
The Toolkit / Audience Challenge
David Ledo, Lora Oehlberg, Saul Greenberg

Department of Computer Science
University of Calgary

Calgary, Alberta, Canada, T2N 1N4
{david.ledo, lora.oehlberg, saul.greenberg}@ucalgary.ca

ABSTRACT
A variety of HCI toolkits help designers and developers au-
thor particular styles of interactive systems. However, the de-
sign, use and evaluation of toolkits are fraught with many
challenges. This paper focuses on a subset of challenges that
arise from the fit between the toolkit and its intended audi-
ence. These challenges include the skill set of that audience,
the resources they have, and how they learn. We illustrate
these challenges via three toolkits: Phidgets, d.Tools, and the
Proximity Toolkit.

Author Keywords
Toolkits; Prototyping Tools.

ACM Classification Keywords
H.5.2. Information interfaces and presentation (e.g., HCI):
Miscellaneous; Prototyping.

INTRODUCTION
Toolkits are means of encapsulating design concepts to help
a developer realize particular styles of interaction design
without undue effort [2]. The developer chooses a toolkit to
design within HCI genres and/or to exploit interaction tech-
niques. Broad genres include GUIs, physical / tangible inter-
faces, and ubicomp. Interaction techniques are narrower,
such as gesture recognition and input sensing. Toolkits range
in how they can be accessed [3], and can include:
− traditional programming, usually through coding via a

functional or object-oriented API;
− coding support tools, such as SDKs with interface builders,

widget sets, and physical building blocks (e.g. electronics);
− authoring tools that minimize coding by providing a

higher-level means for authoring interactivity or for creat-
ing interactive behaviours (e.g. visual programming
[5,7,15] or programming by demonstration [4,16]);

− high-level tools that supports debugging and understand-
ing of the run-time system state, for example, Papier-Ma-
che [6] and the Proximity Toolkit [11] provide visualiza-
tions that allows the end-developer to monitor, record, and
even modify runtime information (e.g. sensor data, notifi-
cations, variables, etc.).

Yet there is another important way that toolkits vary: their
intended audience. Understanding the toolkit’s audience is
critical, for it will influence how the toolkit will be used,
what support tools should be offered, learnability, and even
how the toolkit should be evaluated.

NOTABLE TOOLKITS
Our interests lie in toolkits that let the end-developer create
ubicomp-style physical interfaces that: gather data from the
real world (e.g. sensors); respond in software and physical
objects (e.g. visualizations, motors); and support creating be-
haviours linking the two. We consider three toolkits within
this genre that will act as running examples to discuss various
toolkit/audience challenges: Phidgets [3], d.Tools [5] and the
Proximity Toolkit [11].
Phidgets
Fitchett and Greenberg [3] introduced Phidgets in 2001.
Phidgets comprise both hardware and software. Hardware in-
cludes USB-based circuit boards that provide different sen-
sors and actuators. The software includes an API for inter-
acting with each type of board. The API controls the board’s
components (e.g. rotating a servo motor to a particular angle)
and delivers changes to sensor values as events. The software
includes graphical widgets representing each board for de-
velopers to view and test the hardware counterpart.

Phidgets originated from frustrations its authors had in cre-
ating early tangible user interfaces. To build such interfaces,
developers had to be knowledgeable in many areas, includ-
ing circuitry, micro-programming, networking, etc. Acquir-
ing that knowledge came at a high cost and time demand.
Thus, Greenberg and Fitchett designed Phidgets with com-
puter programmers as its audience in mind – people who do
not necessarily understand electronics but are proficient in
writing event-driven object-oriented software [3]. They de-
signed Phidgets to mimic traditional UI widget program-
ming, as it would then be easy for developers to integrate into
their existing workflow.

Phidgets became a commercial product, one which is now
widely recognized and used within the HCI community.
Other researchers have since incorporated Phidgets into their
own platforms [5,12].

d.Tools
d.Tools [5] is a high-level authoring tool, which (in part) in-
corporates Phidgets. A designer prototypes interactive be-
haviours by manipulating state-diagrams that move through
different outputs based on sensor interpretations. d.Tools’
audience is interaction designers – people without special-
ized engineering or programming knowledge who want to
quickly iterate through the early designs of functional inter-
active objects [5]. d.Tools is widely cited in HCI. It was later

saul
Text Box

saul
Text Box
Ledo, D., Oehlberg, L. and Greenberg, S. (2017) The Toolkit / Audience Challenge. In Proceedings of HCI.Tools, a workshop held at the ACM Conference on Human Factors in Computing Systems (ACM CHI'17). (Denver, Colorado), 4 pages, May 7. See http://hci.tools for the workshop website.

