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ABSTRACT 
A variety of HCI toolkits help designers and developers au-
thor particular styles of interactive systems. However, the de-
sign, use and evaluation of toolkits are fraught with many 
challenges. This paper focuses on a subset of challenges that 
arise from the fit between the toolkit and its intended audi-
ence. These challenges include the skill set of that audience, 
the resources they have, and how they learn. We illustrate 
these challenges via three toolkits: Phidgets, d.Tools, and the 
Proximity Toolkit. 
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INTRODUCTION 
Toolkits are means of encapsulating design concepts to help 
a developer realize particular styles of interaction design 
without undue effort [2]. The developer chooses a toolkit to 
design within HCI genres and/or to exploit interaction tech-
niques. Broad genres include GUIs, physical / tangible inter-
faces, and ubicomp. Interaction techniques are narrower, 
such as gesture recognition and input sensing. Toolkits range 
in how they can be accessed [3], and can include: 
− traditional programming, usually through coding via a 

functional or object-oriented API; 
− coding support tools, such as SDKs with interface builders, 

widget sets, and physical building blocks (e.g. electronics);  
− authoring tools that minimize coding by providing a 

higher-level means for authoring interactivity or for creat-
ing interactive behaviours (e.g. visual programming 
[5,7,15] or programming by demonstration  [4,16]); 

− high-level tools that supports debugging and understand-
ing of the run-time system state, for example, Papier-Ma-
che [6] and the Proximity Toolkit [11] provide visualiza-
tions that allows the end-developer to monitor, record, and 
even modify runtime  information (e.g. sensor data, notifi-
cations, variables, etc.). 

Yet there is another important way that toolkits vary: their 
intended audience. Understanding the toolkit’s audience is 
critical, for it will influence how the toolkit will be used, 
what support tools should be offered, learnability, and even 
how the toolkit should be evaluated.  

NOTABLE TOOLKITS 
Our interests lie in toolkits that let the end-developer create 
ubicomp-style physical interfaces that: gather data from the 
real world (e.g. sensors); respond in software and physical 
objects (e.g. visualizations, motors); and support creating be-
haviours linking the two. We consider three toolkits within 
this genre that will act as running examples to discuss various 
toolkit/audience challenges: Phidgets [3], d.Tools [5] and the 
Proximity Toolkit [11]. 
Phidgets  
Fitchett and Greenberg [3] introduced Phidgets in 2001. 
Phidgets comprise both hardware and software. Hardware in-
cludes USB-based circuit boards that provide different sen-
sors and actuators. The software includes an API for inter-
acting with each type of board. The API controls the board’s 
components (e.g. rotating a servo motor to a particular angle) 
and delivers changes to sensor values as events. The software 
includes graphical widgets representing each board for de-
velopers to view and test the hardware counterpart.  

Phidgets originated from frustrations its authors had in cre-
ating early tangible user interfaces. To build such interfaces, 
developers had to be knowledgeable in many areas, includ-
ing circuitry, micro-programming, networking, etc. Acquir-
ing that knowledge came at a high cost and time demand. 
Thus, Greenberg and Fitchett designed Phidgets with com-
puter programmers as its audience in mind – people who do 
not necessarily understand electronics but are proficient in 
writing event-driven object-oriented software [3]. They de-
signed Phidgets to mimic traditional UI widget program-
ming, as it would then be easy for developers to integrate into 
their existing workflow.  

Phidgets became a commercial product, one which is now 
widely recognized and used within the HCI community. 
Other researchers have since incorporated Phidgets into their 
own platforms [5,12]. 

