4 to -7 triggers up). Because Astral is using a key-

press event, the mapping initiates a key down when the accelerome-

ter enters the specified range, and a key up when leaving the range.

This scenario replicates an example from d.tools (Hartmann et al.,

2006) that originally required programming to realize the tilt-based

map navigation. In contrast, the Astral version leverages input re-

mapping and avoids the need to write code.

Tilt-to-Zoom. I implemented tilt-to-zoom (Hinckley & Song, 2011),

where a designer can pan through a map using touch, and zoom in

and out via tilting provided that there is also a touch down event

(their finger acts as a clutch). This is achieved using conditional con-

structs (shown in Figure 9.12). A touch down conditional becomes ac-

tive if touch is down on the device. It contains another nested condi-

tion that checks whether touch move is not taking place. The rule

288 ASTRAL: BEHAVIOUR PROTOTYPING VIA FAMILIAR TOOLS

within this nested conditional maps the accelerometer’s y-dimension

to mouse scrolling (up or down). This prototype replicates prior re-

search, incorporating the concept of motion in touch – mapping more

than one sensor to a single function.

Figure 9.12. Tilt-to-Zoom Prototype. This figure shows how Astral leverages conditionals to create an interaction that re-
quires considerable coding only repurposing a web browser on the desktop.

 DAVID LEDO, 2020 | 289

Prototyping Multiple Alternatives

In Chapter 2, I discuss how designers often generate multiple ideas

and prototypes as part of the exploration process. I also described

how typically many of the ideas end up stuck as an early paper sketch

due to the amount of time required to realize the idea. However, with

Astral, one can explore a lot of ideas quickly in high resolution.

Input Variations in a Mobile Game. Previously in §9.1, I used an ex-

ample of the Flappy Bird game. While working with this prototype, I

mapped different mobile sensors to a spacebar keypress (shown in

Figure 9.13) so that the bird flaps its wings when: (a) tapping, (b)

blowing onto the microphone, and (c) shaking the phone. Each of

these interactions was encapsulated in individual rulesets. By creat-

ing a medley rule (Figure 9.13-d), one can quickly switch between

active rulesets to explore different forms of interaction – in this case

whenever the light sensor is covered.

 BRINGING SKETCHES TO LIFE

Iterative Prototyping at Multiple Resolutions

Since Astral remaps inputs from mobile sensors to any key, it is pos-

sible to work with multiple applications at different stages of the de-

sign process. As a result, Astral can support different tasks and spe-

cialized tools – wireframing and walkthroughs, transitions between

states/flow (similar to d.tools by Hartmann et al. (2006)), or working

Figure 9.13. Input variations in Flappy
Bird on a mobile device, using different in-

puts: (A) touching the screen, (B) blowing

on the microphone, and (C) shaking the

device. The designer alternates these by

(D) covering the screen’s light sensor.

290 ASTRAL: BEHAVIOUR PROTOTYPING VIA FAMILIAR TOOLS

with more sophisticated programming platforms that may not be

available for mobile prototyping. To realize these examples, Astral

mainly relies on the sequences rulset type.

Music Controller Sketches. Using a default image viewer, one can

scan or photograph an interface sketch on the desktop and immedi-

ately view it (and test it) on the mobile device (Figure 9.14-A). De-

signers can emulate states by chaining multiple rules with the se-

quence construct. Each rule moves the streamed region to different

parts of the image (i.e., the screen drawings) depending on the tap

interactions that may take place. By previewing the sketches on the

target device – here, a watch – designers can make early decisions

such as defining appropriate button sizes.

Music Controller PowerPoint Mock-up. Presentation software such

as PowerPoint and Keynote remain relevant for mocking up inter-

faces and wireframes (see §4.3). With Astral, it is possible to use

mock-ups created with these applications to press the wireframe but-

tons on the watch (given the streamed visual) and move to another

part of the slideshow by perform a click event on different parts of the

slide thumbnail preview (Figure 9.14-B). Thus, one can easily test

the flow between different interface screens.

Figure 9.14. Prototypes in low resolutions. The figure shows: (A) a sketch rendered on the mobile watch, (B) a PowerPoint

mockup, and (C) an in-progress drawing in Illustrator which controls the music in iTunes.

 DAVID LEDO, 2020 | 291

Image to Media Keys. The keyboard media keys can control applica-

tions, including volume controls or music software’s state (play,

pause, next/previous song). It is possible to take an in-progress

sketch in, say, Adobe Illustrator, and map portions of the screen to

trigger different media keys. Thus, designers can switch between dif-

ferent songs in a music software (in this case iTunes) to simulate a

remote-control software. This prototype is shown in Figure 9.14-C.

Authoring Smart Object Behaviours

Designers may also leverage Astral to explore behaviours on smart

objects and appliances, as well as some degree of Internet of Things

applications. Using Soul-Body prototyping (Chapter 6), designers

can repurpose phones and watches in novel and unexpected ways.

Smart Speaker Animations. Using video editing applications, one

can author nuanced animated responses that a smart home speaker

might perform. I created a smart speaker prototype by placing a smart

watch inside a mug with a 3D printed tray and light diffuser (Figure

9.15-A). Given this new physical prototype, it becomes possible to

test different animations in AfterEffects and see what they might be

like on a smart speaker. Moreover, Astral supports speech recogni-

tion through the built-in Microsoft speech API, so one could also ex-

plore different kinds of animations that trigger depending on a variety

of voice commands.

3D Printed ‘Smart’ Level. I recreated the 3D-printed level from Pin-

eal (Chapter 8) and reused the level mobile phone app prototype from

the usage scenario described in this chapter. Figure 9.15-B shows a

smartwatch enclosed in a larger 3D print. This demonstrates how As-

tral can also adapt prototypes to different devices and form factors.

Figure 9.15. Smart object prototypes

featuring (A) a mug holding a smart

watch as a smart speaker, and (B) a

physical prototype to the initial video-

based level presented in the first usage
scenario.

292 ASTRAL: BEHAVIOUR PROTOTYPING VIA FAMILIAR TOOLS

With this example I also show how the prototyping tools described in

this thesis can work together and assist designers in the task by creat-

ing a suite of programs.

Thus far, I showed prototypes that take different design activities at

different resolutions and (1) make them interactive, and (2) bring

them into the context of working with the target device. The applica-

tions in this section represent both novel and replicated prototypes

(e.g., from prior research) using Astral. These examples help convey

Astral’s threshold, ceiling, and expressiveness (methods described in

Chapter 5). Figure 9.16 summarizes the prototypes in this section

and how they are extended by Astral.

9.6 IMPLEMENTATION
Astral is designed to work with one mobile device per Astral desktop

client, which constrains and simplifies the workflow. This is tied to a

technical limitation of desktops, as mouse and keyboard commands

can only be sent to a single focused program. The desktop client of

Astral is implemented using C# and WPF, while the mobile applica-

tions are written in C# Xamarin to allow cross-platform mobile devel-

opment (iOS, Android, Android Wear). To reuse code and quickly

adapt to newly added sensors of future devices, all communication

aspects were developed in shared code, using the .NET Standard 2.0

(see below for details).

 DAVID LEDO, 2020 | 293

Device Modules. The underlying software features classes in shared

code for each of the mobile device’s sensors or outputs (e.g., accel-

erometer, microphone, or display), referred to as device modules. The

mobile device instantiates all modules it is equipped with when the

Figure 9.16. Summary of the interactive prototypes, what the original design activity entails and how Astral bridges taking

non-interactive prototypes into prototypes that can be tested on the target device and refined before implementation efforts.

294 ASTRAL: BEHAVIOUR PROTOTYPING VIA FAMILIAR TOOLS

application starts. Once the device connects to the Astral desktop ap-

plication, it sends a list of all available modules to the desktop. The

desktop then creates the same modules to access the sensors by

proxy, as if they were local sensors. Each module updates its values

with newly measured sensor data. Modules trigger an event in code

once values have been updated.

Data Exchange between Devices. Because the desktop and the client

are not running on the same machine, device modules handle the in-

ternal network communication. There are two forms of communica-

tion between the clients: sensor data goes to the desktop, and desktop

client visuals go to the mobile device. For sensor data coming from

the mobile device, this works as follows: (1) the mobile device records

the respective sensor data natively (i.e., iOS or Android specific); (2)

it then updates the module using a device-independent abstraction of

the measured data (e.g., three floating-point numbers for the accel-

erometer); (3) the module sends this data as bytes (using a unique

identifier) over the network; (4) the module on the desktop unpacks

the message and triggers an event; and (5) if the Astral desktop client

subscribes to the event, it receives the sensor data, and sends the up-

date to rules using that sensor. Mirroring desktop contents works

similarly, except that the desktop client updates the display device

module. To speed up the transmission of images, we detect changes

through image differencing and only transmit the areas that did

change. These image (parts) are compressed (JPEG).

Performance. Astral uses wireless LAN via TCP for connectivity be-

tween devices. Astral’s mobile client was tested on multiple phones

(Nexus 5 and 5X, iPhones 6, 7 and 8, Pixel 2) and one smartwatch

 DAVID LEDO, 2020 | 295

(Sony Smartwatch 3). Image transmission is at varies depending on

the image size, but frame rates are typically 50 fps on iOS, and 25 fps

on Android. This is concurrent with mobile sensor data streaming to

the desktop, yet only if the desktop actually requires a specific sensor

(i.e., a Rule or the Sensor Viewer is using that sensor). Sensor data is

streamed in real-time but restricted to a rate of 100 fps to ensure high

transmission rates in both directions. During testing and creation of

the prototypes, my co-authors and I did not experience significant de-

lays transferring data from multiple sensors. That said, sometimes

when the screen area was considerably large or on a large resolution

display (e.g., a 4K display monitor), the image transfer would some-

times turn choppy from different parts slowing down. Larger images

lead to the desktop screen capture and JPEG compression taking

slightly longer. Similarly, the network requires transferring a larger

image, and the mobile device has to then downscale the image to fit

the screen size. The next section examines some of the implementa-

tion limitations in more detail.

9.7 DISCUSSION
While Astral represents a promising concept for a prototyping tool,

there needs to be a critical assessment as to the extent to which the

contributions have been reached (§9.7.1), describing the evaluation

approach (§9.7.2), reflecting on Astral’s scale beyond prototyping

(§9.7.3) and discussing some of the reality about its implementation-

level constraints (§9.7.4). I suggest potential avenues for future di-

rections, either by showing what Astral’s work paves the way to-

wards, or by suggesting potential improvements to the system or de-

sign practices in general.

296 ASTRAL: BEHAVIOUR PROTOTYPING VIA FAMILIAR TOOLS

 REVISITING THE DESIGN RATIONALE

Earlier in §9.2, I described the design rationale behind creating Astral

presented as four decisions which shaped its contribution. It is im-

portant to have a closer look at the extent to which each one of these

objective have been achieved and discuss potential extensions.

R1. Prototyping Live Interactive Behaviour on the Mobile Device.

Astral, as shown by the scenario and prototypes, indeed supports live

authoring, and it is possible to test the behaviours as they are being

created. In fact, this proved to be very useful in many research dis-

cussions with colleagues and co-authors, as it was possible to adjust

the rules to reach the desired effects almost instantly. However, there

are a few caveats to consider, namely: it is possible to create conflict-

ing rules, mappings can sometimes accidentally affect the wrong ap-

plication, and the inputs can become locked (described in §9.3).

The current implementation of Astral does not check for conflicting

rules. This has been a deliberate choice to ensure designers have

more flexibility, but also opens the door for potential sources of hu-

man error. For example, a designer can create two rules that are

nearly identical but map the mouse movement in opposite directions.

The result will be that whenever the rules are both active, the mouse

cursor will start rapidly jumping back and forth. That said, given that

the interactive behaviour explorations (such as the ones in the proto-

types above) take only a few rules (none of the examples have more

than five rules running at once), designers should in theory be able to

keep track of what they are creating. Rather than adding constraints

to the interface (e.g., showing a warning in a suspected case of con-

flict), I consider a better solution is to further iterate on the way the

 DAVID LEDO, 2020 | 297

list of rules is displayed to increase the amount of awareness cues pro-

vided, so that designers are more aware of the effect of their actions.

The next consequence of live authoring with mouse and keyboard

commands is the possibility for inputs to affect the wrong application.

Given that Astral is unaware of the active application and simply ex-

ecutes mouse and keyboard commands on the fly, there is a chance

that a designer might perform an accidental undesired action. For ex-

ample, a mouse click could accidentally activate another application

which will receive the remapped inputs. This in fact happened to me

a few times before I implemented the ‘escape’ key workaround, where

I would have a small window of a web browser on top of a full screen

version of Astral’s code. I would then create a behaviour that per-

formed a click and drag operation. In the behaviour creation process

I would unwittingly move the web browser window to read the un-

derlying code without deactivating the rule. I would then lower the

phone, which makes the accelerometer move and triggered a click,

which would click and drag on top of my code window, thereby se-

lecting my code and rearranging it to a different location. Perhaps a

stricter implementation could enable selecting whether the mouse

and keyboard events should affect every desktop application, or only

affect a subset of the currently opened applications, but it would add

extra steps to setting up Astral.

The last and perhaps least concerning (yet most common) conse-

quence of live authoring were the input locks. Input locks occurred

298 ASTRAL: BEHAVIOUR PROTOTYPING VIA FAMILIAR TOOLS

sometimes in the process of creating a rule which mapped a very sen-

sitive sensor (e.g., accelerometer) to the mouse cursor movement.

The system would start a live preview immediately once the mouse

cursor mapping was established, which could in some cases prevent

one from regaining control of the mouse again. The ‘escape’ key

solved this situation entirely right away, as the moment an input lock

took place it could be temporarily turned off with one key. Because

the system listens for the ‘escape’ key across the operating system, it

also became extra useful for live demos. With the ‘escape’ key it be-

came possible to author the rules, minimize everything, and then play

the rules while showing only the target application.

As long as designers are aware of these potential side effects of live

authoring, and that they know that the ‘escape’ key can relax some of

these effects, I expect there to be few problems beyond usability de-

tails. I think that because Astral has so few added menus and con-

straints it works well as a tool that one can use quickly without having

to do too much setup (e.g., defining which application to affect).

Given the current design, I do believe that Astral could become a

quick “walk up and use” tool once learned. That said, I think that it

would be beneficial to provide additional feedback so that designers

are more aware of the current mappings and the effects of their ac-

tions on the mobile device. The active rules in the main view of Astral

could show live previews along with the source input from the mobile

device and the destination input on the desktop, as well as which area

it will affect. One way of doing this is envisioned in Figure 9.17.

R2. Providing an End-User Interface that Allows Designers to Ex-

plore Variations Among Mobile Sensors. For Astral to be a tool that

Figure 9.17. Rule preview enhance-

ments with additional feedback and

awareness cues.

 DAVID LEDO, 2020 | 299

designers can use quickly and effectively, there needs to be as little

coding as possible (for the discussion of this problem see Chapter 4,

§4.4.2). Thus, the visual representations for sensor data need to

make sense as much as possible. I put care into trying to achieve a

strong expressive match (Olsen, 2007) by tailoring visualizations to

particular mobile sensor data through the Sensor Selector interface.

However, in spite of a higher expressive match, there is no guarantee

that there is a reduced need to learn and understand how sensors

work. For instance, consider that accelerometer data can be used to

determine the orientation of a mobile device. While visual inspection

on the Sensor Selector could lead a designer to realize the effect of

device tilt on the accelerometer values, it is hard to know without un-

derstanding how the sensors work, whether it is a generalized effect.

While one could study how designers learn to work with sensor data

and the extent to which tools need to explain it, I believe this is more

of a communication problem. More of the existing programming-spe-

cific documentation needs to reach designers and even computer sci-

ence students.

R3. Supporting the Use and Repurposing of Existing, Familiar Ap-

plications for Prototyping. The prototypes discussed in §9.4 and §9.5

show a variety of applications which match many of the tools used by

designers in the past ten years (see §4.2). These range from more

general usage tools such as the web browser, to more casual ones such

as PowerPoint, to more specialized tools such as Illustrator and Af-

terEffects. What is interesting is that Astral, in cases such as the video

editor example (§9.4), can take a non-interactive video on the desk-

top and instantly turn it into an interactive experience on the mobile

device. The fact that the area that is mirrored to the mobile device

300 ASTRAL: BEHAVIOUR PROTOTYPING VIA FAMILIAR TOOLS

screen (AfterEffects’ video preview) is different from the area in

which the mouse move event is being executed on (the timeline) sug-

gests that there might be a lot of room for interesting applications of

Astral beyond what is presented in this chapter. Thus, even though it

seems like the ceiling of Astral only goes as high up as the desktop

application itself, the reality is that Astral, unpredictably, achieves

more than that, as it now accomplishes functions that were not pos-

sible in the native application.

R4. Supporting Interaction-Driven Animations. An important as-

pect often overlooked in interaction design prototyping tools is the

authoring of behaviours which respond to continuous input as the in-

teraction takes place. Astral supports interaction-driven animations,

provided that the desktop application can create some form of mov-

ing visual, such as the timeline preview in AfterEffects or the scroll-

ing to zoom on the web browser maps. However, with such tools it is

only possible to progress through one dimension of output: the video

player has a single timeline, the zoom function on the map is depend-

ent only on the mouse scroll. The current types of animations likely

cover a majority of the common interactive behaviours. Still, it would

be interesting to animate individual objects as a function of different

sensors, or to manipulate different timelines at once. This could lead

to richer behaviour explorations perhaps more in tune with other ar-

eas such as game design (e.g., using two joysticks to affect the anima-

tion and response).

 EVALUATION APPROACH

There are various strategies for evaluating toolkits as discussed in

Chapter 5. Of these, I use evaluation by demonstration as the primary

 DAVID LEDO, 2020 | 301

method. In particular, the prototypes tie back to key design activities

as reflected in Chapter 4, where Astral can bring the prototype to the

target device in a way that it can be tried out, thus enabling further

elaboration of interactive behaviour. The prototypes represent both

novel and replicated systems from past research, which reflect how

Astral can achieve results that might be difficult to create otherwise,

as well as ensuring that prior paths of least resistance (Myers et al.,

2000) can still be accommodated. The usage scenario (§9.4) provides

a perspective on how designers might work with Astral while convey-

ing some of its threshold and ceiling (Myers et al., 2000). More im-

portantly, I have carefully considered the claims made in this chapter

and revisited the original goals.

It is important to note that the potential research question for a hypo-

thetical future study is not whether designers can use Astral. The

problem with such a question is that it easily focuses on usability bugs

that get in the way of using the system, and there is little inquiry on

the value of Astral as a potential design tool. The larger question and

more interesting question for future work is more about how designers

might leverage a tool like Astral. This question is much more difficult

to answer, and studying it directly with designers is beyond the scope

of this thesis. This question, however, can still be answered through

the demonstrations in §9.4 and §9.5.

I deliberately did not pursue a lab usability study. A usability evalua-

tion would be inappropriate given that Astral is not a walk-up and use

system and the paths of interaction are very open-ended (Olsen,

2007). Furthermore, a lab study would sacrifice realism (McGrath,

1996). There are three reasons why it is so. First, designers each have

302 ASTRAL: BEHAVIOUR PROTOTYPING VIA FAMILIAR TOOLS

different applications and computer setups which cannot be reflected

in a lab setting. Second, Astral provides an alternative way to think

about prototyping, which requires time to internalize. Finally, short

tasks can lead to the “usability trap” (Olsen, 2007), or test tasks we

know Astral can succeed at, thus leading to unfair comparisons or

weak generalizations from the current implementation rather than

the concept as a whole (Greenberg and Buxton, 2008). Open-ended

tasks require designers to envision ideas ahead of time (thus requiring

an understanding of what Astral can do) – it would be unreasonable

to request a design on the spot.