extended into Exemplar [4], which incorporated pattern
recognition and programming by demonstration.
The Proximity Toolkit
The Proximity Toolkit [11] audience is highly specialized re-
searchers investigating the design of proxemic interactions.
Proxemic interaction imagines a world of devices and inter-
action behaviors that have fine-grained knowledge of nearby
people and devices: how devices and people move into
range, their precise distance from one another, their identity,
and even their relative orientation. The toolkit encapsulates
and abstracts sensor data (e.g. Vicon, Kinect), as relations
between entities. Developers can focus on designing proxe-
mic-aware applications rather than the setup and complex
programming of tracking equipment and its data.

The Proximity Toolkit includes an event-driven API that in-
forms the system of changes in proxemic values for different
entities. Developers can monitor objects that move in the en-
vironment at runtime, either by showing numeric changes in
variables of interest, or by interacting with a visualization
showing all tracked entities and the proxemic relations be-
tween them. It also eases development by recording and stor-
ing tracked data, which can then be replayed as a simulation.
The authors and their colleagues developed a large number
of proxemic interaction techniques and applications [1,10] to
investigate how proxemic interactions can be applied to other
domains, such as advertising [17], and remote controls [8].
THE TOOLKIT/AUDIENCE CHALLENGES
Prototyping toolkits often refer to their end-developer in a
range of ways: programmer, designer, developer, end-user,
maker, researcher, etc. Regardless of how the expected end-
developer is labelled, toolkits need to define and understand
their target audience. Indeed, Olsen [14] argues for the im-
portance of understanding situation, tasks, and user when
creating a toolkit. Below are a few sample challenges that
can help unpack attributes about the primary end-developer
and how it relates to the toolkit.

Challenge 1. End-Developer Skills
Myers et. al. [13] argue that one aspect of evaluating a toolkit
is its threshold and ceiling. Threshold refers to the developer
effort to get started, while the ceiling defines how much can
be done using the tools. Ideally, a toolkit would have a low
threshold and high ceiling. Yet the notions of threshold and
ceiling are actually relative to the skills of the end-developer.

Toolkits often extend existing programming languages,
which affect the threshold for the end-developer. With
Phidgets, originally built atop Visual Basic, the end-devel-
oper would have a very low ceiling only if they were profi-
cient in Visual Basic and its interface builder. In contrast, an
interaction designer with no programming background
would find the threshold high, as they would have to learn to
program before using Phidgets. The commercialized version
of Phidgets mitigated this issue somewhat by making its API
accessible to a broader audience skilled in different program-
ming platforms: core languages (e.g., C#, Java), mobile (iOS,

Android), scripting (Python), multimedia platforms (Flash),
etc. d.Tools further reduce the threshold for non-program-
mers by providing an authoring environment that substituted
programming with state-diagrams.

High ceilings also depend on the audience. Toolkits offer
high ceilings through flexibility and expressiveness, but this
only works when the end-developer has design skills in the
area that the toolkit is trying to open. For example, the Prox-
imity Toolkit offers a high ceiling for proxemic interaction
development via: a myriad of proxemic variables; relation-
ships between people, devices and objects; and flexible con-
figuration of the physical sensing environment. It assumes its
end-developers have knowledge in proxemic theory and how
to apply it to interaction design. If the developer does not
have that knowledge, the richness of the Proximity Toolkit
can easily become a liability. This is especially true if the
end-developer wants to take the path of least resistance,
where the toolkit guides them to ‘do the right thing, away
from the wrong things’ [13].
Challenge 2. End-Developer Resources
Toolkits may rely on commercial or DIY hardware. Some-
times the underlying technologies can be acquired with ease
and at reasonable cost (e.g. Phidgets). However, other
toolkits assume a larger infrastructure (e.g. the Proximity
Toolkit requires a dedicated room and specialized hardware
such as the Vicon motion tracking system). As the required
resources and costs increase, the expected audience will nar-
row to only those very interested in the area.

Challenge 3: End-Developer Learning
Another consideration is how the end-developer will learn
the toolkit.

First, end-developers need to learn what the toolkit offers
over and above its base platform. For example, Phidgets and
the Proximity Toolkit both offer an API to particular capa-
bilities, and they must be learned, along with the patterns that
best exploits that API. While D.Tools offers the state dia-
gram approach, that too must be learned.