d.Tools  
d.Tools [5] is a high-level authoring tool, which (in part) in-
corporates Phidgets. A designer prototypes interactive be-
haviours by manipulating state-diagrams that move through 
different outputs based on sensor interpretations. d.Tools’ 
audience is interaction designers – people without special-
ized engineering or programming knowledge who want to 
quickly iterate through the early designs of functional inter-
active objects [5].  d.Tools is widely cited in HCI. It was later 
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extended into Exemplar [4], which incorporated pattern 
recognition and programming by demonstration. 
The Proximity Toolkit 
The Proximity Toolkit [11] audience is highly specialized re-
searchers investigating the design of proxemic interactions. 
Proxemic interaction imagines a world of devices and inter-
action behaviors that have fine-grained knowledge of nearby 
people and devices: how devices and people move into 
range, their precise distance from one another, their identity, 
and even their relative orientation. The toolkit encapsulates 
and abstracts sensor data (e.g. Vicon, Kinect), as relations 
between entities. Developers can focus on designing proxe-
mic-aware applications rather than the setup and complex 
programming of tracking equipment and its data.  

The Proximity Toolkit includes an event-driven API that in-
forms the system of changes in proxemic values for different 
entities. Developers can monitor objects that move in the en-
vironment at runtime, either by showing numeric changes in 
variables of interest, or by interacting with a visualization 
showing all tracked entities and the proxemic relations be-
tween them. It also eases development by recording and stor-
ing tracked data, which can then be replayed as a simulation. 
The authors and their colleagues developed a large number 
of proxemic interaction techniques and applications [1,10] to 
investigate how proxemic interactions can be applied to other 
domains, such as advertising [17], and remote controls [8].  
THE TOOLKIT/AUDIENCE CHALLENGES  
Prototyping toolkits often refer to their end-developer in a 
range of ways: programmer, designer, developer, end-user, 
maker, researcher, etc. Regardless of how the expected end-
developer is labelled, toolkits need to define and understand 
their target audience. Indeed, Olsen [14] argues for the im-
portance of understanding situation, tasks, and user when 
creating a toolkit. Below are a few sample challenges that 
can help unpack attributes about the primary end-developer 
and how it relates to the toolkit. 

Challenge 1. End-Developer Skills 
Myers et. al. [13] argue that one aspect of evaluating a toolkit 
is its threshold and ceiling. Threshold refers to the developer 
effort to get started, while the ceiling defines how much can 
be done using the tools. Ideally, a toolkit would have a low 
threshold and high ceiling. Yet the notions of threshold and 
ceiling are actually relative to the skills of the end-developer.  

Toolkits often extend existing programming languages, 
which affect the threshold for the end-developer. With 
Phidgets, originally built atop Visual Basic, the end-devel-
oper would have a very low ceiling only if they were profi-
cient in Visual Basic and its interface builder. In contrast, an 
interaction designer with no programming background 
would find the threshold high, as they would have to learn to 
program before using Phidgets. The commercialized version 
of Phidgets mitigated this issue somewhat by making its API 
accessible to a broader audience skilled in different program-
ming platforms: core languages (e.g., C#, Java), mobile (iOS, 

Android), scripting (Python), multimedia platforms (Flash), 
etc. d.Tools further reduce the threshold for non-program-
mers by providing an authoring environment that substituted 
programming with state-diagrams.  

High ceilings also depend on the audience. Toolkits offer 
high ceilings through flexibility and expressiveness, but this 
only works when the end-developer has design skills in the 
area that the toolkit is trying to open.  For example, the Prox-
imity Toolkit offers a high ceiling for proxemic interaction 
development via: a myriad of proxemic variables; relation-
ships between people, devices and objects; and flexible con-
figuration of the physical sensing environment. It assumes its 
end-developers have knowledge in proxemic theory and how 
to apply it to interaction design. If the developer does not 
have that knowledge, the richness of the Proximity Toolkit 
can easily become a liability. This is especially true if the 
end-developer wants to take the path of least resistance, 
where the toolkit guides them to ‘do the right thing, away 
from the wrong things’ [13].      
Challenge 2. End-Developer Resources 
Toolkits may rely on commercial or DIY hardware. Some-
times the underlying technologies can be acquired with ease 
and at reasonable cost (e.g. Phidgets). However, other 
toolkits assume a larger infrastructure (e.g. the Proximity 
Toolkit requires a dedicated room and specialized hardware 
such as the Vicon motion tracking system). As the required 
resources and costs increase, the expected audience will nar-
row to only those very interested in the area.   