One interesting avenue for future work is to consider an observational

field study, as it might be an appropriate way of testing Astral’s po-

tential for designers. However, for the software to be deployable

would require a large amount of testing and additional engineering

efforts, which are beyond the scope of this thesis.

I see two large issues in a potential user study with Astral and both

stem from the existing design practices. The first challenge is that de-

signers have a specific set of expectations which are a consequence of

the tools of today. The current set of tools and job descriptions typi-

cally guide a designer towards creating wireframes and specifications

without a lot of room for exploration and animations. Moreover, be-

cause of the lack of tools today, little is known about what a smart

object behaviour designer might look like. Thus, the number of po-

tential people that could truly experiment with Astral for mobile in-

teraction or smart object design outside of the research community is

perhaps small if not still inexistent. This becomes evident when look-

ing at the plethora of mobile applications and how aside from mobile

 DAVID LEDO, 2020 | 303

games and operating system functions, the explorations of nuanced

behaviours are quite limited. The second challenge is that a tool will

always be compared with the current industry software, and meas-

ured with the expectation that it achieves similar levels of complexity.

This is difficult to achieve with small prototypes like Astral. I think

the solution is for Astral, or a tool like Astral, to become robust

enough and readily available so that people can try it, or bring it into

an educational setting with enough support and documentation. For

example, perhaps motion design students could see how their ideas

can be applied in the context of interaction design.

While Astral could enrich interaction design practice, Astral is not

intended to replace existing prototyping software, but to instead pro-

vide an alternative approach. State models, as discussed in Chapter 4

§4.3.3, are a common prototyping strategy, and there is a reason they

remain standard. State diagrams can quite intuitively describe the

flow of the interaction. However, explorations with state models can

easily be complemented by leveraging Astral’s closed loop of interaction

to explore how behaviours might play out on different target devices,

or to try out new interesting interaction-driven animations.

 SCALE AND REAPPROPRIATION OF TOOLS

When looking at Astral’s application agnosticism, I realized one real-

ity in current technology is that development platforms are largely

siloed and highly specialized. For example, to develop for smart-

watches, developers can only work with Java on Android Studio,

Swift in XCode, or Xamarin in Visual Studio. With an application like

Astral, one can potentially bridge development for short-term use ap-

plications. Moreover, from a conceptual standpoint, Astral is a plug-

304 ASTRAL: BEHAVIOUR PROTOTYPING VIA FAMILIAR TOOLS

and-play application, which means that there is no need for custom

software IDE and API installations. A designer can work with Power-

Point or go as far as to create an HTML/Javascript site that runs on

the watch.

While this chapter focuses on Astral as an interaction design tool, it

is worth mentioning that its applications can go beyond what has been

shown. For example, an early prototype I created served to control

applications remotely. Applications such as Adobe Illustrator do not

have hotkeys for all features, such as alignment tools (Figure 9.18).

Consequently, designers often make selections and drag the mouse

cursor to an edge of the screen to select a command such as aligning

all objects to the left. When conducting repeated alignment tasks, the

constant moving back and forth of the mouse can become tedious.

One way to solve this is to move the interface to a mobile device using

Astral. This way, the interface can rest on the phone by the desk next

to the keyboard and provide end-users with opportunities for biman-

ual interaction: the mouse on the right hand selects the objects on the

screen while the left hand chooses the desired command. Moreover,

unlike keyboard hotkeys, the distributed interface shows meaningful

icons that inform the user of the effect of the action. This experiment

shows a replication of prior visions of using mobile devices for control

(Myers, 2002) and creating custom interfaces by borrowing from ex-

isting ones (e.g., Stuerzlinger et al. (2006)). Thus, a future avenue is

to explore how Astral could be adapted for people to create custom

interfaces and extend their current application functionality.

Figure 9.18. Alignment tools in Adobe
Illustrator.

 DAVID LEDO, 2020 | 305

 IMPLEMENTATION-LEVEL CONSTRAINTS

It is important to remember that Astral is in itself a proof-of-concept

prototype, developed by a small team of researchers in a limited

amount of time while handling different projects. There are certain

limitations, or constraints, in terms of the current implementation.

Some of these details are less relevant to the concept and more re-

lated to the usability, while others helped shape more heavily the ex-

pectations that a potential user might have when using Astral. I focus

on three aspects: the challenge of the complexities behind Astral, the

fact that each desktop and mobile device is different, and the degree

of permanence of a prototype made in Astral.

Implementation Bottlenecks

One aspect that is important to stress is that Astral itself is a highly

complex proof-of-concept system with many components working

together. The display capture code leverages libraries in .NET

graphics in System.Drawing that are at least 10 years old, which are

not highly prioritized within the operating system (thus capping at 60

frames per second). Once images are transferred, mobile devices

across multiple platforms which treat images differently (e.g., An-

droid is big endian while iOS is little endian, so individual bytes from

images that arrive need to sometimes be reinterpreted, which might

explain some of the bottlenecks on Android). Xamarin, while robust

and capable of generating cross-platform shared code in C#, is not as

optimized as using native languages such as Swift (iOS) or Java (An-

droid). Sensor data across devices varies from model to model. The

data is inconsistent in terms of which sensors are available, their re-

306 ASTRAL: BEHAVIOUR PROTOTYPING VIA FAMILIAR TOOLS

fresh rate, and the levels of granularity (as well as the range of maxi-

mum and minimum values). While most of the software is written

from scratch, there are many external libraries that we leverage, such

as to retrieve the camera view in WPF. This “daisy-chaining” of li-

braries on a prototype leads to issues such as memory leaks, which

can slow down the system over time. Moreover, the rule system, vis-

ualizations, and interface are all built from scratch, and were the re-

sult of an evolving architecture which was updated as new ideas

emerged. As a result, Astral also lacks key features that enable longer

term usage, such as inability to save rulesets once the software closes,

the absence of an undo-redo stack, or the inability to reconnect when

the system crashes. Lastly, the open-endedness when creating rules

means that there needs to be extensive testing. These tests might in-

clude orders of operation across different rules, as well as error check-

ing when settings for a rule are left blank. These aspects matter more

if Astral were to become a product, so they are relevant for the imple-

mentation but have no bearing on the concept itself.

Astral’s implementation limitations are a direct result of integrating

many specialized features of networking, image processing, mobile

sensing, data visualization, operating system hooks, etc. It is im-

portant to note that Astral works well enough to realize the proto-

types described thus far, as well as different permutations, provided

that the user has a good understanding of the code-base (i.e., they are

resilient to bugs and crashes). This is not an uncommon challenge in

systems research (Olsen, 2007), as it is unreasonable to expect a small

team of researchers to create a full product. Astral in the end remains

a prototype of its own, and taking it to a stage in which it can be de-

ployed onto different machines reliably would require significant

 DAVID LEDO, 2020 | 307

time, engineering effort, and a larger highly proficient team. As such,

making Astral deployable is beyond the scope of this dissertation.

Device Relativism

Every device is different, and Astral works with values relative to

both the desktop and the mobile device being used.

Mappings of mouse and screen coordinates may not work across dif-

ferent computers with different resolutions, as all these are relative

dimensions for each desktop monitor. Moreover, desktop application

window sizes are not fixed, so once the workspace has changed the

mappings may no longer work. There are workarounds to the latter

concern: it is possible to store the position and sizes of the windows

and associate them to the rules, so that when a ruleset executes it ad-

justs its values to match the window sizes. Yet, storing this infor-

mation still may not carry to another desktop, with different resolu-

tions, zoom factors and customizations within the familiar applica-

tions (e.g., where controls and palettes are placed within the win-

dow).

Mobile phones and smartwatches also have a wide variation within

their resolutions and sensors. Additionally, some sensors may not be

available on each device, and some sensors may have device-specific

readings in units that may not be intelligible. One example of an un-

expected sensor behaviour was that the Nexus 5X phone has a very

sensitive gyroscope which updates at a very fast rate with very fine-

grained values (over 6 decimal places). Transmitting this data on up-

dates caused the system to slow down and eventually crash, which led

us to add a threshold that can be set in code to determine how much

change there needs to be before value updates are sent.

308 ASTRAL: BEHAVIOUR PROTOTYPING VIA FAMILIAR TOOLS

Permanence

The device relativism and current implementation lead to a side ef-

fect of Astral, which is that the prototypes are only temporarily func-

tional. Prototypes work as long as all external software is running and

the active application that the designer wants to manipulate (e.g., Af-

terEffects) has not been moved or resized. In other words, Astral is

not aware of what applications are being manipulated, it is simply a

means to provide mapping from mobile device data to the desktop

while having a mirrored view of the desktop screen (or a portion of

it). Otherwise, the designer needs to readjust the values in each of the

rules. The lack of permanence is not necessarily an issue, as it ensures

the designer focuses on the behaviour design in itself and keeps the

activity as a self-contained exploration. Given that Astral can be

simply opened and operated on top of the existing designer work-

space, the cost of setting up the interactivity for the prototype is rel-

atively low. That said, the problem is that it does not leave a lot of

room for simply reusing the prototype or comparing different states

or versions within it. One interesting avenue of future work would be

to store the streamed images along with sensor values into the mobile

device to create small application simulations. With this, the proto-

types in Astral could be saved for longer-term usage and for more

communications within the larger design and development team.

9.8 SUMMARY
This chapter presented Astral, a prototyping tool that allows design-

ers to create rich interaction driven behaviours for mobile devices by

repurposing existing applications. Designers can stream contents of a

desktop and reflect them on mobile devices, and easily create rules

 DAVID LEDO, 2020 | 309

that map mobile input into desktop mouse and keyboard events to

enable the repurposing of existing applications. I described the inter-

face in Astral and explored a series of prototypes that demonstrate

how the tool can be used in different activities within the design pro-

cess. In particular, Astral integrates aspects of Soul-Body Prototyping

discussed in Chapter 6 and shows how designers can create interac-

tive behaviours for smart objects without the need to code. Thus, As-

tral serves as the glue to bring together my thesis that we can repurpose

existing hardware (mobile phones and watches) and software to enable de-

signers to create live interactive prototypes for smart interactive objects.

 CONCLUSION

This conclusion chapter revisits and reviews the solutions to the

problems outlined in Chapter 1, addressing my thesis, which is:

we can repurpose existing hardware (mobile phones and watches)

and software to enable designers to create live interactive proto-

types for smart interactive objects.

To review how this thesis is ultimately addressed, I revisit the de-

signer challenges discussed in Chapter 1 and further developed in

Chapter 6, and show how they have been fulfilled (§10.1). Thus, it

becomes possible to discuss the primary (§10.2) and secondary

(§10.3) contributions of my work, to then share potential future di-

rections (§10.4). I reflect on the overall role of this thesis (§10.5) ,

showing my overall vision as well as where this work might continue.

10.1 REVISITING THIS THESIS’
TARGET PROBLEMS

In Chapter 1 and Chapter 6, I describe three core problems that de-

signers face, which from about understanding the background and

312 CONCLUSION

training of interaction designers, as well as the existing tools to author

interactive behaviour (described in Part 1 of this thesis). Specifically,

when prototyping smart interactive objects, the challenges are:

− Need for multiple specializations, specifically programming,

circuit building, and form-giving;

− Lack of tool support beyond click-based screen transitions;

and

− Need for close-to-product representations, where designers

can manipulate the physical objects and feel the interactive

behaviours in context.

The Soul–Body Prototyping paradigm, along with Pineal and Astral

as tools that operationalize it, directly address these three designer

challenges. In Chapter 6, where I propose the Soul–Body Prototyping

paradigm, I explain how mobile devices can replace the need for elec-

tronic circuits through their many sensors and outputs which can per-

form many of the functions of smart objects. Moreover, these con-

structs are brought to higher levels of programming, as the sensors

and outputs have additional software abstractions that facilitate the

development such as event-driven programming, as well as platforms

that can automate many of the time-consuming low-level program-

ming (e.g., memory management). These development benefits make

it so it becomes easier to develop even higher-level design tools to

exploit these different sensors and outputs, as demonstrated by Pin-

eal (Chapter 8) and Astral (Chapter 9). Given that mobile program-

ming platforms are well maintained, it also means it is possible to

 DAVID LEDO, 2020 | 313

tighten the design-build-test cycle, such as through live program-

ming, where designers can see the effects of their decisions right away

as opposed to having to compile code, reassemble circuits, etc. to test

the behaviours. In addition, since Astral leverages existing tools, it

means it is possible to go beyond simple screen transitions, and tackle

aspects of interaction-driven animations. While Soul–Body Prototyp-

ing can be carried out through many kinds of materials (e.g., card-

board), Pineal’s fabrication-ready 3D models mean designers can

achieve a closer-to-product representation, which in conjunction to

Astral’s high ceilings for software sophistication, can lead to proto-

types that designers can manipulate, feel, and fine-tune. This is not

to say that these are the only two solutions, but instead to show that

with two self-contained explorations it was possible to see a relatively

expressive outcome through a variety of prototypes. Indeed, there are

more opportunities for better understanding interactive behaviours,

and different authoring mechanisms and paths of least resistance that

may favour different end-results and classes of prototypes.

Both Astral and Pineal are early explorations, which raise the ques-

tion of how designers might actually work with these kinds of tools.

This is a difficult question beyond the scope of this thesis, and one

that may not necessarily have a right answer. Many of the design tools

in HCI research promise hypothetical futures, but the only way to

truly know if these tools will indeed change people’s practices is by

becoming part of the practice as fully fledged tools with ongoing sup-

port. Laboratory experiments can only answer some questions spe-

cific to the implementation details of these systems, such as usability

problems at the interface level. This truly leads to a paradox in our

field of research, as technologies that become common-place can

314 CONCLUSION

shape existing practices, but for practitioners to adopt new technolo-

gies, these technologies need to become common-place. In that

sense, the role of an interaction designer is exclusively defined by

what they can create as a common denominator with the tools that

are available. Perhaps an interaction designer for smart interactive

objects does not exist as a job description because there are no tools

that let an interaction designer create these kinds of prototypes. To-

day’s design tools (discussed in Chapter 4) seem to converge towards

large standardization of interfaces and few opportunities to diverge

and customize outside of these boundaries.

This dichotomy of practice and vision are a common challenge in

HCI as a field. My approach has thus been to try and best understand

both the audience of these tools, in this case interaction designers, as

well as what the tools both in research and industry themselves offer.

As a result, it becomes possible to create certain constraints given the

understanding, such as acknowledging that there need to be program-

ming alternatives that do not require coding. From there it becomes

possible to envision new tools. While these tools may not become part

of everyday practice in the short term, these ideas can then live and

inform future systems both in research and industry. This is why, as

discussed in Chapter 3, demonstrations are crucial components to ex-

ploring what software tools might do, and realizing bold visions of the

future, as revealed by the many toolkits we surveyed. Similarly dis-

cussed in Chapter 3, it is key to determine whether a user study would

add significant value to the work beyond a “sanity check” and realize

that as researchers we are in a much stronger position to critically en-

vision potential future practice as opposed to our study participants.

 DAVID LEDO, 2020 | 315

Table 10.1. Summary of primary thesis contributions

316 CONCLUSION

10.2 PRIMARY CONTRIBUTIONS
This thesis at its core devises an alternative way for designers to pro-

totype interactive behaviours for smart interactive objects without

the need for coding or custom circuitry. In doing so, I examined both

conceptual and technical standpoints. I summarize the three primary

contributions in context with my thesis statement, research ques-

tions, goals, as well as evaluation in Table 10.1.

Conceptual Contribution: Soul–Body Prototyping. The Soul–Body

Prototyping Paradigm provides an alternative way of thinking about

designing smart interactive object prototypes by repurposing readily

available smartphones and watches into a new context. I provided a

design space of the different mobile inputs and outputs as well as

ways in which they can be repurposed for physical prototyping. In

particular, the categorization of modifiers (rerouting or transducing)

opens up ways to think about creating new and interesting physical

widgets for potential interactions with smart objects. The collection

of individual prototypes across Chapters 7, 8, and 9 are all living ex-

amples and demonstrations of the opportunities of the paradigm.

Technical Contributions: Pineal and Astral as Software Tools. The

two proof-of-concept systems created for this thesis, Astral and Pin-

eal, are ways of operationalizing Soul–Body Prototyping and bringing

the paradigm into the interaction design context. The sample proto-

types created with these tools showcase the breadth and ceiling of

what is possible to create in terms of interactive behaviours that can

be tested live on a physical prototype. These prototypes are created

without the need to code and without having to create custom cir-

cuitry, which on its own removes several time-consuming steps, and

 DAVID LEDO, 2020 | 317

enables designers to focus on the design activity itself rather than the

implementation details. There are also individual features of the tools

that are novel and could be considered in future design tools, such as

Astral’s visualizations which are tailored to specific sensors, with live

updates, as well as the ability to record and scrub through video syn-

chronized with the sensor data. Pineal and Astral are tools that could

be used in combination and suggest that perhaps there could be a

larger suite of tools that support different aspects of Soul–Body Pro-

totyping that may be suitable at different stages of the design process.

10.3 SECONDARY CONTRIBUTIONS
Interaction Design Background. Chapter 2 presents a comprehen-

sive review looking at interaction design as a field, as well as proto-

typing theory, with a large corpus of work that has emerged since the

last comprehensive review of the field by Hartmann (2009).

Defining Interactive Behaviour. In addition, I integrate different the-

ories from both interaction design research and HCI to start uncov-

ering what researchers might mean when referring to interactive be-

haviour, and examining the different authoring approaches to these

types of prototypes as done in research and industry tools to date.

Toolkit Evaluation Methods. The survey on evaluation methods for

toolkit research represents an empirical overview of different ap-

proaches taken by researchers to date, which broadly includes

demonstrations, usage, performance and heuristics. This perspective

helps support prior criticism to the role of usability studies, as noted

by authors such as Olsen (2007), Kaye (2007), as well as Greenberg

318 CONCLUSION

and Buxton (2008). The collection of methods provides an initial un-

derstanding as to how toolkit researchers create and validate

knowledge within the field of HCI. More importantly, this work and

its approach has inspired similar kinds of surveys in other areas of

HCI, including the landscape of creativity research (Frich et al.,

2019), as well as the taxonomy of cross-device interactions (Brudy et

al., 2019). It is worth emphasizing that Brudy et al. found that these

same evaluation strategies I uncovered in Chapter 5 also apply to over

300 systems investigating aspects of cross-device interaction, further

generalizing this knowledge.

10.4 FUTURE WORK
Given the set of building blocks in any software tools, they are bound

to shape how people think about, and approach problems, as well as

what is possible to produce. As a result, having a wider variety of

methods and tools than what already exists can lead to different kinds

of solutions and accommodate individual ways of thinking. Soul–

Body Prototyping and the current encompassing tools already pro-

vide an alternate way to think about how to use mobile devices for

prototyping, how to prototype smart objects, and how to realize in-

teractive behaviours. The next set of projects propose a natural ex-

tension to this dissertation’s work, while others suggest further ques-

tions for the field.