Second, end-developers also need to make sense of the over-
all data, automated processes, etc. as provided by the toolkit.
For example, various ubicomp-oriented toolkits exploit sen-
sor data, often delivered as low-level, frequently updated
variables. Yet, learning what that sensor data means (espe-
cially if it is noisy) can be quite challenging, for that data
must be related to real-world phenomena. This is partially
why toolkits provide high-level tools that visualize and/or
aggregate sensor data [6,11] or store information for further
scrutiny [9,11]. To illustrate, the Proximity Toolkit shows a
visualization of all objects in a scene, and how the proxemic
variables (i.e., aggregated sensor values) track the proxemic
relations between those objects. The end-developer can view
the visualization to learn and understand the changes as they
occur, which become references for creating the new system.

Third, research-oriented systems often assume knowledge of
an underlying design paradigm. Phidgets and d.tools assume

some knowledge and experience in physical and tangible
user interfaces. The Proximity Toolkit assumes some
knowledge in Proxemics theory and proxemic interaction.
However, the toolkits themselves do not offer easy ways to
acquire that knowledge, except perhaps by referring to exter-
nal resources such as publications.

Toolkits must be constructed with learnability in mind,
which depends on the intended audience. They need to give
the end-user an idea of what is possible, help make sense of
(and debug) the data, and include resources to help new users
understand the toolkit. Thus, the toolkit should offer a broad
range of simple example systems, extensive documentations,
repositories of examples, video tutorials, etc., as well as pub-
lished papers of the design space supported by the toolkit.
SUGGESTED WORKSHOP TOPIC
Based on the above challenges, we propose the following
topic for the workshop: who is the audience, and how does
the toolkit design fit that audience? The prior challenges doc-
ument only a few examples of concerns related to the end-
developers. We expect workshop members will suggest other
concerns, and elaborate on the ones mentioned here.

For example, toolkit evaluation is a great concern for many
toolkit researchers, especially because submitted toolkit pub-
lications are usually accepted only if they are accompanied
by a convincing evaluation of the toolkit. However, evalua-
tion without the context of the intended audience is a some-
what pointless (and perhaps misleading) exercise. To illus-
trate, various toolkits are evaluated by illustrating how end-
developers can quickly create prototypes within a short pe-
riod of time. Yet, such an evaluation is meaningful only if
the intended audience has the core skills behind the toolkit,
is able to learn the toolkit quickly, and has the resources al-
ready on hand. In many toolkit papers, the audience doing
the evaluation was prepared a priori. For example, Phidgets
were evaluated by showing how undergraduate students cre-
ated many Phidget prototypes quickly. Those students were
already knowledgeable in Visual Basic (skills), were given a
collection of Phidget hardware and cables ahead of time (re-
sources), and were provided with lectures illustrating the tan-
gible interface genre along with a step by step tutorial of how
to use Phidgets (learnability). The Proximity Toolkit was
evaluated by illustrating graduate student projects: those stu-
dents were also prepared in a manner similar to the Phidgets
study, and the specialized equipment required was already in
place. d.Tools performed two evaluations with audiences
knowledgeable in design, and were also prepared and sup-
ported. The first audience comprised participants with gen-
eral design experience who were assigned particular tasks to
do. The second were students in a masters-level HCI design
course. In all the above cases, the context of the chosen au-
dience approached a ‘best case’ for evaluation.
AUTHOR BACKGROUND AND POSITION
David Ledo is a PhD student at the University of Calgary
working under supervision of Lora Oehlberg and Saul

Greenberg. During his undergraduate, he took part in build-
ing toolkits (e.g. [9]), while during his masters he worked
with the Proximity Toolkit, creating remote control applica-
tions [8]. Given his training and practice, he often creates li-
braries and wrappers for different tasks (e.g. visualization,
networking). As part of teaching an undergraduate class in
advanced HCI, David created a toolkit for his students to
connect mobile devices and Phidgets to author new smart in-
teractive objects. As part of his PhD topic, he works on cre-
ating prototyping tools for interaction designers to author
smart interactive objects using mobile devices instead of
electronic processors or components [7].

Lora Oehlberg is an Assistant Professor at the University of
Calgary. Her research focuses on interactive tools and tech-
nologies that support creativity, innovation, and multi-disci-
plinary collaboration in domains such as interaction design,
maker communities, and health care. Due to Lora’s research
background in product design theory and methodology, she
cares about how prototyping tools and toolkits fit into real-
world interaction design practice. She is interested in the in-
tersection of interaction design and product design practice –
when designers want to use prototyping tools to define the
behavior and form of interactive physical objects.