Challenge 3: End-Developer Learning 
Another consideration is how the end-developer will learn 
the toolkit.  

First, end-developers need to learn what the toolkit offers 
over and above its base platform. For example, Phidgets and 
the Proximity Toolkit both offer an API to particular capa-
bilities, and they must be learned, along with the patterns that 
best exploits that API. While D.Tools offers the state dia-
gram approach, that too must be learned. 

Second, end-developers also need to make sense of the over-
all data, automated processes, etc. as provided by the toolkit. 
For example, various ubicomp-oriented toolkits exploit sen-
sor data, often delivered as low-level, frequently updated 
variables. Yet, learning what that sensor data means (espe-
cially if it is noisy) can be quite challenging, for that data 
must be related to real-world phenomena. This is partially 
why toolkits provide high-level tools that visualize and/or 
aggregate sensor data [6,11] or store information for further 
scrutiny [9,11]. To illustrate, the Proximity Toolkit shows a 
visualization of all objects in a scene, and how the proxemic 
variables (i.e., aggregated sensor values) track the proxemic 
relations between those objects. The end-developer can view 
the visualization to learn and understand the changes as they 
occur, which become references for creating the new system.  

Third, research-oriented systems often assume knowledge of 
an underlying design paradigm. Phidgets and d.tools assume 



some knowledge and experience in physical and tangible 
user interfaces. The Proximity Toolkit assumes some 
knowledge in Proxemics theory and proxemic interaction. 
However, the toolkits themselves do not offer easy ways to 
acquire that knowledge, except perhaps by referring to exter-
nal resources such as publications.  

Toolkits must be constructed with learnability in mind, 
which depends on the intended audience. They need to give 
the end-user an idea of what is possible, help make sense of 
(and debug) the data, and include resources to help new users 
understand the toolkit. Thus, the toolkit should offer a broad 
range of simple example systems, extensive documentations, 
repositories of examples, video tutorials, etc., as well as pub-
lished papers of the design space supported by the toolkit.  
SUGGESTED WORKSHOP TOPIC 
Based on the above challenges, we propose the following 
topic for the workshop: who is the audience, and how does 
the toolkit design fit that audience? The prior challenges doc-
ument only a few examples of concerns related to the end-
developers. We expect workshop members will suggest other 
concerns, and elaborate on the ones mentioned here.  

For example, toolkit evaluation is a great concern for many 
toolkit researchers, especially because submitted toolkit pub-
lications are usually accepted only if they are accompanied 
by a convincing evaluation of the toolkit. However, evalua-
tion without the context of the intended audience is a some-
what pointless (and perhaps misleading) exercise. To illus-
trate, various toolkits are evaluated by illustrating how end-
developers can quickly create prototypes within a short pe-
riod of time. Yet, such an evaluation is meaningful only if 
the intended audience has the core skills behind the toolkit, 
is able to learn the toolkit quickly, and has the resources al-
ready on hand. In many toolkit papers, the audience doing 
the evaluation was prepared a priori. For example, Phidgets 
were evaluated by showing how undergraduate students cre-
ated many Phidget prototypes quickly. Those students were 
already knowledgeable in Visual Basic (skills), were given a 
collection of Phidget hardware and cables ahead of time (re-
sources), and were provided with lectures illustrating the tan-
gible interface genre along with a step by step tutorial of how 
to use Phidgets (learnability). The Proximity Toolkit was 
evaluated by illustrating graduate student projects: those stu-
dents were also prepared in a manner similar to the Phidgets 
study, and the specialized equipment required was already in 
place. d.Tools performed two evaluations with audiences 
knowledgeable in design, and were also prepared and sup-
ported. The first audience comprised participants with gen-
eral design experience who were assigned particular tasks to 
do. The second were students in a masters-level HCI design 
course. In all the above cases, the context of the chosen au-
dience approached a ‘best case’ for evaluation.  
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