 MAKING EXISTING OBJECTS INTO SMART PRO-

TOTYPES

Soul–Body Prototyping thus far has examined making new objects

from scratch. An alternative thought is to consider what if one could

 DAVID LEDO, 2020 | 319

attach a mobile device to an existing object to immediately turn it into

a smart object. This can be a prototyping approach that leads to new

kinds of smart objects, or new ways to think about smart objects. Af-

ter all, mobile device sensors and outputs provide a creative prompt

to generate new kinds of ideas. For example, a mobile device can be

attached to a door to create a smart door: the motion patterns can

know if the door is being opened or closed, while sound patterns can

suggest if the door is being locked or unlocked. One can then experi-

ment with different ways of displaying notifications on the door itself

(e.g., if someone knocked on the door while one is away), or perhaps

sending messages to the homeowner’s phone (e.g., if they forget to

lock the door). One could also attach a smart watch to a coffee ma-

chine and detect when it may need cleaning, or track how often dif-

ferent coffees are made. The lack of actuation and the constraint of

the mobile device can also provide an advantage, as it can foster more

communication between the end-user and the device to better under-

stand what is happening at a given moment. Thus, this type of Soul–

Body Prototyping opens opportunities to new kinds of smart object

prototypes that can communicate with people or track activity with-

out taking away people’s agency and control. Additionally, one can

explore how to create architectures that can help make some of these

prototypes into longer term objects, and provide people with novel

ways of reusing old mobile devices. Some examples of smart objects

and how they can exploit mobile sensors and outputs are summarized

in Figure 10.1 as a sketch.

320 CONCLUSION

 SOUL–BODY MULTI-DEVICE ECOLOGIES

In Chapter 1, I discussed how one can think of the interaction with a

single device, or one can look at how one or more devices support

people’s activities. A natural extension of the body of work in this

dissertation is to consider how to create prototyping tools that lever-

age multiple devices. One can think of how individual devices interact

together, meaning that the output of one device yields input in an-

other device, and then further expand considering how we can define

scenarios with activities. Buxton (2018) discusses the concept of

place being more than a single location, and exemplifies his concept

Figure 10.1. Sketch sample showing different ways of augmenting existing ob-
jects with mobile devices to work as smart object prototypes.

 DAVID LEDO, 2020 | 321

of ubiety through a personal digital assistant, where the conversation

can move as one travels from one room to another by connecting to

different smart speakers in different rooms. In that case, the interac-

tion is no longer about the device, but the seamless transition from

one location to another while the interaction still takes place. This

exploration can initially look at how devices communicate with each

other, or how multiple devices can incorporate themselves together

within a single object to provide different points of sensing and out-

puts. With these, it is possible to create more complex prototypes.

For example, consider a smart home where opening a door gradually

makes the lights turn on as the door is being opened. Another exam-

ple could be to build an air hockey table where mobile devices are at-

tached to the two goals and use their sensors to track the score. As a

result, the scale of applications increases and thus can lead to user

experiences where the devices are working more interconnected

while still supporting everyday human activity.

 SUPPORTING MULTIPLE PARAMETERS

With current prototyping tools, and even with Astral running a video

editor, only one “main” animation can take place at a certain point.

Yet, this is not how many interactions play out. For example, Astral’s

implementation of tilt-to-zoom (§9.5.2) can animate more than one

parameter at once: the position (x, y) from the touch event, and the

zoom from the accelerometer tilt. This is one of many examples in

which the input leads to an animation that affects more than one out-

put parameter. The question that arises is to devise how designers can

author more complex experiences in which multiple sensors are tied to a va-

riety of outputs which are independent from each other. One way to do so

322 CONCLUSION

is through a more generalized animation tool, which instead of a main

timeline features a series of independent sensor-based timelines from

which one can create keyframes and motion tweens. Thus, designers

could take multiple sensor data and associate individual sensor values

to independent animations, generating more dynamic and responsive

environments. The animations could span both motion tweens (ex-

plained in Chapter 4 and 9) or frame-by-frame animations.

 NEW BUILDING BLOCKS FOR

INTERACTIVE BEHAVIOUR DESIGN

One potential way to break from existing authoring approaches is to

generate a new one by studying and analyzing how designers describe

interactive behaviours. Myers et al. (2004) conducted a study in

which they devised programming building blocks by asking program-

mers and non-programmers to verbally describe photos showing dif-

ferent states of a program. One instance included, for example, an

image showing Pac-Man moving and stopping when hitting a wall,

where participants had to then verbally describe what a program

should do. This study led to rich insights, such as the common use by

programmers of the word “when” to describe events. “When” has

been adopted as a keyword in newer programming languages such as

Scratch (Maloney et al., 2010), and can be considered a simple con-

cept to understand: when an event happens, do something. A similar ap-

proach to the study by Myers et al. (2004) can be extrapolated into

design, where one could study the kinds of words and descriptions

designers use given a variety of prompts. Moreover, it is also an op-

portunity to assess the different approaches designers might take to

solve these prompts in a variety of resolutions, to better understand

 DAVID LEDO, 2020 | 323

how they think about certain interaction problems. One could select

a variety of interactions that populate a representative portion of the

interactive behaviour framework in Chapter 3, and have designers de-

scribe them and then express how they would prototype them in dif-

ferent ways. Careful consideration would have to be placed to make

sure that the designers are not biased by the prompts, that is, ensuring

that a particular authoring approach is not in any way implied or sug-

gested. This can be mitigated by using visual narratives (e.g., word-

less comics) or even videos. While there is a possibility that many of

the results replicate what is already known, we can discover some of

the designers’ inclinations, as well as more fine-grained details of how

they express and describe what happens.

 REFLECTIONS IN SYSTEMS RESEARCH

The work in toolkit evaluation made me realize that a lot of the re-

flection on toolkits is the result of the authors’ experiences, and that

some of the richest validation was from their insightful discussions

rather than their studies. Many of these studies have taken Myers et

al. (2000), as well as Olsen (2007), and leverage their work as a vo-

cabulary to discuss certain aspects of toolkit research such as the ex-

pressiveness or the flexibility. At this point in time, given a larger cor-

pus of work, there is room for devising a broader vocabulary and set

of questions authors can make when looking at authoring environ-

ments. For example, Myers et al. (2000) bring forth the concept of

“threshold”, which refers to how easy it is to get started with a tool.

However, one can further discuss the threshold in terms of different

perspectives. For example, “technical threshold” can refer to a user’s

ability to get started with the software, while “setup threshold” can

324 CONCLUSION

refer to how difficult a tool can be to put together so that the user can

operate it. A “conceptual threshold” may refer to the required exper-

tise of the user in terms of the concepts they are exploring with the

particular tool.

These discussions typically stem from the systems’ demonstrations.

While I argue that demonstrations are a valuable form of evaluation,

another important question that remains is what makes a strong or

weak demonstration. It is possible to distill what demonstrations do

to support the overall argumentation. For example, Astral’s demon-

strations felt unique in that they establish how to fit within existing

practices, but also how Astral as a tool can co-exist with the applica-

tions today. In that sense, a new interaction technique may show

more value by showing how it integrates into todays workflows and

environment within a device than testing its accuracy and speed.

Somehow this type of reflection shows that a research vision can be

realized and can belong in our existing ecosystems.

10.5 REFLECTION

Together, the contributions of this thesis work entail that interaction

designers can now join in and perform activities that were not possi-

ble with current tools. The existing literature, as discussed in Chap-

ters 2 and 4, reflects that interaction design tools in the market today

do not align with interaction designers’ main goal, which is to explore

and envision interactive behaviours, largely due to the technical lim-

itations of what the tools can do. Soul–Body Prototyping, together

with Pineal and Astral, as presented in this thesis, show how their

applications can adapt to tasks designers already do, and even co-exist

 DAVID LEDO, 2020 | 325

with already available hardware (phones and smartwatches) and soft-

ware platforms (e.g., 3D modeling tools, video editors). The focus on

interactive behaviour proposes an added layer of prototypes design-

ers might deliver, such as interactive behaviours in the context of the

form, as well as behaviours as driven by the users’ actions (i.e., inter-

action-driven animations).

Astral and Pineal, while separate tools, can work together, as shown

in Chapter 9, where one can take a Soul–Body Prototype and author

richer behaviours using Astral. An interpretation of this integration is

visualized in Figure 10.2. It would seem that then, Pineal could be

better off by incorporating some of the authoring aspects from Astral.

However, Pineal’s automation necessitates clear cut instructions that

can modify a physical form, which is something the visual program-

ming approach helped ensure. Because Astral’s authoring is more

open-ended, even if the behaviour was not tied to external applica-

tions, it would not reliably generate modification instructions. One

could expand the visual programming to support different kinds of

rich animations within the authoring environment. However, I see

value in keeping the tools separate, specialized, and able to work in

tandem, as it gives the designer flexibility, and would not force the

creation of a form when all designer wants to do is to test a behaviour

and vice versa. While some technical aspects of Pineal could benefit

from the lessons applied in Astral, such as the use of a WiFi-enabled

smart watch, and direct TCP connection, I believe the role of Pineal

should remain to author forms, with some coverage of behaviour as-

pects. In that sense, perhaps the system design could have benefitted

326 CONCLUSION

by first having a generalized toolkit for implementing Soul–Body Pro-

totyping systems, and then using the toolkit to create the two sys-

tems. In the current Astral implementation, there are plenty of ab-

stractions that could be used to create such a toolkit, and in fact

WatchPen was implemented from an “empty” version of Astral.

This general toolkit could then be an additional technical contribu-

tion, which could also promote additional creation of prototyping

tools, as well as research systems.

Figure 10.2. Visualization which interprets how Pineal and Astral cover the dif-
ferent aspects of interactive behaviour design and how they can be combined.

 DAVID LEDO, 2020 | 327

Many of the design tools in HCI research promise hypothetical fu-

tures, but the only way to truly know if these tools might indeed

change people’s practices is by becoming part of the practice as fully

fledged tools with ongoing support. For example, as described early

in the Soul–Body Prototyping motivation, Chapter 6, computers for-

ever changed how graphic design was done, but for that change to

happen all the software and existing infrastructure had to be in place

for the technological shift to happen. Once the technology is widely

available, a change in practice can indeed take place. I believe that

interaction design tools are still at an early stage, given that no com-

mercial software has remained as industry standard for more than a

few years in the past decade. In that sense, the role of an interaction

designer has been exclusively defined by what the currently available

commercial tools can create. Today’s design tools (discussed in

Chapter 4) seem to converge towards large standardization of inter-

faces and little opportunity to diverge and customize outside of these

boundaries. While there is value to base standards and generalizabil-

ity, if every single interface looks and feels the same, then there is no

room for custom or interesting user experiences that break away from

the norm.

A question beyond the scope of this thesis, is how then, can the work

produced in this thesis potentially become, or influence, part of fu-

ture practices? I believe the major step will need to be for interaction

design as a discipline to further mature, and gain a better sense of

what it is about and what is possible. This can be achieved through:

(1) integrative theories that can continue to define interactive behav-

iours, (2) devising new methods to enable designers to prototype, and

(3) technical explorations that help show what is possible and raise

328 CONCLUSION

new questions that can help inform the theories. As I progressed

through this thesis, my software and hardware explorations led me to

find new ways for designers to envision their creations, and that led

to larger questions of what is interactive behaviour and how can de-

signers further elevate their current designs. While these tools may

not become part of everyday practice in the short term, the ideas can

then live and inform future systems both in research and industry.

For systems to be adopted, it almost seems like they need to be avail-

able, documented, and attract some form of attention, such as

through social media. A tool like Astral could be iterated upon to re-

move glitches and become more robust, which would make it so dif-

ferent kinds of designers can start creating prototypes with it. In fact,

a school of motion design was interested in working with Astral and

using it to teach motion designers many aspects of interaction design.

Through this type of more in-depth usage, it would be possible to

learn what it is like for people to use the tool, and discover the types

of strategies they devise, as well as which familiar tools they leverage

and for what purpose. Additionally, there would be insight on the ex-

tent to which these mappings as a form of programming serve com-

pared to other existing strategies such as scripting or coding.

The tools proposed in this thesis focus primarily on exploration ra-

ther than specification. Specification is indeed a fundamental next

step as it is necessary for designers to hand off their designs to the

appropriate people, such as developers or engineers. It is important

to ask to what extent it is possible to preserve all the details and nu-

ances from a design in a future implementation, but also how to en-

sure that whoever receives the design can appreciate and mimic all of

 DAVID LEDO, 2020 | 329

the aspects behind a carefully crafted interactive behaviour. One way

of accommodating this in Astral and Pineal is to be able to save the

authored prototypes (e.g., saving the sensor data and visuals within

Astral) so designers can show them to developers. Alternatively, one

could consider part of the process as a matter of communication, as

shown in Leiva’s PhD work (2019), which looks at the breakdowns in

communication, but also how to design tools that enable designers to

deliver their work to programmers. Alternatively, perhaps the role of

interaction design tools is to grow to such a degree that designers can

accomplish functional systems, and create a similar shift to how

graphic designers expanded their role at the end of the 20th century.

10.6 CLOSING REMARKS
Overall, as the kinds of applications in computing continue to expand,

our tools need to accordingly catch up to enable easy authoring. De-

Line (Fraser et al., 2015) discusses how programming languages that

are not at the inception of a new area struggle to gain adopters even if

they are technically superior or have higher expressive match. This

may also be the case in higher-level tools. In particular with prototyp-

ing tools, the challenge is the fast-moving target of all the base plat-

forms (e.g., electronics, mobile programming platforms, web librar-

ies, design standard), which can quickly become obsolete before the

tools gain traction. Our duty as HCI researchers is to explore differ-

ent kinds of platforms and approaches to (1) stay relevant in terms of

the authoring we support; and (2) repurpose existing strategies into

new contexts. The explorations in interactive behaviour and smart

interactive object prototyping brought forth in this thesis open poten-

330 CONCLUSION

tial avenues to significantly help reclaim interaction design as a disci-

pline to build functional prototypes rather than continue a trend of

focusing on simple transitions that take place on highly polished static

visuals.

REFERENCES

1. Anderson, F., Grossman, T., & Fitzmaurice, G. (2017).

Trigger-Action-Circuits: Leveraging Generative Design to

Enable Novices to Design and Build Circuitry. Proceedings of

the 30th Annual ACM Symposium on User Interface Software

and Technology, 331–342. Québec City, QC, Canada: Associ-

ation for Computing Machinery. doi:

10.1145/3126594.3126637

2. Apitz, G., & Guimbretière, F. (2004). CrossY: A Crossing-

Based Drawing Application. Proceedings of the 17th Annual

ACM Symposium on User Interface Software and Technology,

3–12. Santa Fe, NM, USA: Association for Computing Ma-

chinery. doi: 10.1145/1029632.1029635

3. Appert, C., & Beaudouin-Lafon, M. (2006). SwingStates:

Adding State Machines to the Swing Toolkit. Proceedings of

the 19th Annual ACM Symposium on User Interface Software

and Technology, 319–322. Montreux, Switzerland: Associa-

tion for Computing Machinery. doi:

10.1145/1166253.1166302

4. Ashbrook, D., & Starner, T. (2010). MAGIC: A Motion

Gesture Design Tool. Proceedings of the SIGCHI Conference

on Human Factors in Computing Systems, 2159–2168. Atlanta,

Georgia, USA: Association for Computing Machinery. doi:

10.1145/1753326.1753653

https://doi.org/10.1145/3126594.3126637
https://doi.org/10.1145/1029632.1029635
https://doi.org/10.1145/1166253.1166302
https://doi.org/10.1145/1753326.1753653

334 REFERENCES

5. Badam, S. K., & Elmqvist, N. (2014). PolyChrome: A Cross-

Device Framework for Collaborative Web Visualization. Pro-

ceedings of the Ninth ACM International Conference on Interac-

tive Tabletops and Surfaces, 109–118. Dresden, Germany: As-

sociation for Computing Machinery. doi:

10.1145/2669485.2669518

6. Baecker, R. M. (1969). Picture-Driven Animation. Proceed-

ings of the May 14-16, 1969, Spring Joint Computer Conference,

273–288. Boston, Massachusetts: Association for Compu-

ting Machinery. doi: 10.1145/1476793.1476838

7. Bailey, B. P., Konstan, J. A., & Carlis, J. V. (2001).

DEMAIS: Designing Multimedia Applications with Interac-

tive Storyboards. Proceedings of the Ninth ACM International

Conference on Multimedia, 241–250. Ottawa, Canada: Associ-

ation for Computing Machinery. doi: 10.1145/500141.500179

8. Ball, T., Protzenko, J., Bishop, J., Moskal, M., de Halleux, J.,

Braun, M., … Riley, C. (2016). Microsoft Touch Develop

and the BBC micro:bit. 2016 IEEE/ACM 38th International

Conference on Software Engineering Companion (ICSE-C),

637–640.

9. Ballagas, R., Ringel, M., Stone, M., & Borchers, J. (2003).

iStuff: A physical user interface toolkit for ubiquitous com-

puting environments. Proceedings of the SIGCHI Conference

on Human Factors in Computing Systems, 537–544. Ft.

Lauderdale, Florida, USA: Association for Computing Ma-

chinery. doi: 10.1145/642611.642705

https://doi.org/10.1145/2669485.2669518
https://doi.org/10.1145/1476793.1476838
https://doi.org/10.1145/500141.500179
https://doi.org/10.1145/642611.642705

 DAVID LEDO, 2020 | 335

10. Ballendat, T., Marquardt, N., & Greenberg, S. (2010). Prox-

emic Interaction: Designing for a Proximity and Orientation-

Aware Environment. ACM International Conference on Inter-

active Tabletops and Surfaces, 121–130. Saarbrücken, Ger-

many: Association for Computing Machinery. doi:

10.1145/1936652.1936676

11. Baskinger, M., & Bardel, W. (2013). Drawing Ideas: A Hand-

drawn Approach for Better Design. Watson-Guptill Publica-

tions.

12. Bau, O., & Mackay, W. E. (2008). OctoPocus: A Dynamic

Guide for Learning Gesture-Based Command Sets. Proceed-

ings of the 21st Annual ACM Symposium on User Interface Soft-

ware and Technology, 37–46. Monterey, CA, USA: Associa-

tion for Computing Machinery. doi:

10.1145/1449715.1449724

13. Beaudouin-Lafon, M. (2000). Instrumental Interaction: An

Interaction Model for Designing Post-WIMP User Inter-

faces. Proceedings of the SIGCHI Conference on Human Fac-

tors in Computing Systems, 446–453. The Hague, The Neth-

erlands: Association for Computing Machinery. doi:

10.1145/332040.332473

14. Beaudouin-Lafon, M. (2004). Designing Interaction, Not In-

terfaces. Proceedings of the Working Conference on Advanced

Visual Interfaces, 15–22. Gallipoli, Italy: Association for

Computing Machinery. doi: 10.1145/989863.989865

https://doi.org/10.1145/1936652.1936676
https://doi.org/10.1145/1449715.1449724
https://doi.org/10.1145/332040.332473
https://doi.org/10.1145/989863.989865

336 REFERENCES

15. Bederson, B.B., Grosjean, J., & Meyer, J. (2004). Toolkit

Design for Interactive Structured Graphics. IEEE Transac-

tions on Software Engineering, 30(8), 535–546. doi:

10.1109/TSE.2004.44

16. Bederson, Benjamin B., Hollan, J. D., Druin, A., Stewart, J.,

Rogers, D., & Proft, D. (1996). Local Tools: An Alternative

to Tool Palettes. Proceedings of the 9th Annual ACM Sympo-

sium on User Interface Software and Technology, 169–170. Se-

attle, Washington, USA: Association for Computing Ma-

chinery. doi: 10.1145/237091.237116

17. Bernstein, M. S., Ackerman, M. S., Chi, E. H., & Miller, R.

C. (2011). The Trouble with Social Computing Systems Re-

search. CHI ’11 Extended Abstracts on Human Factors in Com-

puting Systems, 389–398. Vancouver, BC, Canada: Associa-

tion for Computing Machinery. doi:

10.1145/1979742.1979618

18. Bertelsen, O. W. (2000). Design Artefacts: Towards a De-

sign-Oriented Epistemology. Scandinavian Journal of Infor-

mation Systems, 12(1), 2.