Saul Greenberg is a Faculty Professor and Emeritus Profes-
sor in the Department of Computer Science at the University
of Calgary. While he is a computer scientist by training, the
work by Saul and his students typify the cross-discipline as-
pects of Human Computer Interaction, Computer Supported
Cooperative Work, and Ubiquitous Computing. He and his
crew are well known for their development of: toolkits for
rapid prototyping of groupware and ubiquitous appliances;
innovative and system designs based on observations of so-
cial phenomenon; articulation of design-oriented social sci-
ence theories; and refinement of evaluation methods.
REFERENCES
1. Till Ballendat, Nicolai Marquardt, and Saul Greenberg.

Proxemic interaction: designing for a proximity and ori-
entation-aware environment. Proc. ACM ITS 2010.

2. Saul Greenberg. Toolkits and interface creativity. Mul-
timedia Tools and Applications, 2007.

3. Saul Greenberg and Chester Fitchett. Phidgets: easy de-
velopment of physical interfaces through physical widg-
ets. Proc. ACM UIST 2001.

4. Björn Hartmann, Leith Abdulla, Manas Mittal, and
Scott R. Klemmer. Authoring Sensor-based Interactions
by Demonstration with Direct Manipulation and Pattern
Recognition. Proc. ACM CHI 2007.

5. Björn Hartmann, Scott R. Klemmer, Michael Bernstein,
Leith Abdulla, Brandon Burr, Avi Robinson-Mosher,
and Jennifer Gee. Reflective Physical Prototyping
Through Integrated Design, Test, and Analysis. Proc.
ACM UIST 2006.

6. Scott R. Klemmer, Jack Li, James Lin, and James A.
Landay. 2004. Papier-Mache: Toolkit Support for Tan-
gible Input. Proc. ACM CHI 2004.

7. David Ledo, Fraser Anderson, Ryan Schmidt, Lora
Oehlberg, Saul Greenberg, and Tovi Grossman. Pineal:
Bringing Passive Objects to Life with Embedded Mo-
bile Devices. Proc. ACM CHI 2017.

8. David Ledo, Saul Greenberg, Nicolai Marquardt, and
Sebastian Boring. Proxemic-Aware Controls: Design-
ing Remote Controls for Ubiquitous Computing Ecolo-
gies. Proc. ACM MobileHCI 2015.

9. David Ledo, Miguel Nacenta, Nicolai Marquardt, Se-
bastian Boring, and Saul Greenberg. The HapticTouch
Toolkit: Enabling Exploration of Haptic Interactions.
Proc. ACM TEI 2012.

10. Nicolai Marquardt, Till Ballendat, Sebastian Boring,
Saul Greenberg, and Ken Hinckley. Gradual Engage-
ment between Digital Devices as a Function of Proxim-
ity: From Awareness to Progressive Reveal to Infor-
mation Transfer. Proc. ACM ITS 2012.

11. Nicolai Marquardt, Robert Diaz-Marino, Sebastian Bor-
ing, and Saul Greenberg. 2011. The proximity toolkit:
prototyping proxemic interactions in ubiquitous compu-
ting ecologies. Proc. ACM UIST 2011.

12. Nicolai Marquardt and Saul Greenberg. Distributed
Physical Interfaces with Shared Phidgets. Proc. ACM
TEI 2007.

13. Brad Myers, Scott E. Hudson, and Randy Pausch. Past,
Present, and Future of User Interface Software Tools.
ACM ToCHI 7, 1: 3–28, 2000.

14. Dan Olsen. Evaluating user interface systems research.
Proc. ACM UIST 2007.

15. Raf Ramakers, Kashyap Todi, and Kris Luyten. Paper-
Pulse: An Integrated Approach for Embedding Elec-
tronics in Paper Designs. Proc. ACM CHI 2015.

16. Valkyrie Savage, Colin Chang, and Björn Hartmann.
Sauron: Embedded Single-camera Sensing of Printed
Physical User Interfaces. Proc. ACM UIST 2013.

17. Miaosen Wang, Sebastian Boring, and Saul Greenberg.
Proxemic Peddler: A Public Advertising Display That
Captures and Preserves the Attention of a Passerby.
Proc. ACM PerDis 2012.

	The Toolkit / Audience Challenge
	ABSTRACT
	Author Keywords
	ACM Classification Keywords

	Introduction
	Notable Toolkits
	Phidgets
	d.Tools
	The Proximity Toolkit

	The Toolkit/Audience Challenges
	Challenge 1. End-Developer Skills
	Challenge 2. End-Developer Resources
	Challenge 3: End-Developer Learning

	Suggested Workshop Topic
	Author Background and Position
	References