19. Blackburn, S. M., Garner, R., Hoffmann, C., Khang, A. M.,

McKinley, K. S., Bentzur, R., … Wiedermann, B. (2006).

The DaCapo Benchmarks: Java Benchmarking Development

and Analysis. Proceedings of the 21st Annual ACM SIGPLAN

Conference on Object-Oriented Programming Systems, Lan-

guages, and Applications, 169–190. Portland, Oregon, USA:

https://doi.org/10.1109/TSE.2004.44
https://doi.org/10.1145/237091.237116
https://doi.org/10.1145/1979742.1979618

 DAVID LEDO, 2020 | 337

Association for Computing Machinery. doi:

10.1145/1167473.1167488

20. Blackwell, A. F., Green, T. R., & Nunn, D. J. (2000). Cogni-

tive dimensions and musical notation systems. Proceedings of

International Computer Music Conference, Berlin.

21. Blackwell, A., & Green, T. (2007). A Cognitive Dimensions

Questionnaire. February.

22. Block, F., Haller, M., Gellersen, H., Gutwin, C., & Billing-

hurst, M. (2008). VoodooSketch: Extending Interactive Sur-

faces with Adaptable Interface Palettes. Proceedings of the 2nd

International Conference on Tangible and Embedded Interac-

tion, 55–58. Bonn, Germany: Association for Computing

Machinery. doi: 10.1145/1347390.1347404

23. Bødker, S., & Grønbæk, K. (1991). Cooperative Prototyping:

Users and Designers in Mutual Activity. International Jour-

nal of Man-Machine Studies, 34(3), 453–478. doi:

10.1016/0020-7373(91)90030-B

24. Booth, T., Stumpf, S., Bird, J., & Jones, S. (2016). Crossed

Wires: Investigating the Problems of End-User Developers

in a Physical Computing Task. Proceedings of the 2016 CHI

Conference on Human Factors in Computing Systems, 3485–

3497. San Jose, California, USA: Association for Computing

Machinery. doi: 10.1145/2858036.2858533

25. Boring, S., Ledo, D., Chen, X. “Anthony,” Marquardt, N.,

Tang, A., & Greenberg, S. (2012). The Fat Thumb: Using

https://doi.org/10.1145/1167473.1167488
https://doi.org/10.1145/1347390.1347404
https://doi.org/10.1016/0020-7373(91)90030-B
https://doi.org/10.1145/2858036.2858533

338 REFERENCES

the Thumb’s Contact Size for Single-Handed Mobile Inter-

action. Proceedings of the 14th International Conference on Hu-

man-Computer Interaction with Mobile Devices and Services,

39–48. San Francisco, California, USA: Association for

Computing Machinery. doi: 10.1145/2371574.2371582

26. Bostock, M., & Heer, J. (2009). Protovis: A Graphical

Toolkit for Visualization. IEEE Transactions on Visualization

and Computer Graphics, 15(6), 1121–1128. doi:

10.1109/TVCG.2009.174

27. Bostock, M., Ogievetsky, V., & Heer, J. (2011). D3 Data-

Driven Documents. IEEE Transactions on Visualization and

Computer Graphics, 17(12), 2301–2309. doi:

10.1109/TVCG.2011.185

28. Brandt, J., Guo, P. J., Lewenstein, J., & Klemmer, S. R.

(2008). Opportunistic Programming: How Rapid Ideation

and Prototyping Occur in Practice. Proceedings of the 4th In-

ternational Workshop on End-User Software Engineering, 1–5.

Leipzig, Germany: Association for Computing Machinery.

doi: 10.1145/1370847.1370848

29. Brudy, F., Ledo, D., Greenberg, S., & Butz, A. (2014). Is

Anyone Looking? Mitigating Shoulder Surfing on Public

Displays through Awareness and Protection. Proceedings of

The International Symposium on Pervasive Displays, 1–6. Co-

penhagen, Denmark: Association for Computing Machinery.

doi: 10.1145/2611009.2611028

https://doi.org/10.1145/2371574.2371582
https://doi.org/10.1109/TVCG.2009.174
https://doi.org/10.1109/TVCG.2011.185
https://doi.org/10.1145/1370847.1370848
https://doi.org/10.1145/2611009.2611028

 DAVID LEDO, 2020 | 339

30. Buchanan, R. (1992). Wicked Problems in Design Thinking.

Design Issues, 8(2), 5–21. JSTOR. doi: 10.2307/1511637

31. Buxton, B. (2010). Sketching User Experiences: Getting the De-

sign Right and the Right Design. Morgan Kaufmann.

32. Buxton, W. (1983). Lexical and Pragmatic Considerations of

Input Structures. ACM SIGGRAPH Computer Graphics,

17(1), 31–37. doi: 10.1145/988584.988586

33. Buxton, W. (1986). Chunking and Phrasing and the Design

of Human-Computer Dialogues. In Readings in Human–

Computer Interaction (pp. 494–499). Elsevier.

34. Buxton, W. (1990). A Three-State Model of Graphical In-

put. Human-Computer Interaction-Interact, 90, 449–456.

Citeseer.

35. Buxton, W. (1997). Living in Augmented Reality: Ubiquitous

Media and Reactive Environments. Video Mediated Commu-

nication, 363–384.

36. Buxton, W. (2018). Ubiety: On Design, Place and the Im-

portance of Manners. Retrieved from

https://www.youtube.com/watch?v=GEe-

ZFW7PFBI&t=2526s

37. Caplan, R. (1982). By Design: Why There Are No Locks on the

Bathroom Doors in the Hotel Louis XIV, and Other Object Les-

sons. Fairchild Publications.

38. Cardoso, J., & José, R. (2012). PuReWidgets: A Program-

ming Toolkit for Interactive Public Display Applications.

https://doi.org/10.2307/1511637
https://doi.org/10.1145/988584.988586
https://www.youtube.com/watch?v=GEeZFW7PFBI&t=2526s
https://www.youtube.com/watch?v=GEeZFW7PFBI&t=2526s

340 REFERENCES

Proceedings of the 4th ACM SIGCHI Symposium on Engineer-

ing Interactive Computing Systems, 51–60. Copenhagen, Den-

mark: Association for Computing Machinery. doi:

10.1145/2305484.2305496

39. Carroll, J. M. (2003). HCI Models, Theories, and Frameworks:

Toward a Multidisciplinary Science. Elsevier.

40. Charmaz, K. (2014). Constructing Grounded Theory. SAGE.

41. Chen, X. “Anthony,” Grossman, T., Wigdor, D. J., & Fitz-

maurice, G. (2014). Duet: Exploring Joint Interactions on a

Smart Phone and a Smart Watch. Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems, 159–168.

Toronto, Ontario, Canada: Association for Computing Ma-

chinery. doi: 10.1145/2556288.2556955

42. Chen, X. “Anthony,” Marquardt, N., Tang, A., Boring, S.,

& Greenberg, S. (2012). Extending a Mobile Device’s Inter-

action Space Through Body-Centric Interaction. Proceedings

of the 14th International Conference on Human-Computer Inter-

action with Mobile Devices and Services, 151–160. San Fran-

cisco, California, USA: Association for Computing Machin-

ery. doi: 10.1145/2371574.2371599

43. Cheung, V., & Girouard, A. (2019). Tangible Around-De-

vice Interaction Using Rotatory Gestures with a Magnetic

Ring. Proceedings of the 21st International Conference on Hu-

man-Computer Interaction with Mobile Devices and Services, 1–

8. Taipei, Taiwan: Association for Computing Machinery.

doi: 10.1145/3338286.3340137

https://doi.org/10.1145/2305484.2305496
https://doi.org/10.1145/2556288.2556955
https://doi.org/10.1145/2371574.2371599
https://doi.org/10.1145/3338286.3340137

 DAVID LEDO, 2020 | 341

44. Chi, P.-Y. (Peggy), & Li, Y. (2015). Weave: Scripting Cross-

Device Wearable Interaction. Proceedings of the 33rd Annual

ACM Conference on Human Factors in Computing Systems,

3923–3932. Seoul, Republic of Korea: Association for Com-

puting Machinery. doi: 10.1145/2702123.2702451

45. Chimero, F. (2012). The Shape of Design.

46. Collective, B. M., & Shaw, D. (2012). Makey Makey: Impro-

vising Tangible and Nature-Based User Interfaces. Proceed-

ings of the Sixth International Conference on Tangible, Embed-

ded and Embodied Interaction, 367–370. Kingston, Ontario,

Canada: Association for Computing Machinery. doi:

10.1145/2148131.2148219

47. Cooper, A., Reimann, R., Cronin, D., & Noessel, C. (2014).

About Face: The Essentials of Interaction Design. John Wiley &

Sons.

48. Cooperstock, J. R., Fels, S. S., Buxton, W., & Smith, K. C.

(1997). Reactive Environments. Communications of the ACM,

40(9), 65–73. doi: 10.1145/260750.260774

49. Cross, N. (1982). Designerly ways of knowing. Design Stud-

ies, 3(4), 221–227. doi: 10.1016/0142-694X(82)90040-0

50. Cross, N. (1997). Descriptive Models of Creative Design:

Application to an Example. Design Studies, 18(4), 427–440.

doi: 10.1016/S0142-694X(97)00010-0

51. Cross, N. (1999). Design Research: A Disciplined Conversa-

tion. Design Issues, 15(2), 5–10. JSTOR. doi: 10.2307/1511837

https://doi.org/10.1145/2702123.2702451
https://doi.org/10.1145/2148131.2148219
https://doi.org/10.1145/260750.260774
https://doi.org/10.1016/0142-694X(82)90040-0
https://doi.org/10.1016/S0142-694X(97)00010-0
https://doi.org/10.2307/1511837

342 REFERENCES

52. Cross, N. (2011). Design Thinking: Understanding How De-

signers Think and Work. Berg.

53. Dalsgaard, P. (n.d.). Instruments of Inquiry: Understanding

the Nature and Role of Tools in Design. International Jour-

nal of Dsign. Retrieved from http://index.ijdesign.org/in-

dex.php/IJDesign/article/view/2275

54. Danis, C., & Boies, S. (2000). Using a Technique from

Graphic Designers to Develop Innovative System Designs.

Proceedings of the 3rd Conference on Designing Interactive Sys-

tems: Processes, Practices, Methods, and Techniques, 20–26.

New York City, New York, USA: Association for Compu-

ting Machinery. doi: 10.1145/347642.347657

55. de Alwis, B., Gutwin, C., & Greenberg, S. (2009). GT/SD:

Performance and Simplicity in a Groupware Toolkit. Pro-

ceedings of the 1st Acm Sigchi Symposium on Engineering Inter-

active Computing Systems, 265–274. Pittsburgh, PA, USA:

Association for Computing Machinery. doi:

10.1145/1570433.1570483

56. de Sá, M., Carriço, L., Duarte, L., & Reis, T. (2008). A

Mixed-Fidelity Prototyping Tool for Mobile Devices. Pro-

ceedings of the Working Conference on Advanced Visual Inter-

faces, 225–232. Napoli, Italy: Association for Computing

Machinery. doi: 10.1145/1385569.1385606

57. Dey, A. K., Hamid, R., Beckmann, C., Li, I., & Hsu, D.

(2004). A CAPpella: Programming by Demonstration of

http://index.ijdesign.org/index.php/IJDesign/article/view/2275
http://index.ijdesign.org/index.php/IJDesign/article/view/2275
https://doi.org/10.1145/347642.347657
https://doi.org/10.1145/1570433.1570483
https://doi.org/10.1145/1385569.1385606

 DAVID LEDO, 2020 | 343

Context-Aware Applications. Proceedings of the SIGCHI Con-

ference on Human Factors in Computing Systems, 33–40. Vi-

enna, Austria: Association for Computing Machinery. doi:

10.1145/985692.985697

58. Dey, A. K., & Newberger, A. (2009). Support for Context-

Aware Intelligibility and Control. Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems, 859–868.

Boston, MA, USA: Association for Computing Machinery.

doi: 10.1145/1518701.1518832

59. Dix, A. J., Finlay, J., Abowd, G. D., & Beale, R. (2003). Hu-

man-Computer Interaction. Pearson Education.

60. Dixon, M., & Fogarty, J. (2010). Prefab: Implementing Ad-

vanced Behaviors Using Pixel-Based Reverse Engineering of

Interface Structure. Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems, 1525–1534. Atlanta,

Georgia, USA: Association for Computing Machinery. doi:

10.1145/1753326.1753554

61. Dragicevic, P., & Fekete, J.-D. (2004). Support for Input

Adaptability in the Icon Toolkit. Proceedings of the 6th Inter-

national Conference on Multimodal Interfaces, 212–219. State

College, PA, USA: Association for Computing Machinery.

doi: 10.1145/1027933.1027969

62. Dumas, J. S., Dumas, J. S., & Redish, J. (1999). A Practical

Guide to Usability Testing. Intellect Books.

63. Edwards, W. K., Newman, M. W., & Poole, E. S. (2010).

The infrastructure problem in HCI. Proceedings of the

https://doi.org/10.1145/985692.985697
https://doi.org/10.1145/1518701.1518832
https://doi.org/10.1145/1753326.1753554
https://doi.org/10.1145/1027933.1027969

344 REFERENCES

SIGCHI Conference on Human Factors in Computing Systems,

423–432. Atlanta, Georgia, USA: Association for Computing

Machinery. doi: 10.1145/1753326.1753390

64. Engelbart, D. C. (1968). The Mother of All Demos. Fall

Joint Computer Conference, San Francisco, Dec, 9.

65. Finzer, W. F., & Gould, L. (1993). Rehearsal world: Pro-

gramming by rehearsal. In Watch what I do: Programming by

demonstration (pp. 79–100).

66. Fitzmaurice, G., & Buxton, W. (1994). The Chameleon:

Spatially Aware Palmtop Computers. Conference Companion

on Human Factors in Computing Systems, 451–452. Boston,

Massachusetts, USA: Association for Computing Machin-

ery. doi: 10.1145/259963.260460

67. Floyd, C. (1984). A Systematic Look at Prototyping. In R.

Budde, K. Kuhlenkamp, L. Mathiassen, & H. Züllighoven

(Eds.), Approaches to Prototyping (pp. 1–18). Berlin, Heidel-

berg: Springer. doi: 10.1007/978-3-642-69796-8_1

68. Fogarty, J. (2017). Code and Contribution in Interactive Sys-

tems Research. Workshop on HCI. Tools at CHI.

69. Foley, J. D., Van, F. D., Dam, A. V., Feiner, S. K., Hughes,

J. F., Angel, E., & Hughes, J. (1990). Computer Graphics:

Principles and Practice. Addison-Wesley Professional.

70. Follmer, S., Carr, D., Lovell, E., & Ishii, H. (2010). Copy-

CAD: Remixing Physical Objects with Copy and Paste from

the Real World. Adjunct Proceedings of the 23Nd Annual ACM

https://doi.org/10.1145/1753326.1753390
https://doi.org/10.1145/259963.260460
https://doi.org/10.1007/978-3-642-69796-8_1

 DAVID LEDO, 2020 | 345

Symposium on User Interface Software and Technology, 381–

382. New York, New York, USA: Association for Compu-

ting Machinery. doi: 10.1145/1866218.1866230

71. Follmer, S., & Ishii, H. (2012). KidCAD: Digitally Remixing

Toys through Tangible Tools. Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems, 2401–

2410. Austin, Texas, USA: Association for Computing Ma-

chinery. doi: 10.1145/2207676.2208403

72. Fraser, S. D., Bak, L., DeLine, R., Feamster, N., Kuper, L.,

Lopes, C. V., & Wu, P. (2015). The Future of Programming

Languages and Programmers. Companion Proceedings of the

2015 ACM SIGPLAN International Conference on Systems,

Programming, Languages and Applications: Software for Hu-

manity, 63–66. Pittsburgh, PA, USA: Association for Com-

puting Machinery. doi: 10.1145/2814189.2818719

73. Frishberg, N. (2006). Prototyping with Junk. Interactions,

13(1), 21–23. doi: 10.1145/1109069.1109086

74. Gaines, B. R. (1991). Modeling and Forecasting the Infor-

mation Sciences. Information Sciences, 57–58, 3–22. doi:

10.1016/0020-0255(91)90066-4

75. Genest, A. M., Gutwin, C., Tang, A., Kalyn, M., & Ivkovic,

Z. (2013). KinectArms: A Toolkit for Capturing and Dis-

playing Arm Embodiments in Distributed Tabletop Group-

ware. Proceedings of the 2013 Conference on Computer Sup-

ported Cooperative Work, 157–166. San Antonio, Texas, USA:

https://doi.org/10.1145/1866218.1866230
https://doi.org/10.1145/2207676.2208403
https://doi.org/10.1145/2814189.2818719
https://doi.org/10.1145/1109069.1109086
https://doi.org/10.1016/0020-0255(91)90066-4

346 REFERENCES

Association for Computing Machinery. doi:

10.1145/2441776.2441796

76. Gerber, E., & Carroll, M. (2012). The Psychological Experi-

ence of Prototyping. Design Studies, 33(1), 64–84. doi:

10.1016/j.destud.2011.06.005

77. Gero, J. S. (1990). Design Prototypes: A Knowledge Repre-

sentation Schema for Design. AI Magazine, 11(4), 26–26.

doi: 10.1609/aimag.v11i4.854

78. Goel, V., & Pirolli, P. (1992). The Structure of Design Prob-

lem Spaces. Cognitive Science, 16(3), 395–429. doi:

10.1207/s15516709cog1603_3

79. Gould, J. D., Conti, J., & Hovanyecz, T. (1983). Composing

Letters with a Simulated Listening Typewriter. Communica-

tions of the ACM, 26(4), 295–308. doi: 10.1145/2163.358100

80. Greenberg, S. (2001). Context as a Dynamic Construct. Hu-

man–Computer Interaction, 16(2–4), 257–268. doi:

10.1207/S15327051HCI16234_09

81. Greenberg, S. (2007). Toolkits and Interface Creativity.

Multimedia Tools and Applications, 32(2), 139–159. doi:

10.1007/s11042-006-0062-y

82. Greenberg, S. (2009). Embedding a Design Studio Course in

a Conventional Computer Science Program. In P. Kotzé, W.

Wong, J. Jorge, A. Dix, & P. A. Silva (Eds.), Creativity and

HCI: From Experience to Design in Education (pp. 23–41).

https://doi.org/10.1145/2441776.2441796
https://doi.org/10.1016/j.destud.2011.06.005
https://doi.org/10.1609/aimag.v11i4.854
https://doi.org/10.1207/s15516709cog1603_3
https://doi.org/10.1145/2163.358100
https://doi.org/10.1207/S15327051HCI16234_09
https://doi.org/10.1007/s11042-006-0062-y

 DAVID LEDO, 2020 | 347

Boston, MA: Springer US. doi: 10.1007/978-0-387-89022-

7_3

83. Greenberg, S., & Buxton, B. (2008). Usability Evaluation

Considered Harmful (some of the Time). Proceedings of the

SIGCHI Conference on Human Factors in Computing Systems,

111–120. Florence, Italy: Association for Computing Ma-

chinery. doi: 10.1145/1357054.1357074

84. Greenberg, S., Carpendale, S., Marquardt, N., & Buxton, B.

(2011). Sketching User Experiences: The Workbook. Elsevier.

85. Greenberg, S., & Fitchett, C. (2001). Phidgets: Easy Devel-

opment of Physical Interfaces through Physical Widgets.

Proceedings of the 14th Annual ACM Symposium on User Inter-

face Software and Technology, 209–218. Orlando, Florida: As-

sociation for Computing Machinery. doi:

10.1145/502348.502388

86. Greenberg, S., & Roseman, M. (1996). GroupWeb: A

WWW Browser as Real Time GroupWare. Conference Com-

panion on Human Factors in Computing Systems, 271–272.

Vancouver, British Columbia, Canada: Association for Com-

puting Machinery. doi: 10.1145/257089.257317

87. Grigoreanu, V., Fernandez, R., Inkpen, K., & Robertson, G.

(2009). What Designers Want: Needs of Interactive Appli-

cation Designers. 2009 IEEE Symposium on Visual Languages

and Human-Centric Computing (VL/HCC), 139–146. doi:

10.1109/VLHCC.2009.5295277

https://doi.org/10.1007/978-0-387-89022-7_3
https://doi.org/10.1007/978-0-387-89022-7_3
https://doi.org/10.1145/1357054.1357074
https://doi.org/10.1145/502348.502388
https://doi.org/10.1145/257089.257317
https://doi.org/10.1109/VLHCC.2009.5295277

348 REFERENCES

88. Grosse-Puppendahl, T., Berghoefer, Y., Braun, A., Wim-

mer, R., & Kuijper, A. (2013). Opencapsense: A Rapid Pro-

totyping Toolkit for Pervasive Interaction Using Capacitive

Sensing. 2013 IEEE International Conference on Pervasive

Computing and Communications (PerCom), 152–159. doi:

10.1109/PerCom.2013.6526726

89. Grossman, T., & Balakrishnan, R. (2005). The Bubble Cur-

sor: Enhancing Target Acquisition by Dynamic Resizing of

the Cursor’s Activation Area. Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems, 281–290.

Portland, Oregon, USA: Association for Computing Ma-

chinery. doi: 10.1145/1054972.1055012

90. Halbert, D. C. (1984). Programming by Example (PhD The-

sis). University of California, Berkeley.

91. Hancock, C. M. (2003). Real-Time Programming and the Big

Ideas of Computational Literacy (Thesis, Massachusetts Insti-

tute of Technology). Massachusetts Institute of Technology.

Retrieved from https://dspace.mit.edu/han-

dle/1721.1/61549

92. Hansen, T. E., Hourcade, J. P., Virbel, M., Patali, S., & Se-

rra, T. (2009). PyMT: A Post-WIMP Multi-Touch User In-

terface Toolkit. Proceedings of the ACM International Confer-

ence on Interactive Tabletops and Surfaces, 17–24. Banff, Al-

berta, Canada: Association for Computing Machinery. doi:

10.1145/1731903.1731907

https://doi.org/10.1109/PerCom.2013.6526726
https://doi.org/10.1145/1054972.1055012
https://dspace.mit.edu/handle/1721.1/61549
https://dspace.mit.edu/handle/1721.1/61549
https://doi.org/10.1145/1731903.1731907

 DAVID LEDO, 2020 | 349

93. Harrison, C., Schwarz, J., & Hudson, S. E. (2011).

Tapsense: Enhancing Finger Interaction on Touch Surfaces.

Proceedings of the 24th Annual Acm Symposium on User Inter-

face Software and Technology, 627–636. Santa Barbara, Cali-

fornia, USA: Association for Computing Machinery. doi:

10.1145/2047196.2047279

94. Hartmann, Bjorn. (2009). Gaining Design Insight through In-

teraction Prototyping Tools (Stanford University). Stanford

University. Retrieved from https://people.eecs.berke-

ley.edu/~bjoern/dissertation/hartmann-diss.pdf

95. Hartmann, Björn, Abdulla, L., Mittal, M., & Klemmer, S. R.

(2007a). Authoring Sensor-Based Interactions by Demon-

stration with Direct Manipulation and Pattern Recognition.

Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems, 145–154. San Jose, California, USA: As-

sociation for Computing Machinery. doi:

10.1145/1240624.1240646

96. Hartmann, Björn, Abdulla, L., Mittal, M., & Klemmer, S. R.

(2007b). Authoring Sensor-Based Interactions by Demon-

stration with Direct Manipulation and Pattern Recognition.

Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems, 145–154. San Jose, California, USA: As-

sociation for Computing Machinery. doi:

10.1145/1240624.1240646

https://doi.org/10.1145/2047196.2047279
https://people.eecs.berkeley.edu/%7Ebjoern/dissertation/hartmann-diss.pdf
https://people.eecs.berkeley.edu/%7Ebjoern/dissertation/hartmann-diss.pdf
https://doi.org/10.1145/1240624.1240646
https://doi.org/10.1145/1240624.1240646

350 REFERENCES

97. Hartmann, Björn, Klemmer, S. R., Bernstein, M., Abdulla,

L., Burr, B., Robinson-Mosher, A., & Gee, J. (2006). Reflec-

tive Physical Prototyping Through Integrated Design, Test,

and Analysis. Proceedings of the 19th Annual ACM Symposium

on User Interface Software and Technology, 299–308. Mon-

treux, Switzerland: Association for Computing Machinery.

doi: 10.1145/1166253.1166300

98. Heer, J., Card, S. K., & Landay, J. A. (2005). prefuse: A

toolkit for interactive information visualization. Proceedings

of the SIGCHI Conference on Human Factors in Computing

Systems, 421–430. Portland, Oregon, USA: Association for

Computing Machinery. doi: 10.1145/1054972.1055031

99. Hempel, B., & Chugh, R. (2016). Semi-Automated SVG

Programming via Direct Manipulation. Proceedings of the 29th

Annual Symposium on User Interface Software and Technology,

379–390. Tokyo, Japan: Association for Computing Machin-

ery. doi: 10.1145/2984511.2984575

100. Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). De-

sign Science in Information Systems Research. MIS Quar-

terly, 28(1), 75–105. JSTOR. doi: 10.2307/25148625

101. Hewett, T. T., Baecker, R., Card, S., Carey, T., Gasen, J.,

Mantei, M., … Verplank, W. (1992). ACM SIGCHI Curric-

ula for Human-Computer Interaction. New York, NY, USA:

Association for Computing Machinery.

https://doi.org/10.1145/1166253.1166300
https://doi.org/10.1145/1054972.1055031
https://doi.org/10.1145/2984511.2984575
https://doi.org/10.2307/25148625

 DAVID LEDO, 2020 | 351

102. Hill, J., & Gutwin, C. (2004). The MAUI Toolkit: Group-

ware Widgets for Group Awareness. Computer Supported Co-

operative Work (CSCW), 13(5), 539–571. doi:

10.1007/s10606-004-5063-7

103. Hinckley, K. (2003). Synchronous Gestures for Multiple

Persons and Computers. Proceedings of the 16th Annual ACM

Symposium on User Interface Software and Technology, 149–

158. Vancouver, Canada: Association for Computing Ma-

chinery. doi: 10.1145/964696.964713

104. Hinckley, K., Jacob, R. J., Ware, C., Wobbrock, J. O., &

Wigdor, D. (2014). Input/Output Devices and Interaction

Techniques.

105. Hinckley, K., Pahud, M., Benko, H., Irani, P., Guimbretière,

F., Gavriliu, M., … Wilson, A. (2014). Sensing Techniques

for Tablet+stylus Interaction. Proceedings of the 27th Annual

ACM Symposium on User Interface Software and Technology,

605–614. Honolulu, Hawaii, USA: Association for Compu-

ting Machinery. doi: 10.1145/2642918.2647379

106. Hinckley, K., Pierce, J., Sinclair, M., & Horvitz, E. (2000).

Sensing Techniques for Mobile Interaction. Proceedings of the

13th Annual ACM Symposium on User Interface Software and

Technology, 91–100. San Diego, California, USA: Association

for Computing Machinery. doi: 10.1145/354401.354417

107. Hinckley, K., & Song, H. (2011). Sensor Synaesthesia:

Touch in Motion, and Motion in Touch. Proceedings of the

SIGCHI Conference on Human Factors in Computing Systems,

https://doi.org/10.1007/s10606-004-5063-7
https://doi.org/10.1145/964696.964713
https://doi.org/10.1145/2642918.2647379
https://doi.org/10.1145/354401.354417

352 REFERENCES

801–810. Vancouver, BC, Canada: Association for Compu-

ting Machinery. doi: 10.1145/1978942.1979059

108. Hodges, S., Taylor, S., Villar, N., Scott, J., & Helmes, J.

(2013). Exploring Physical Prototyping Techniques for

Functional Devices Using .NET Gadgeteer. Proceedings of

the 7th International Conference on Tangible, Embedded and

Embodied Interaction, 271–274. Barcelona, Spain: Association

for Computing Machinery. doi: 10.1145/2460625.2460670

109. Holmquist, L. E. (2005). Prototyping: Generating Ideas or

Cargo Cult Designs? Interactions, 12(2), 48–54. doi:

10.1145/1052438.1052465

110. Holmquist, L. E., Mattern, F., Schiele, B., Alahuhta, P.,

Beigl5, M., & Gellersen, H.-W. (2001). Smart-Its Friends: A

Technique for Users to Easily Establish Connections be-

tween Smart Artefacts. In G. D. Abowd, B. Brumitt, & S.

Shafer (Eds.), Ubicomp 2001: Ubiquitous Computing (pp. 116–

122). Berlin, Heidelberg: Springer. doi: 10.1007/3-540-

45427-6_10

111. Hong, J. I., & Landay, J. A. (2006). SATIN: A Toolkit for

Informal Ink-Based Applications. ACM SIGGRAPH 2006

Courses, 7–es. Boston, Massachusetts: Association for Com-

puting Machinery. doi: 10.1145/1185657.1185768

112. Horak, T., Badam, S. K., Elmqvist, N., & Dachselt, R.

(2018). When David Meets Goliath: Combining Smart-

watches with a Large Vertical Display for Visual Data Explo-

https://doi.org/10.1145/1978942.1979059
https://doi.org/10.1145/2460625.2460670
https://doi.org/10.1145/1052438.1052465
https://doi.org/10.1007/3-540-45427-6_10
https://doi.org/10.1007/3-540-45427-6_10
https://doi.org/10.1145/1185657.1185768

 DAVID LEDO, 2020 | 353

ration. Proceedings of the 2018 CHI Conference on Human Fac-

tors in Computing Systems, 1–13. Montreal QC, Canada: As-

sociation for Computing Machinery. doi:

10.1145/3173574.3173593

113. Hornbæk, K., & Oulasvirta, A. (2017). What Is Interaction?

Proceedings of the 2017 CHI Conference on Human Factors in

Computing Systems, 5040–5052. Denver, Colorado, USA:

Association for Computing Machinery. doi:

10.1145/3025453.3025765

114. Houben, S., Golsteijn, C., Gallacher, S., Johnson, R., Bak-

ker, S., Marquardt, N., … Rogers, Y. (2016). Physikit: Data

Engagement Through Physical Ambient Visualizations in

the Home. Proceedings of the 2016 CHI Conference on Human

Factors in Computing Systems, 1608–1619. San Jose, Califor-

nia, USA: Association for Computing Machinery. doi:

10.1145/2858036.2858059

115. Houben, S., & Marquardt, N. (2015). WatchConnect: A

Toolkit for Prototyping Smartwatch-Centric Cross-Device

Applications. Proceedings of the 33rd Annual ACM Conference

on Human Factors in Computing Systems, 1247–1256. Seoul,

Republic of Korea: Association for Computing Machinery.

doi: 10.1145/2702123.2702215

116. Houde, S., & Hill, C. (1997). Chapter 16—What do Proto-

types Prototype? In M. G. Helander, T. K. Landauer, & P.

V. Prabhu (Eds.), Handbook of Human-Computer Interaction

https://doi.org/10.1145/3173574.3173593
https://doi.org/10.1145/3025453.3025765
https://doi.org/10.1145/2858036.2858059
https://doi.org/10.1145/2702123.2702215

354 REFERENCES

(Second Edition) (pp. 367–381). Amsterdam: North-Holland.

doi: 10.1016/B978-044481862-1.50082-0

117. Hudson, S. E., & Mankoff, J. (2006). Rapid Construction of

Functioning Physical Interfaces from Cardboard, Thumb-

tacks, Tin Foil and Masking Tape. Proceedings of the 19th An-

nual ACM Symposium on User Interface Software and Technol-

ogy, 289–298. Montreux, Switzerland: Association for Com-

puting Machinery. doi: 10.1145/1166253.1166299

118. Hudson, S. E., & Mankoff, J. (2014). Concepts, Values, and

Methods for Technical Human–Computer Interaction Re-

search. In J. S. Olson & W. A. Kellogg (Eds.), Ways of Know-

ing in HCI (pp. 69–93). New York, NY: Springer. doi:

10.1007/978-1-4939-0378-8_4

119. Hudson, S. E., Mankoff, J., & Smith, I. (2005). Extensible

Input Handling in the SubArctic Toolkit. Proceedings of the

SIGCHI Conference on Human Factors in Computing Systems,

381–390. Portland, Oregon, USA: Association for Compu-

ting Machinery. doi: 10.1145/1054972.1055025

120. Huot, S., Dumas, C., Dragicevic, P., Fekete, J.-D., & Hé-

gron, G. (2004). The MaggLite post-WIMP toolkit: Draw it,

connect it and run it. Proceedings of the 17th Annual ACM

Symposium on User Interface Software and Technology, 257–

266. Santa Fe, NM, USA: Association for Computing Ma-

chinery. doi: 10.1145/1029632.1029677

https://doi.org/10.1016/B978-044481862-1.50082-0
https://doi.org/10.1145/1166253.1166299
https://doi.org/10.1007/978-1-4939-0378-8_4
https://doi.org/10.1145/1054972.1055025
https://doi.org/10.1145/1029632.1029677

 DAVID LEDO, 2020 | 355

121. Hwang, S., Ahn, M., & Wohn, K. (2013). MagGetz: Cus-

tomizable Passive Tangible Controllers on and Around Con-

ventional Mobile Devices. Proceedings of the 26th Annual Acm

Symposium on User Interface Software and Technology, 411–

416. St. Andrews, Scotland, United Kingdom: Association

for Computing Machinery. doi: 10.1145/2501988.2501991

122. Hwang, S., Bianchi, A., Ahn, M., & Wohn, K. (2013). Mag-

Pen: Magnetically Driven Pen Interactions on and Around

Conventional Smartphones. Proceedings of the 15th Interna-

tional Conference on Human-Computer Interaction with Mobile

Devices and Services, 412–415. Munich, Germany: Associa-

tion for Computing Machinery. doi:

10.1145/2493190.2493194

123. Intelligibility and Accountability: Human Considerations in

Context-Aware Systems: Human–Computer Interaction:

Vol 16, No 2-4. (n.d.). Retrieved July 7, 2020, from

https://www.tandfonline.com/doi/abs/10.1207/S15327051

HCI16234_05?casa_token=dF_tbMp-

PhF0AAAAA:EJJ5JB4U2v6z6omBTz-

llXXZ8l1jf_qTGlKdfQEpstZlPJyUazpdsq-

WUyPo1__o5nC5BmyNbTw_k

124. Janlert, L.-E., & Stolterman, E. (2017). The Meaning of In-

teractivity—Some Proposals for Definitions and Measures.

Human–Computer Interaction, 32(3), 103–138. doi:

10.1080/07370024.2016.1226139

https://doi.org/10.1145/2501988.2501991
https://doi.org/10.1145/2493190.2493194
https://www.tandfonline.com/doi/abs/10.1207/S15327051HCI16234_05?casa_token=dF_tbMpPhF0AAAAA:EJJ5JB4U2v6z6omBTzllXXZ8l1jf_qTGlKdfQEpstZlPJyUazpdsq-WUyPo1__o5nC5BmyNbTw_k
https://www.tandfonline.com/doi/abs/10.1207/S15327051HCI16234_05?casa_token=dF_tbMpPhF0AAAAA:EJJ5JB4U2v6z6omBTzllXXZ8l1jf_qTGlKdfQEpstZlPJyUazpdsq-WUyPo1__o5nC5BmyNbTw_k
https://www.tandfonline.com/doi/abs/10.1207/S15327051HCI16234_05?casa_token=dF_tbMpPhF0AAAAA:EJJ5JB4U2v6z6omBTzllXXZ8l1jf_qTGlKdfQEpstZlPJyUazpdsq-WUyPo1__o5nC5BmyNbTw_k
https://www.tandfonline.com/doi/abs/10.1207/S15327051HCI16234_05?casa_token=dF_tbMpPhF0AAAAA:EJJ5JB4U2v6z6omBTzllXXZ8l1jf_qTGlKdfQEpstZlPJyUazpdsq-WUyPo1__o5nC5BmyNbTw_k
https://www.tandfonline.com/doi/abs/10.1207/S15327051HCI16234_05?casa_token=dF_tbMpPhF0AAAAA:EJJ5JB4U2v6z6omBTzllXXZ8l1jf_qTGlKdfQEpstZlPJyUazpdsq-WUyPo1__o5nC5BmyNbTw_k
https://doi.org/10.1080/07370024.2016.1226139

356 REFERENCES

125. Johnson, J., Roberts, T. L., Verplank, W., Smith, D. C., Irby,

C. H., Beard, M., & Mackey, K. (1989). The Xerox Star: A

Retrospective. Computer, 22(9), 11–26. doi: 10.1109/2.35211

126. Johnston, O., & Thomas, F. (1981). The Illusion of Life: Dis-

ney Animation. Disney Editions New York.

127. Ju, W., & Leifer, L. (2008). The Design of Implicit Interac-

tions: Making Interactive Systems Less Obnoxious. Design

Issues, 24(3), 72–84. doi: 10.1162/desi.2008.24.3.72

128. Kaltenbrunner, M., & Bencina, R. (2007). ReacTIVision: A

Computer-Vision Framework for Table-Based Tangible In-

teraction. Proceedings of the 1st International Conference on

Tangible and Embedded Interaction, 69–74. Baton Rouge,

Louisiana: Association for Computing Machinery. doi:

10.1145/1226969.1226983

129. Kato, J., Sakamoto, D., & Igarashi, T. (2012). Phybots: A

Toolkit for Making Robotic Things. Proceedings of the Design-

ing Interactive Systems Conference, 248–257. Newcastle Upon

Tyne, United Kingdom: Association for Computing Ma-

chinery. doi: 10.1145/2317956.2317996

130. Kato, K., & Miyashita, H. (2014). Extension Sticker: A

Method for Transferring External Touch Input Using a

Striped Pattern Sticker. Proceedings of the Adjunct Publication

of the 27th Annual ACM Symposium on User Interface Software

and Technology, 59–60. Honolulu, Hawaii, USA: Association

for Computing Machinery. doi: 10.1145/2658779.2668032

https://doi.org/10.1109/2.35211
https://doi.org/10.1162/desi.2008.24.3.72
https://doi.org/10.1145/1226969.1226983
https://doi.org/10.1145/2317956.2317996
https://doi.org/10.1145/2658779.2668032

 DAVID LEDO, 2020 | 357

131. Kaufmann, B., & Buechley, L. (2010). Amarino: A Toolkit

for the Rapid Prototyping of Mobile Ubiquitous Computing.

Proceedings of the 12th International Conference on Human

Computer Interaction with Mobile Devices and Services, 291–

298. Lisbon, Portugal: Association for Computing Machin-

ery. doi: 10.1145/1851600.1851652

132. Kaye, J. “Jofish.” (2007). Evaluating experience-focused

HCI. CHI ’07 Extended Abstracts on Human Factors in Com-

puting Systems, 1661–1664. San Jose, CA, USA: Association

for Computing Machinery. doi: 10.1145/1240866.1240877

133. Kazi, R. H., Chevalier, F., Grossman, T., & Fitzmaurice, G.

(2014). Kitty: Sketching Dynamic and Interactive Illustra-

tions. Proceedings of the 27th Annual ACM Symposium on User

Interface Software and Technology, 395–405. Honolulu, Ha-

waii, USA: Association for Computing Machinery. doi:

10.1145/2642918.2647375

134. Kazi, R. H., Grossman, T., Umetani, N., & Fitzmaurice, G.

(2016). Motion Amplifiers: Sketching Dynamic Illustrations

Using the Principles of 2D Animation. Proceedings of the 2016

CHI Conference on Human Factors in Computing Systems,

4599–4609. San Jose, California, USA: Association for Com-

puting Machinery. doi: 10.1145/2858036.2858386

135. Kelley, J. F. (1983). An Empirical Methodology for Writing

User-Friendly Natural Language Computer Applications.

Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems, 193–196. Boston, Massachusetts, USA:

https://doi.org/10.1145/1851600.1851652
https://doi.org/10.1145/1240866.1240877
https://doi.org/10.1145/2642918.2647375
https://doi.org/10.1145/2858036.2858386

358 REFERENCES

Association for Computing Machinery. doi:

10.1145/800045.801609

136. Kirton, T., Boring, S., Baur, D., MacDonald, L., & Carpen-

dale, S. (2013). C4: A Creative-Coding API for Media, Inter-

action and Animation. Proceedings of the 7th International

Conference on Tangible, Embedded and Embodied Interaction,

279–286. Barcelona, Spain: Association for Computing Ma-

chinery. doi: 10.1145/2460625.2460672

137. Klemmer, S. R., Li, J., Lin, J., & Landay, J. A. (2004). Pa-

pier-Mache: Toolkit Support for Tangible Input. Proceedings

of the SIGCHI Conference on Human Factors in Computing

Systems, 399–406. Vienna, Austria: Association for Compu-

ting Machinery. doi: 10.1145/985692.985743

138. Ko, A., Myers, B. A., & Aung, H. H. (2004). Six Learning

Barriers in End-User Programming Systems. 2004 IEEE

Symposium on Visual Languages - Human Centric Computing,

199–206. doi: 10.1109/VLHCC.2004.47

139. Krosnick, R., Lee, S. W., Laseck, W. S., & Onev, S. (2018).

Expresso: Building Responsive Interfaces with Keyframes.

2018 IEEE Symposium on Visual Languages and Human-Cen-

tric Computing (VL/HCC), 39–47. doi:

10.1109/VLHCC.2018.8506516

140. Landay, J. A. (1996). SILK: Sketching Interfaces Like Krazy.

Conference Companion on Human Factors in Computing Sys-

https://doi.org/10.1145/800045.801609
https://doi.org/10.1145/2460625.2460672
https://doi.org/10.1145/985692.985743
https://doi.org/10.1109/VLHCC.2004.47
https://doi.org/10.1109/VLHCC.2018.8506516

 DAVID LEDO, 2020 | 359

tems, 398–399. Vancouver, British Columbia, Canada: Asso-

ciation for Computing Machinery. doi:

10.1145/257089.257396

141. Laput, G., Brockmeyer, E., Hudson, S. E., & Harrison, C.

(2015). Acoustruments: Passive, Acoustically-Driven, Inter-

active Controls for Handheld Devices. Proceedings of the 33rd

Annual ACM Conference on Human Factors in Computing Sys-

tems, 2161–2170. Seoul, Republic of Korea: Association for

Computing Machinery. doi: 10.1145/2702123.2702414

142. Laseau, P. (1982). Graphic Thinking for Architects and Design-

ers. Elsevier.

143. Lazar, J., Feng, J. H., & Hochheiser, H. (2017). Research

Methods in Human-Computer Interaction. Morgan Kaufmann.

144. Ledo, D., Greenberg, S., Marquardt, N., & Boring, S.

(2015). Proxemic-Aware Controls: Designing Remote Con-

trols for Ubiquitous Computing Ecologies. Proceedings of the

17th International Conference on Human-Computer Interaction

with Mobile Devices and Services, 187–198. Copenhagen, Den-

mark: Association for Computing Machinery. doi:

10.1145/2785830.2785871

145. Ledo, D., Nacenta, M. A., Marquardt, N., Boring, S., &

Greenberg, S. (2012). The Haptictouch Toolkit: Enabling

Exploration of Haptic Interactions. Proceedings of the Sixth

International Conference on Tangible, Embedded and Embodied

Interaction, 115–122. Kingston, Ontario, Canada: Association

for Computing Machinery. doi: 10.1145/2148131.2148157

https://doi.org/10.1145/257089.257396
https://doi.org/10.1145/2702123.2702414
https://doi.org/10.1145/2785830.2785871
https://doi.org/10.1145/2148131.2148157

360 REFERENCES

146. Lee, J. C. (2008). Wii remote hacks | Johnny Lee. Retrieved

from https://www.youtube.com/watch?v=QgKCrGvShZs

147. Lee, J. C., Avrahami, D., Hudson, S. E., Forlizzi, J., Dietz,

P. H., & Leigh, D. (2004). The Calder Toolkit: Wired and

Wireless Components for Rapidly Prototyping Interactive

Devices. Proceedings of the 5th Conference on Designing Inter-

active Systems: Processes, Practices, Methods, and Techniques,

167–175. Cambridge, MA, USA: Association for Computing

Machinery. doi: 10.1145/1013115.1013139

148. Leiva, G. (2018). Interactive Prototyping of Interactions: From

Throwaway Prototypes to Takeaway Prototyping. PhD Thesis,

Université Paris Saclay. Retrieved from https://tel.archives-

ouvertes.fr/tel-02122823

149. Leiva, G., & Beaudouin-Lafon, M. (2018). Montage: A

Video Prototyping System to Reduce Re-Shooting and In-

crease Re-Usability. Proceedings of the 31st Annual ACM Sym-

posium on User Interface Software and Technology, 675–682.

Berlin, Germany: Association for Computing Machinery.

doi: 10.1145/3242587.3242613

150. Li, T. J.-J., Azaria, A., & Myers, B. A. (2017). SUGILITE:

Creating Multimodal Smartphone Automation by Demon-

stration. Proceedings of the 2017 CHI Conference on Human

Factors in Computing Systems, 6038–6049. Denver, Colorado,

USA: Association for Computing Machinery. doi:

10.1145/3025453.3025483

https://www.youtube.com/watch?v=QgKCrGvShZs
https://doi.org/10.1145/1013115.1013139
https://tel.archives-ouvertes.fr/tel-02122823
https://tel.archives-ouvertes.fr/tel-02122823
https://doi.org/10.1145/3242587.3242613
https://doi.org/10.1145/3025453.3025483

 DAVID LEDO, 2020 | 361

151. Li, Y., & Landay, J. A. (2005). Informal Prototyping of Con-

tinuous Graphical Interactions by Demonstration. Proceed-

ings of the 18th Annual ACM Symposium on User Interface

Software and Technology, 221–230. Seattle, WA, USA: Asso-

ciation for Computing Machinery. doi:

10.1145/1095034.1095071

152. Lichter, H., Schneider-Hufschmidt, M., & Zullighoven, H.

(1994). Prototyping in industrial software projects-bridging

the gap between theory and practice. IEEE Transactions on

Software Engineering, 20(11), 825–832. doi:

10.1109/32.368126

153. Lim, B. Y., & Dey, A. K. (2010). Toolkit to Support Intelli-

gibility in Context-Aware Applications. Proceedings of the

12th ACM International Conference on Ubiquitous Computing,

13–22. Copenhagen, Denmark: Association for Computing

Machinery. doi: 10.1145/1864349.1864353

154. Lim, Y.-K., Stolterman, E., & Tenenberg, J. (2008). The

Anatomy of Prototypes: Prototypes as Filters, Prototypes as

Manifestations of Design Ideas. ACM Trans. Comput.-Hum.

Interact., 15(2). doi: 10.1145/1375761.1375762

155. Lin, J., & Landay, J. A. (2008). Employing Patterns and Lay-

ers for Early-Stage Design and Prototyping of Cross-Device

User Interfaces. Proceedings of the SIGCHI Conference on Hu-

man Factors in Computing Systems, 1313–1322. Florence, It-

aly: Association for Computing Machinery. doi:

10.1145/1357054.1357260

https://doi.org/10.1145/1095034.1095071
https://doi.org/10.1109/32.368126
https://doi.org/10.1145/1864349.1864353
https://doi.org/10.1145/1375761.1375762
https://doi.org/10.1145/1357054.1357260

362 REFERENCES

156. Lin, J., Newman, M. W., Hong, J. I., & Landay, J. A. (2000).

DENIM: Finding a Tighter Fit Between Tools and Practice

for Web Site Design. Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems, 510–517. The Hague,

The Netherlands: Association for Computing Machinery.

doi: 10.1145/332040.332486

157. Lindell, R. (2014). Crafting Interaction: The Epistemology

of Modern Programming. Personal and Ubiquitous Compu-

ting, 18(3), 613–624.

158. Logan, B., & Smithers, T. (1993). Chapter 7—Creativity and

Design as Exploration. In Modeling Creativity and Knowledge-

Based Creative Design. Lawrence Erlbaum Associates, Inc.

159. Lopes, P., Jota, R., & Jorge, J. A. (2011). Augmenting Touch

Interaction Through Acoustic Sensing. Proceedings of the

ACM International Conference on Interactive Tabletops and

Surfaces, 53–56. Kobe, Japan: Association for Computing

Machinery. doi: 10.1145/2076354.2076364

160. Löwgren, J., & Stolterman, E. (2004). Thoughtful Interaction

Design: A Design Perspective on Information Technology. MIT

Press.

161. MacIntyre, B., Gandy, M., Dow, S., & Bolter, J. D. (2004).

DART: A Toolkit for Rapid Design Exploration of Aug-

mented Reality Experiences. Proceedings of the 17th Annual

ACM Symposium on User Interface Software and Technology,

197–206. Santa Fe, NM, USA: Association for Computing

Machinery. doi: 10.1145/1029632.1029669

https://doi.org/10.1145/332040.332486
https://doi.org/10.1145/2076354.2076364
https://doi.org/10.1145/1029632.1029669

 DAVID LEDO, 2020 | 363

162. Mackay, W. E. (1988). Video Prototyping: A Technique for

Developing Hypermedia Systems. Proceedings of the 1988

CHI Conference on Human Factors in Computing Systems, 5,

1–3. Citeseer.

163. Mackinlay, J., Card, S. K., & Robertson, G. G. (1990). A Se-

mantic Analysis of the Design Space of Input Devices. Hu-

man–Computer Interaction, 5(2–3), 145–190. doi:

10.1080/07370024.1990.9667153

164. Maloney, J. H., & Smith, R. B. (1995). Directness and

Liveness in the Morphic User Interface Construction Envi-

ronment. Proceedings of the 8th Annual ACM Symposium on

User Interface and Software Technology, 21–28. Pittsburgh,

Pennsylvania, USA: Association for Computing Machinery.

doi: 10.1145/215585.215636

165. Maloney, J., Resnick, M., Rusk, N., Silverman, B., &

Eastmond, E. (2010). The Scratch Programming Language

and Environment. ACM Transactions on Computing Educa-

tion, 10(4), 16:1–16:15. doi: 10.1145/1868358.1868363

166. Mankoff, J. (2000). Providing Integrated Toolkit-Level Sup-

port for Ambiguity in Recognition-Based Interfaces. CHI

’00 Extended Abstracts on Human Factors in Computing Sys-

tems, 77–78. The Hague, The Netherlands: Association for

Computing Machinery. doi: 10.1145/633292.633339

167. Marco, J., Cerezo, E., & Baldassarri, S. (2012). ToyVision:

A Toolkit for Prototyping Tabletop Tangible Games. Pro-

https://doi.org/10.1080/07370024.1990.9667153
https://doi.org/10.1145/215585.215636
https://doi.org/10.1145/1868358.1868363
https://doi.org/10.1145/633292.633339

364 REFERENCES

ceedings of the 4th Acm Sigchi Symposium on Engineering Inter-

active Computing Systems, 71–80. Copenhagen, Denmark: As-

sociation for Computing Machinery. doi:

10.1145/2305484.2305498

168. Marquardt, N., Ballendat, T., Boring, S., Greenberg, S., &

Hinckley, K. (2012). Gradual Engagement: Facilitating In-

formation Exchange Between Digital Devices as a Function

of Proximity. Proceedings of the 2012 ACM International Con-

ference on Interactive Tabletops and Surfaces, 31–40. Cam-

bridge, Massachusetts, USA: Association for Computing

Machinery. doi: 10.1145/2396636.2396642

169. Marquardt, N., Diaz-Marino, R., Boring, S., & Greenberg,

S. (2011). The Proximity Toolkit: Prototyping Proxemic In-

teractions in Ubiquitous Computing Ecologies. Proceedings of

the 24th Annual ACM Symposium on User Interface Software

and Technology, 315–326. Santa Barbara, California, USA:

Association for Computing Machinery. doi:

10.1145/2047196.2047238

170. Marquardt, N., & Greenberg, S. (2007). Distributed Physi-

cal Interfaces with Shared Phidgets. Proceedings of the 1st In-

ternational Conference on Tangible and Embedded Interaction,

13–20. Baton Rouge, Louisiana: Association for Computing

Machinery. doi: 10.1145/1226969.1226973

171. Marquardt, N., Houben, S., Beaudouin-Lafon, M., & Wil-

son, A. D. (2017). HCITools: Strategies and Best Practices

for Designing, Evaluating and Sharing Technical HCI

https://doi.org/10.1145/2305484.2305498
https://doi.org/10.1145/2396636.2396642
https://doi.org/10.1145/2047196.2047238
https://doi.org/10.1145/1226969.1226973

 DAVID LEDO, 2020 | 365

Toolkits. Proceedings of the 2017 CHI Conference Extended Ab-

stracts on Human Factors in Computing Systems, 624–627.

Denver, Colorado, USA: Association for Computing Ma-

chinery. doi: 10.1145/3027063.3027073

172. Marquardt, N., Kiemer, J., Ledo, D., Boring, S., & Green-

berg, S. (2011). Designing User-, Hand-, and Handpart-

Aware Tabletop Interactions with the TouchID Toolkit. Pro-

ceedings of the ACM International Conference on Interactive

Tabletops and Surfaces, 21–30. Kobe, Japan: Association for

Computing Machinery. doi: 10.1145/2076354.2076358

173. Matthews, T., Dey, A. K., Mankoff, J., Carter, S., & Ratten-

bury, T. (2004). A toolkit for managing user attention in pe-

ripheral displays. Proceedings of the 17th Annual ACM Sympo-

sium on User Interface Software and Technology, 247–256.

Santa Fe, NM, USA: Association for Computing Machin-

ery. doi: 10.1145/1029632.1029676

174. Maudet, N., Leiva, G., Beaudouin-Lafon, M., & Mackay, W.

(2017). Design Breakdowns: Designer-Developer Gaps in

Representing and Interpreting Interactive Systems. Proceed-

ings of the 2017 ACM Conference on Computer Supported Coop-

erative Work and Social Computing, 630–641. Portland, Ore-

gon, USA: Association for Computing Machinery. doi:

10.1145/2998181.2998190

175. McGrath, J. E. (1995). Methodology Matters: Doing Re-

search in the Behavioral and Social Sciences. In RONALD

M. Baecker, J. Grudin, W. A. S. Buxton, & S. Greenberg

https://doi.org/10.1145/3027063.3027073
https://doi.org/10.1145/2076354.2076358
https://doi.org/10.1145/1029632.1029676
https://doi.org/10.1145/2998181.2998190

366 REFERENCES

(Eds.), Readings in Human–Computer Interaction (pp. 152–

169). Morgan Kaufmann. doi: 10.1016/B978-0-08-051574-

8.50019-4

176. Meskens, J., Luyten, K., & Coninx, K. (2009). Shortening

User Interface Design Iterations Through Realtime Visuali-

sation of Design Actions on the Target Device. 2009 IEEE

Symposium on Visual Languages and Human-Centric Compu-

ting (VL/HCC), 132–135. doi:

10.1109/VLHCC.2009.5295281

177. Meskens, J., Luyten, K., & Coninx, K. (2010). D-Macs:

Building Multi-Device User Interfaces by Demonstrating,

Sharing and Replaying Design Actions. Proceedings of the

23nd Annual ACM Symposium on User Interface Software and

Technology, 129–138. New York, New York, USA: Associa-

tion for Computing Machinery. doi:

10.1145/1866029.1866051

178. Meskens, J., Vermeulen, J., Luyten, K., & Coninx, K.

(2008). Gummy for Multi-Platform User Interface Designs:

Shape Me, Multiply Me, Fix Me, Use Me. Proceedings of the

Working Conference on Advanced Visual Interfaces, 233–240.

Napoli, Italy: Association for Computing Machinery. doi:

10.1145/1385569.1385607

179. Moggridge, B. (2007). Designing Interactions. MIT Press.

180. Moscovich, T. (2009). Contact Area Interaction with Slid-

ing Widgets. Proceedings of the 22nd Annual ACM Symposium

on User Interface Software and Technology, 13–22. Victoria,

https://doi.org/10.1016/B978-0-08-051574-8.50019-4
https://doi.org/10.1016/B978-0-08-051574-8.50019-4
https://doi.org/10.1109/VLHCC.2009.5295281
https://doi.org/10.1145/1866029.1866051
https://doi.org/10.1145/1385569.1385607

 DAVID LEDO, 2020 | 367

BC, Canada: Association for Computing Machinery. doi:

10.1145/1622176.1622181

181. Mueller, S., Mohr, T., Guenther, K., Frohnhofen, J., & Bau-

disch, P. (2014). FaBrickation: Fast 3d Printing of Func-

tional Objects by Integrating Construction Kit Building

Blocks. Proceedings of the SIGCHI Conference on Human Fac-

tors in Computing Systems, 3827–3834. New York, NY, USA:

Association for Computing Machinery. doi:

10.1145/2556288.2557005

182. Muller, M. J. (1991). PICTIVE: An Exploration in Participa-

tory Design. Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems, 225–231. New York, NY,

USA: Association for Computing Machinery. doi:

10.1145/108844.108896

183. Myers, B. A. (1998). Scripting Graphical Applications by

Demonstration. Proceedings of the SIGCHI Conference on Hu-

man Factors in Computing Systems, 534–541. Los Angeles,

California, USA: ACM Press/Addison-Wesley Publishing

Co. doi: 10.1145/274644.274716

184. Myers, B. A. (2002). Mobile Devices for Control. In F.

Paternò (Ed.), Human Computer Interaction with Mobile De-

vices (pp. 1–8). Berlin, Heidelberg: Springer. doi: 10.1007/3-

540-45756-9_1

https://doi.org/10.1145/1622176.1622181
https://doi.org/10.1145/2556288.2557005
https://doi.org/10.1145/108844.108896
https://doi.org/10.1145/274644.274716
https://doi.org/10.1007/3-540-45756-9_1
https://doi.org/10.1007/3-540-45756-9_1

368 REFERENCES

185. Myers, B. A., & Buxton, W. (1986). Creating Highly-Interac-

tive and Graphical User Interfaces by Demonstration. SIG-

GRAPH Comput. Graph., 20(4), 249–258. doi:

10.1145/15886.15914

186. Myers, B. A., Pane, J. F., & Ko, A. (2004). Natural Program-

ming Languages and Environments. Communications of the

ACM, 47(9), 47–52. doi: 10.1145/1015864.1015888

187. Myers, B. A., Peck, C. H., Nichols, J., Kong, D., & Miller,

R. (2001). Interacting at a Distance Using Semantic Snarf-

ing. In G. D. Abowd, B. Brumitt, & S. Shafer (Eds.),

Ubicomp 2001: Ubiquitous Computing (pp. 305–314). Berlin,

Heidelberg: Springer. doi: 10.1007/3-540-45427-6_26

188. Myers, B., Hudson, S. E., & Pausch, R. (2000). Past, Pre-

sent, and Future of User Interface Software Tools. ACM

Transactions on Computer-Human Interaction, 7(1), 3–28. doi:

10.1145/344949.344959

189. Myers, B., Park, S. Y., Nakano, Y., Mueller, G., & Ko, A.

(2008). How Designers Design and Program Interactive Be-

haviors. 2008 IEEE Symposium on Visual Languages and Hu-

man-Centric Computing, 177–184. doi:

10.1109/VLHCC.2008.4639081

190. Nardi, B. A., O’Day, V., & O’Day, V. L. (1999). Information

Ecologies: Using Technology with Heart. MIT Press.

191. Nebeling, M. (2017). Playing the Tricky Game of Toolkits

Research. Workshop on HCI Tools at CHI.

https://doi.org/10.1145/15886.15914
https://doi.org/10.1145/1015864.1015888
https://doi.org/10.1007/3-540-45427-6_26
https://doi.org/10.1145/344949.344959
https://doi.org/10.1109/VLHCC.2008.4639081

 DAVID LEDO, 2020 | 369

192. Nebeling, M., Mintsi, T., Husmann, M., & Norrie, M.

(2014). Interactive Development of Cross-Device User In-

terfaces. Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems, 2793–2802. Toronto, Ontario,

Canada: Association for Computing Machinery. doi:

10.1145/2556288.2556980

193. Nebeling, M., Nebeling, J., Yu, A., & Rumble, R. (2018).

ProtoAR: Rapid Physical-Digital Prototyping of Mobile Aug-

mented Reality Applications. Proceedings of the 2018 CHI

Conference on Human Factors in Computing Systems, 1–12.

Montreal QC, Canada: Association for Computing Machin-

ery. doi: 10.1145/3173574.3173927

194. Nebeling, M., & Norrie, M. (2012). jQMultiTouch: Light-

weight Toolkit and Development Framework for Multi-

Touch/Multi-Device Web Interfaces. Proceedings of the 4th

Acm Sigchi Symposium on Engineering Interactive Computing

Systems, 61–70. Copenhagen, Denmark: Association for

Computing Machinery. doi: 10.1145/2305484.2305497

195. Nebeling, M., Teunissen, E., Husmann, M., & Norrie, M.

C. (2014). XDKinect: Development Framework for Cross-

Device Interaction Using Kinect. Proceedings of the 2014

ACM SIGCHI Symposium on Engineering Interactive Compu-

ting Systems, 65–74. Rome, Italy: Association for Computing

Machinery. doi: 10.1145/2607023.2607024

196. Nielsen, J. (1994). Usability Engineering. Morgan Kaufmann.

https://doi.org/10.1145/2556288.2556980
https://doi.org/10.1145/3173574.3173927
https://doi.org/10.1145/2305484.2305497
https://doi.org/10.1145/2607023.2607024

370 REFERENCES

197. Nielsen, J., Fehr, I., & Nymand, H. O. (1991). The Learna-

bility of Hypercard as an Object-Oriented Programming Sys-

tem. Behaviour & Information Technology, 10(2), 111–120. doi:

10.1080/01449299108924276

198. Nielsen, J., & Molich, R. (1990). Heuristic Evaluation of

User Interfaces. Proceedings of the SIGCHI Conference on Hu-

man Factors in Computing Systems, 249–256. Seattle, Wash-

ington, USA: Association for Computing Machinery. doi:

10.1145/97243.97281

199. Norman, D. A. (2013). The Design of Everyday Things. USA:

Basic Books, Inc.

200. Olsen, D. R. (2007). Evaluating User Interface Systems Re-

search. Proceedings of the 20th Annual ACM Symposium on

User Interface Software and Technology, 251–258. Newport,

Rhode Island, USA: Association for Computing Machinery.

doi: 10.1145/1294211.1294256

201. Oulasvirta, A., & Hornbæk, K. (2016). HCI Research as

Problem-Solving. Proceedings of the 2016 CHI Conference on

Human Factors in Computing Systems, 4956–4967. New York,

NY, USA: Association for Computing Machinery. doi:

10.1145/2858036.2858283

202. Palmer, T. (2018). Design Tools Survey. Retrieved from

https://uxtools.co/survey-2018/

203. Penner, R. (2002). Robert Penner’s Programming Macromedia

Flash MX (1st ed.). USA: McGraw-Hill, Inc.

https://doi.org/10.1080/01449299108924276
https://doi.org/10.1145/97243.97281
https://doi.org/10.1145/1294211.1294256
https://doi.org/10.1145/2858036.2858283
https://uxtools.co/survey-2018/

 DAVID LEDO, 2020 | 371

204. Pfeiffer, M., Duente, T., & Rohs, M. (2016). Let Your Body

Move: A Prototyping Toolkit for Wearable Force Feedback

with Electrical Muscle Stimulation. Proceedings of the 18th In-

ternational Conference on Human-Computer Interaction with

Mobile Devices and Services, 418–427. Florence, Italy: Associ-

ation for Computing Machinery. doi:

10.1145/2935334.2935348

205. Polson, P. G., Lewis, C., Rieman, J., & Wharton, C. (1992).

Cognitive Walkthroughs: A Method for Theory-Based Eval-

uation of User Interfaces. International Journal of Man-Ma-

chine Studies, 36(5), 741–773. doi: 10.1016/0020-

7373(92)90039-N

206. Pratt, A., & Nunes, J. (2012). Interactive Design: An Introduc-

tion to the Theory and Application of User-centered Design.

Rockport Publishers.

207. Pratte, S. A. (2018). Exploring Notifications with Pepper’s

Ghost Illusion. Master’s Thesis, University of Calgary.

208. Preece, Jennifer, Sharp, H., & Rogers, Y. (2015). Interaction

Design: Beyond Human-Computer Interaction. John Wiley &

Sons.

209. Preece, Jenny, & Rombach, H. D. (1994). A taxonomy for

combining software engineering and human-computer inter-

action measurement approaches: Towards a common frame-

work. International Journal of Human-Computer Studies,

41(4), 553–583. doi: 10.1006/ijhc.1994.1073

https://doi.org/10.1145/2935334.2935348
https://doi.org/10.1016/0020-7373(92)90039-N
https://doi.org/10.1016/0020-7373(92)90039-N
https://doi.org/10.1006/ijhc.1994.1073

372 REFERENCES

210. Pugh, S. (1991). Total Design: Integrated Methods for Success-

ful Product Engineering. Addison-Wesley.

211. Ramakers, R., Anderson, F., Grossman, T., & Fitzmaurice,

G. (2016). RetroFab: A Design Tool for Retrofitting Physical

Interfaces using Actuators, Sensors and 3D Printing. Pro-

ceedings of the 2016 CHI Conference on Human Factors in

Computing Systems, 409–419. San Jose, California, USA: As-

sociation for Computing Machinery. doi:

10.1145/2858036.2858485

212. Ramakers, R., Todi, K., & Luyten, K. (2015). PaperPulse:

An Integrated Approach for Embedding Electronics in Paper

Designs. Proceedings of the 33rd Annual ACM Conference on

Human Factors in Computing Systems, 2457–2466. Seoul, Re-

public of Korea: Association for Computing Machinery. doi:

10.1145/2702123.2702487

213. Raskin, J. (2000). The Humane Interface: New Directions for

Designing Interactive Systems. Addison-Wesley Professional.

214. Reach, A. M., & North, C. (2017). The Signals and Systems

Approach to Animation. ArXiv:1703.00521 [Cs]. Retrieved

from http://arxiv.org/abs/1703.00521

215. Rittel, H. W., & Webber, M. M. (1973). Planning Problems

are Wicked. Polity, 4(155), e169.

216. Rogers, Y. (2004). New Theoretical Approaches for HCI.

Annual Review of Information Science and Technology, 38(1),

87–143.

https://doi.org/10.1145/2858036.2858485
https://doi.org/10.1145/2702123.2702487
http://arxiv.org/abs/1703.00521

 DAVID LEDO, 2020 | 373

217. Rogers, Y., & Marshall, P. (2017). Research in the Wild.

Synthesis Lectures on Human-Centered Informatics, 10(3), i–

97. doi: 10.2200/S00764ED1V01Y201703HCI037

218. Roseman, M., & Greenberg, S. (1996a). Building Real-Time

Groupware with Groupkit, a Groupware Toolkit. ACM

Transactions on Computer-Human Interaction, 3(1), 66–106.

doi: 10.1145/226159.226162

219. Roseman, M., & Greenberg, S. (1996b). TeamRooms:

Groupware for Shared Electronic Spaces. Conference Com-

panion on Human Factors in Computing Systems, 275–276.

Vancouver, British Columbia, Canada: Association for Com-

puting Machinery. doi: 10.1145/257089.257319

220. Rosenman, M. A., & Gero, J. S. (1989). Creativity in Design

Using a Prototype Approach. Design Computing Unit, De-

partment of Architectural and Design Science, University of

Sydney, 1989. Pp. 207-232. CADLINE Has Abstract Only.

CUMINCAD. Retrieved from http://papers.cumin-

cad.org/cgi-bin/works/paper/a442

221. Saffer, D. (2013). Microinteractions: Designing with Details.

O’Reilly Media, Inc.

222. Salber, D., Dey, A. K., & Abowd, G. D. (1999). The Context

Toolkit: Aiding the Development of Context-Enabled Appli-

cations. Proceedings of the SIGCHI Conference on Human Fac-

tors in Computing Systems, 434–441. Pittsburgh, Pennsylva-

nia, USA: Association for Computing Machinery. doi:

10.1145/302979.303126

https://doi.org/10.2200/S00764ED1V01Y201703HCI037
https://doi.org/10.1145/226159.226162
https://doi.org/10.1145/257089.257319
http://papers.cumincad.org/cgi-bin/works/paper/a442
http://papers.cumincad.org/cgi-bin/works/paper/a442
https://doi.org/10.1145/302979.303126

374 REFERENCES

223. Salovaara, A., Oulasvirta, A., & Jacucci, G. (2017). Evalua-

tion of Prototypes and the Problem of Possible Futures. Pro-

ceedings of the 2017 CHI Conference on Human Factors in Com-

puting Systems, 2064–2077. Denver, Colorado, USA: Associ-

ation for Computing Machinery. doi:

10.1145/3025453.3025658

224. Savage, V., Chang, C., & Hartmann, B. (2013). Sauron: Em-

bedded Single-Camera Sensing of Printed Physical User In-

terfaces. Proceedings of the 26th Annual ACM Symposium on

User Interface Software and Technology, 447–456. St. An-

drews, Scotland, United Kingdom: Association for Compu-

ting Machinery. doi: 10.1145/2501988.2501992

225. Savage, V., Follmer, S., Li, J., & Hartmann, B. (2015). Mak-

ers’ Marks: Physical Markup for Designing and Fabricating

Functional Objects. Proceedings of the 28th Annual ACM

Symposium on User Interface Software & Technology, 103–108.

Charlotte, NC, USA: Association for Computing Machin-

ery. doi: 10.1145/2807442.2807508

226. Savage, V., Schmidt, R., Grossman, T., Fitzmaurice, G., &

Hartmann, B. (2014). A Series of Tubes: Adding Interactiv-

ity to 3D Prints Using Internal Pipes. Proceedings of the 27th

Annual ACM Symposium on User Interface Software and Tech-

nology, 3–12. Honolulu, Hawaii, USA: Association for Com-

puting Machinery. doi: 10.1145/2642918.2647374

https://doi.org/10.1145/3025453.3025658
https://doi.org/10.1145/2501988.2501992
https://doi.org/10.1145/2807442.2807508
https://doi.org/10.1145/2642918.2647374

 DAVID LEDO, 2020 | 375

227. Savage, V., Zhang, X., & Hartmann, B. (2012). Midas: Fab-

ricating Custom Capacitive Touch Sensors to Prototype In-

teractive Objects. Proceedings of the 25th Annual ACM Sympo-

sium on User Interface Software and Technology, 579–588.

Cambridge, Massachusetts, USA: Association for Compu-

ting Machinery. doi: 10.1145/2380116.2380189

228. Schilit, B., Adams, N., & Want, R. (1994). Context-Aware

Computing Applications. 1994 First Workshop on Mobile

Computing Systems and Applications, 85–90. doi:

10.1109/WMCSA.1994.16

229. Schön, D. A. (1987). The Reflective Practitioner. Jossey-Bass

San Francisco.

230. Sennett, R. (2008). The Craftsman. Penguin Books.

231. Seyed, T., Azazi, A., Chan, E., Wang, Y., & Maurer, F.

(2015). SoD-Toolkit: A Toolkit for Interactively Prototyping

and Developing Multi-Sensor, Multi-Device Environments.

Proceedings of the 2015 International Conference on Interactive

Tabletops & Surfaces, 171–180. Madeira, Portugal: Associa-

tion for Computing Machinery. doi:

10.1145/2817721.2817750

232. Shen, C., Vernier, F. D., Forlines, C., & Ringel, M. (2004).

DiamondSpin: An extensible toolkit for around-the-table in-

teraction. Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems, 167–174. Vienna, Austria: As-

sociation for Computing Machinery. doi:

10.1145/985692.985714

https://doi.org/10.1145/2380116.2380189
https://doi.org/10.1109/WMCSA.1994.16
https://doi.org/10.1145/2817721.2817750
https://doi.org/10.1145/985692.985714

376 REFERENCES

233. Shneiderman, B. (1983). Human Factors of Interactive Soft-

ware. In A. Blaser & M. Zoeppritz (Eds.), Enduser Systems

and Their Human Factors (pp. 9–29). Berlin, Heidelberg:

Springer. doi: 10.1007/3-540-12273-7_16

234. Smith, D. C. (1975). PYGMALION: A Creative Programming

Environment. Stanford Univeristy. Retrieved from Stanford

Univeristy website: https://apps.dtic.mil/sti/cita-

tions/ADA016811

235. Star, S. L., & Griesemer, J. R. (1989). Institutional Ecology,

`Translations’ and Boundary Objects: Amateurs and Profes-

sionals in Berkeley’s Museum of Vertebrate Zoology, 1907-

39. Social Studies of Science, 19(3), 387–420. doi:

10.1177/030631289019003001

236. Stuerzlinger, W., Chapuis, O., Phillips, D., & Roussel, N.

(2006). User Interface Façades: Towards Fully Adaptable

User Interfaces. Proceedings of the 19th Annual ACM Sympo-

sium on User Interface Software and Technology, 309–318.

Montreux, Switzerland: Association for Computing Machin-

ery. doi: 10.1145/1166253.1166301

237. Subtraction.com. (2015). The Tools Designers Are Using To-

day. Retrieved from https://tools.subtraction.com/

238. Sutherland, I. E. (1964). Sketchpad a Man-Machine Graph-

ical Communication System. Simulation, 2(5), R–3.

239. The Nature of Design Practice and Implications for Interac-

tion Design Research. (n.d.). International Journal of Dsign.

https://doi.org/10.1007/3-540-12273-7_16
https://apps.dtic.mil/sti/citations/ADA016811
https://apps.dtic.mil/sti/citations/ADA016811
https://doi.org/10.1177/030631289019003001
https://doi.org/10.1145/1166253.1166301
https://tools.subtraction.com/

 DAVID LEDO, 2020 | 377

Retrieved from http://ijdesign.org/index.php/IJDesign/ar-

ticle/view/240

240. Tscheligi, M., Houde, S., Kolli, R., Marcus, A., Muller, M.,

& Mullet, K. (1995). Creative Prototyping Tools: What In-

teraction Designers Really Need to Produce Advanced User

Interface Concepts. Conference Companion on Human Factors

in Computing Systems, 170–171. New York, NY, USA: Asso-

ciation for Computing Machinery. doi:

10.1145/223355.223485

241. van Oosterhout, A., Bruns Alonso, M., & Jumisko-Pyykkö,

S. (2018). Ripple Thermostat: Affecting the Emotional Ex-

perience through Interactive Force Feedback and Shape

Change. Proceedings of the 2018 CHI Conference on Human

Factors in Computing Systems, 1–12. Montreal QC, Canada:

Association for Computing Machinery. doi:

10.1145/3173574.3174229

242. Victor, B. (n.d.). Inventing on Principle. Retrieved from

http://worrydream.com/#!/InventingOnPrinciple

243. Villar, N., & Gellersen, H. (2007). A Malleable Control

Structure for Softwired User Interfaces. Proceedings of the 1st

International Conference on Tangible and Embedded Interac-

tion, 49–56. Baton Rouge, Louisiana: Association for Com-

puting Machinery. doi: 10.1145/1226969.1226980

244. Wakita, A., & Anezaki, Y. (2010). Intuino: An Authoring

Tool for Supporting the Prototyping of Organic Interfaces.

Proceedings of the 8th ACM Conference on Designing Interactive

http://ijdesign.org/index.php/IJDesign/article/view/240
http://ijdesign.org/index.php/IJDesign/article/view/240
https://doi.org/10.1145/223355.223485
https://doi.org/10.1145/3173574.3174229
http://worrydream.com/#!/InventingOnPrinciple
https://doi.org/10.1145/1226969.1226980

378 REFERENCES

Systems, 179–188. Aarhus, Denmark: Association for Com-

puting Machinery. doi: 10.1145/1858171.1858204

245. Walny, J. (2016). Thinking with Sketches: Leveraging Everyday

Use of Visuals for Information Visualization (Graduate Stud-

ies). Graduate Studies. Retrieved from https://prism.ucal-

gary.ca/handle/11023/3499

246. Walny, J., Lee, B., Johns, P., Henry Riche, N., & Carpen-

dale, S. (2012). Understanding Pen and Touch Interaction

for Data Exploration on Interactive Whiteboards. IEEE

Transactions on Visualization and Computer Graphics, 18(12),

2779–2788. doi: 10.1109/TVCG.2012.275

247. Wang, C., Yeh, H.-M., Wang, B., Wu, T.-Y., Tsai, H.-R.,

Liang, R.-H., … Chen, M. Y. (2016). CircuitStack: Support-

ing Rapid Prototyping and Evolution of Electronic Circuits.

Proceedings of the 29th Annual ACM Symposium on User Inter-

face Software and Technology, 687–695. Tokyo, Japan: Associ-

ation for Computing Machinery. doi:

10.1145/2984511.2984527

248. Wang, F., & Ren, X. (2009). Empirical evaluation for finger

input properties in multi-touch interaction. Proceedings of the

SIGCHI Conference on Human Factors in Computing Systems,

1063–1072. Boston, MA, USA: Association for Computing

Machinery. doi: 10.1145/1518701.1518864

249. Wang, M., Boring, S., & Greenberg, S. (2012). Proxemic

Peddler: A Public Advertising Display That Captures and

Preserves the Attention of a Passerby. Proceedings of the 2012

https://doi.org/10.1145/1858171.1858204
https://prism.ucalgary.ca/handle/11023/3499
https://prism.ucalgary.ca/handle/11023/3499
https://doi.org/10.1109/TVCG.2012.275
https://doi.org/10.1145/2984511.2984527
https://doi.org/10.1145/1518701.1518864

 DAVID LEDO, 2020 | 379

International Symposium on Pervasive Displays. Presented at

the New York, NY, USA. New York, NY, USA: Association

for Computing Machinery. doi: 10.1145/2307798.2307801

250. Weichel, C., Lau, M., & Gellersen, H. (2013). Enclosed: A

Component-Centric Interface for Designing Prototype En-

closures. Proceedings of the 7th International Conference on

Tangible, Embedded and Embodied Interaction, 215–218. Bar-

celona, Spain: Association for Computing Machinery. doi:

10.1145/2460625.2460659

251. Weichel, C., Lau, M., Kim, D., Villar, N., & Gellersen, H.

W. (2014). MixFab: A Mixed-Reality Environment for Per-

sonal Fabrication. Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems, 3855–3864. Toronto,

Ontario, Canada: Association for Computing Machinery.

doi: 10.1145/2556288.2557090

252. Weiser, M. (1991). The Computer for the 21st Century. Sci-

entific American, 265(3), 75–84.

253. Wiberg, M., & Stolterman, E. (2014). What Makes a Proto-

type Novel? A Knowledge Contribution Concern for Inter-

action Design Research. Proceedings of the 8th Nordic Confer-

ence on Human-Computer Interaction: Fun, Fast, Founda-

tional, 531–540. Helsinki, Finland: Association for Compu-

ting Machinery. doi: 10.1145/2639189.2639487

254. Wiethoff, A., Schneider, H., Küfner, J., Rohs, M., Butz, A.,

& Greenberg, S. (2013). Paperbox: A Toolkit for Exploring

Tangible Interaction on Interactive Surfaces. Proceedings of

https://doi.org/10.1145/2307798.2307801
https://doi.org/10.1145/2460625.2460659
https://doi.org/10.1145/2556288.2557090
https://doi.org/10.1145/2639189.2639487

380 REFERENCES

the 9th ACM Conference on Creativity & Cognition, 64–73.

Sydney, Australia: Association for Computing Machinery.

doi: 10.1145/2466627.2466635

255. Wigdor, D., Benko, H., Pella, J., Lombardo, J., & Williams,

S. (2011). Rock & Rails: Extending Multi-Touch Inter-

actions with Shape Gestures to Enable Precise Spatial Ma-

nipulations. Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems, 1581–1590. Vancouver, BC,

Canada: Association for Computing Machinery. doi:

10.1145/1978942.1979173

256. Wimmer, R., Kranz, M., Boring, S., & Schmidt, A. (2007).

A Capacitive Sensing Toolkit for Pervasive Activity Detec-

tion and Recognition. Fifth Annual IEEE International Con-

ference on Pervasive Computing and Communications

(PerCom’07), 171–180. doi: 10.1109/PERCOM.2007.1

257. Wing, J. M. (n.d.). Computational thinking and thinking

about computing. Philosophical Transactions of the Royal Soci-

ety A: Mathematical, Physical and Engineering Sciences. doi:

https://doi.org/10.1098/rsta.2008.0118

258. Wobbrock, J. O., & Kientz, J. A. (2016). Research Contribu-

tions in Human-Computer Interaction. Interactions, 23(3),

38–44. doi: 10.1145/2907069

259. Wobbrock, J. O., Wilson, A. D., & Li, Y. (2007). Gestures

Without Libraries, Toolkits or Training: A $1 Recognizer for

User Interface Prototypes. Proceedings of the 20th Annual

ACM Symposium on User Interface Software and Technology,

https://doi.org/10.1145/2466627.2466635
https://doi.org/10.1145/1978942.1979173
https://doi.org/10.1109/PERCOM.2007.1
https://doi.org/10.1098/rsta.2008.0118
https://doi.org/10.1145/2907069

 DAVID LEDO, 2020 | 381

159–168. Newport, Rhode Island, USA: Association for

Computing Machinery. doi: 10.1145/1294211.1294238

260. Wu, C.-J., Houben, S., & Marquardt, N. (2017). EagleSense:

Tracking People and Devices in Interactive Spaces using

Real-Time Top-View Depth-Sensing. Proceedings of the 2017

CHI Conference on Human Factors in Computing Systems,

3929–3942. Denver, Colorado, USA: Association for Com-

puting Machinery. doi: 10.1145/3025453.3025562

261. Xiao, R., Harrison, C., & Hudson, S. E. (2013). WorldKit:

Rapid and Easy Creation of Ad-Hoc Interactive Applications

on Everyday Surfaces. Proceedings of the SIGCHI Conference

on Human Factors in Computing Systems, 879–888. Paris,

France: Association for Computing Machinery. doi:

10.1145/2470654.2466113

262. Yang, J., & Wigdor, D. (2014). Panelrama: Enabling Easy

Specification of Cross-Device Web Applications. Proceedings

of the SIGCHI Conference on Human Factors in Computing

Systems, 2783–2792. Toronto, Ontario, Canada: Association

for Computing Machinery. doi: 10.1145/2556288.2557199

263. Yeh, T., Chang, T.-H., & Miller, R. C. (2009). Sikuli: Using

GUI Screenshots for Search and Automation. Proceedings of

the 22nd Annual ACM Symposium on User Interface Software

and Technology, 183–192. Victoria, BC, Canada: Association

for Computing Machinery. doi: 10.1145/1622176.1622213

https://doi.org/10.1145/1294211.1294238
https://doi.org/10.1145/3025453.3025562
https://doi.org/10.1145/2470654.2466113
https://doi.org/10.1145/2556288.2557199
https://doi.org/10.1145/1622176.1622213

382 REFERENCES

264. Yu, N.-H., Tsai, S.-S., Hsiao, I.-C., Tsai, D.-J., Lee, M.-H.,

Chen, M. Y., & Hung, Y.-P. (2011). Clip-on Gadgets: Ex-

panding Multi-Touch Interaction Area with Unpowered

Tactile Controls. Proceedings of the 24th Annual ACM Sympo-

sium on User Interface Software and Technology, 367–372.

Santa Barbara, California, USA: Association for Computing

Machinery. doi: 10.1145/2047196.2047243

265. Zimmerman, J., Forlizzi, J., & Evenson, S. (2007). Research

Through Design as a Method for Interaction Design Re-

search in HCI. Proceedings of the SIGCHI Conference on Hu-

man Factors in Computing Systems, 493–502. San Jose, Cali-

fornia, USA: Association for Computing Machinery. doi:

10.1145/1240624.1240704

https://doi.org/10.1145/2047196.2047243
https://doi.org/10.1145/1240624.1240704

APPENDIX

	Dissertation-Ledo-FULL-Revisions-V9
	Abstract
	Acknowledgements
	Publications
	Table of Contents
	List of Figures
	List of Tables
	Chapter 1. Introduction
	1.1 Motivation: The Vision of Seamless Interactions with Technology
	1.2 Problem: The Gaps When Designing a Single Smart Object
	1.2.1 Challenge 1: Need For Multiple Specializations
	1.2.2 Challenge 2. Lack of Tool Support
	1.2.3 Challenge 3. Need for Close-to-Product Representations

	1.3 Thesis Statement
	1.4 Research Questions
	1.4.1 RQ1. How Might Designers Repurpose Mobile Devices to Prototype Smart Interactive Objects?
	1.4.2 RQ2. How Might Designers Author Forms Around Mobile Devices to Make Them Look and Feel Like Smart Objects?
	1.4.3 RQ3. How Might Designers Leverage Existing Familiar Software Tools to Author Interactive Behaviours for Smart Objects?
	1.4.4 Research Question Foundations
	Who Are Interaction Designers?
	What is Interactive Behaviour?
	How Do We, or Should We, Evaluate Prototyping Tools?

	1.5 Thesis Organization
	1.5.1 Part 1: Prototyping Interactive Behaviour
	1.5.2 Part 2: Soul–Body Prototyping
	1.5.3 Part 3: Systems

	Chapter 2. Background
	2.1 Interaction Design
	2.1.1 What is Design?
	2.1.2 User Experience Design
	2.1.3 Interaction Design
	2.1.4 Who are Interaction Designers?
	2.1.5 How Designers Think
	The Design Thinking Process
	Strategic Aspects of Design Thinking

	2.1.6 The Design Process: How Interaction Designers Work
	The Product Development Process
	The Design Phase

	2.1.7 Summary

	2.2 Prototyping: How Designers Explore Ideas
	2.2.1 What is Prototyping?
	2.2.2 Why Do Designers Prototype?
	Prototyping as Exploration
	Prototyping as Specification and Communication
	Prototyping as Means of Evaluation

	2.2.3 What Do Prototypes Prototype?
	2.2.4 Exploratory Prototyping in Interaction Design
	Structure: The What
	Behaviour: The How
	Usage: First-Hand Experience with the Concept

	2.2.5 Summary

	Chapter 3. Beginings of a Descriptive Framework of Interactive Behaviour
	3.1 The Problem With The Word Feel
	3.2 Interactive Behaviour, Defined
	3.3 A Descriptive Framework of Interactive Behaviour
	3.3.1 Behaviours are Relationships Between Inputs and Outputs
	3.3.2 Behaviours Have Dependencies
	3.3.3 Programming Constructs of Behaviour
	3.3.4 Summary

	3.4 Discussion
	3.4.1. Hard Dimensions and Interdependence
	3.4.2. Validation: Using The Framework to Describe Prior Systems
	3.4.3. Fit of Current Methods

	3.5 Conclusion

	Chapter 4. Prototyping Interactive Behaviour, Related Work
	4.1 Common Prototyping Activities
	4.1.1 Sketching
	4.1.2 Wireframes / Storyboards
	4.1.3 Wizard of Oz
	4.1.4 Video Prototyping
	4.1.5 Programmed Interactive Prototypes
	4.1.6 How Do These Approaches Prototype Structure, Behaviour and Usage?

	4.2 How Do Designers Prototype Interactive Behaviour Today? Or do They?
	4.2.1 Formative Interviews: Challenges and Needs
	4.2.2 The (Commercial) Tools Designers Use Today
	Software Tools Shape How People Think, And What Is Possible

	4.3 Behaviour Prototyping Tools in Research and Industry
	4.3.1 Traditional Coding
	4.3.2 Visual Programming
	4.3.3 Screen Transitions
	4.3.4 Timeline
	4.3.5 Programming by Example
	4.3.6 Keyframing
	4.3.7 Stage Metaphor
	4.3.8 Step by Step Wizards
	4.3.9 Wizard of Oz and Video Prototyping Tools
	4.3.10 Smoke and Mirrors and Screen Poking

	4.4 Summary And Conclusion

	Chapter 5. Evaluating Toolkit Systems
	5.1 The Challenge of Toolkit Evaluation
	5.2 What is a Toolkit?
	5.2.1 Defining a Toolkit
	5.2.2 Why do HCI Researchers Build Toolkits?
	5.2.3 Evaluating Toolkits

	5.3 Methodology
	5.3.1 Dataset
	5.3.2 Analysis and Results

	5.4 Type 1: Demonstrations
	5.4.1 Why Use Demonstrations?
	5.4.2 Evaluation Techniques as Used in Demonstrations
	5.4.3 Individual Instances
	5.4.4 Collections
	5.4.5 Going Beyond Descriptions
	5.4.6 Challenges
	5.4.7 Reflection and Opportunities

	5.5 Type 2: Usage
	5.5.1 Why Evaluate Usage?
	5.5.2 Evaluation Techniques as Used in Usage Studies
	5.5.3 Ways to Conduct Usage Studies
	5.5.4 Ways to Elicit User Feedback
	5.5.5 Challenges
	5.5.6 Reflection and Opportunities

	5.6 Type 3: Technical Performance
	5.6.1 Why Analyze the Technical Performance?
	5.6.2 Techniques as Used in Technical Performance
	5.6.3 Challenges
	5.6.4 Reflection and Opportunities

	5.7 Type 4: Heuristics
	5.7.1 Why Use Heuristics?
	5.7.2 Evaluation Techniques for Heuristics
	5.7.3 Challenges
	5.7.4 Reflection and Opportunities

	5.8 Discussion
	5.8.1 Rethinking Evaluation
	Evaluation by Demonstration?
	Usability Studies (Still) Considered Harmful Some of the Time
	Successful Evaluation versus Successful Toolkit
	Non-Coding Toolkits
	Meta-Development
	Existing Scaffolding
	End-User Practice

	The Need for HCI Infrastructure Research

	5.9 Limitations
	5.10 Applying Evaluation Strategies: Why the Reported Dissertation Research is Not Yet Ready For User Studies
	5.11 Conclusion

	Chapter 6. Soul–Body Prototyping
	6.1 Motivation: Designer Challenges
	6.2 Design Rationale
	6.3 Soul–Body Prototyping Paradigm: The Mobile Device as a Prototyping Engine
	6.4 Design Space of Soul–Body Prototyping
	6.4.1 Mobile Sensors
	6.4.2 Mobile Output
	6.4.3 Power and Connectivity
	6.4.4 Input and Output Modification
	Rerouting Modifiers
	Transducing Modifiers

	4.
	5.
	6.
	6.1.
	6.2.
	6.3.
	6.4.
	6.4.1.
	6.4.2.
	6.4.3.
	6.4.4.
	6.4.5. Surrounding Physical Form (Body)

	6.5 Discussion
	6.5.
	6.5.1. Metaphor Boundaries
	6.5.2. Extending the Metaphor: Mobile Devices as Moving Targets
	6.5.3. Applying Soul–Body Prototyping in the Context of this Thesis
	6.5.4. Key Technical Limitations When Not Using Dedicated Electronic Sensors
	Physical Range of Modifiers
	Association Between Sensors and Modifiers

	6.6 Conclusion

	Chapter 7. Soul–Body Prototyping Case Studies
	7.1 Student Explorations Before Realizing Soul–Body Prototyping
	7.1.1 GymBuddy by Mike Chubey
	7.1.2 Pathologist Device by Terrance Mok
	7.1.3 Smart Docks by Orkhan Suleymanov
	7.1.4 Huggable Phone by Sara Williamson
	7.1.5 Phoame Swords by Kevin TA

	7.2 Watchpen: Later Student Exploration
	7.3 Discussion
	7.3.1 Limitations
	What Can We Extrapolate from Student Explorations?
	Understanding Sensors

	7.3.2 Soul–Body Prototyping and HCI Research
	7.3.3 Soul Body Prototyping and Designers

	7.4 Conclusion

	Chapter 8. Pineal: Behaviour-Driven Physical Prototyping
	8.1 Pineal
	8.2 Related Work and Contributions
	8.3 Interface And Workspaces
	8.3.1 Visual Programming Environment
	Input Modules
	Output Modules
	Mapping Modules

	8.3.2 Modeling Environment Interaction
	Hover
	Brush Selection
	Object Placement

	8.4 Usage Scenario: Creating a Toy Firetruck
	8.4.1 Step 1: Importing the Base Form 3D Model
	8.4.2 Step 2: Authoring the Behaviour via Visual Programming
	8.4.3 Step 3: Guiding the Modelling Process
	8.4.4 Step 4: Object Generation
	8.4.5 Step 5: Object Assembly

	8.5 Implementation
	8.5.1 System Overview
	8.5.2 Automated Model Configuration
	Defining the Mobile Device Screen Position on the Form and Placing the Mobile Device
	Screen Cavity and Alignment Pins
	Speaker and Sensor Holes
	Button Creation
	LEDs Simulated with Light Pipes
	Diffusers

	8.5.3 Raw Sensor View

	8.6 Resulting Prototypes
	8.6.1 Toy Fire Truck
	8.6.2 Magic 8 Ball
	8.6.3 Level
	8.6.4 Ambient Display Planter
	8.6.5 Voice-Activated Light-bulb

	8.7 Discussion
	8.7.1 Limitations
	Conceptual Limitations
	Technical Limitations

	8.7.2 Pineal, Designers and Prototyping
	Pineal, Expertise and Current Practices
	Is Automation Good?
	How Rapid is Pineal’s Rapid Prototyping?
	How Long Should Pineal Prototypes Live?
	Generality

	8.8 Conclusion

	Chapter 9. Astral: Behaviour Prototyping Via Familiar Tools
	9.1 Astral
	9.2 Related work and Contributions
	9.3 Working with Astral
	9.3.1 Mirroring Desktop Contents
	9.3.2 Specifying Input Remapping through Rules
	9.3.3 Merging Several Rules into Rulesets
	9.3.4 Deciding When Rules are Triggered
	9.3.5 Sensor Selector

	9.4 Usage Scenario: Creating a Level
	9.4.1 Preparing the Prototype: Illustrator and AfterEffects
	9.4.2 Step 1: Starting Astral
	9.4.3 Step 2: Sensor Selector
	9.4.4 Step 3: Rule Editor
	9.4.5 Step 4: Mapping Mouse Position to the AfterEffects Timeline
	9.4.6 Step 5: Fine-Tuning through Easing Functions

	9.5 Interactive Prototypes Made With Astral
	9.5.1 Converting Video into Interaction-Driven Animation
	Video-Based Prototyping

	9.5.2 Converting Existing Desktop Inputs/Outputs into New Device-Specific Interactions
	Authoring Open-Ended Interaction Techniques
	Prototyping Multiple Alternatives

	9.5.3 Bringing Sketches to Life
	Iterative Prototyping at Multiple Resolutions
	Authoring Smart Object Behaviours

	9.6 Implementation
	9.7 Discussion
	9.7.1 Revisiting the Design Rationale
	9.7.2 Evaluation Approach
	9.7.3 Scale and Reappropriation of Tools
	9.7.4 Implementation-Level Constraints
	Implementation Bottlenecks
	Device Relativism
	Permanence

	9.8 Summary

	Chapter 10. Conclusion
	10.1 Revisiting This Thesis’ Target Problems
	10.2 Primary Contributions
	10.3 Secondary Contributions
	10.4 Future Work
	10.4.1 Making Existing Objects into Smart Prototypes
	10.4.2 Soul–Body Multi-Device Ecologies
	10.4.3 Supporting Multiple Parameters
	10.4.4 New Building Blocks for Interactive Behaviour Design
	10.4.5 Reflections in Systems Research

	10.5 Reflection
	10.6 Closing Remarks

	References
	Appendix
	Permissions

