

1

The Proximity Toolkit: Prototyping Proxemic
Interactions in Ubiquitous Computing Ecologies

ABSTRACT
People naturally understand and use proxemic relationships
in everyday situations. However, only few ubiquitous com-
puting (ubicomp) systems interpret such proxemic relation-
ships to mediate interaction (proxemic interaction). A
technical problem is that developers find it challenging and
tedious to access proxemic information from sensors. Our
Proximity Toolkit solves this problem. It simplifies the ex-
ploration of interaction techniques by supplying fine-
grained proxemic information between people, portable
devices, large interactive surfaces, and other non-digital
objects in a room-sized environment. The toolkit offers
three key features. 1) It facilitates rapid prototyping of
proxemic-aware systems by supplying developers with the
orientation, distance, motion, identity, and location infor-
mation between entities. 2) It includes various tools, such
as a visual monitoring tool, that allows developers to visu-
ally observe, record and explore proxemic relationships in
a 3D space. (3) Its flexible architecture separates sensing
hardware from the proxemic data model derived from these
sensors, which means that a variety of sensing technologies
can be substituted or combined to derive proxemic infor-
mation. We illustrate the versatility of the toolkit with a set
of proxemic-aware systems built by students.

ACM Classification: H5.2 [Information interfaces]: User
Interfaces – input devices and strategies, prototyping. D.2.2
[Software Engineering]: Design Tools and Techniques
General terms: Design, Human Factors
Keywords: Proximity, proxemics, proxemic interactions,
toolkit, development, ubiquitous computing, prototyping.

INTRODUCTION
Ubicomp ecologies are now common, where people’s ac-
cess to digital information increasingly involves near-
simultaneous interaction with multiple nearby digital de-
vices of varying size, e.g., personal mobile phones, tablet
and desktop computers, information appliances, and large
interactive surfaces (Figure 1). This is why a major theme
in ubiquitous computing is to explore novel forms of inter-
action not just between a person and a device, but between
a person and their set of devices [25]. Proxemic interaction
is one strategy to mediate people’s interaction in a room-
sized ubicomp ecology [2,7]. It is inspired by Hall’s Prox-
emic theory [8] about people’s understanding and use of
interpersonal distances to mediate their interactions with
others. In proxemic interaction, the belief is that we can
design systems that will let people exploit a similar under-
standing of their proxemic relations with their nearby digi-
tal devices, thus facilitating more seamless and natural in-
teractions.

A handful of researchers have already explored such prox-
emic-aware interactive systems. These range from spatially
aware mobile devices [14], office whiteboards [12], home
media players [2], to large public ambient displays [24].
All developed novel interaction techniques as a function of
people’s and devices’ proxemic relationships.

The problem is that building proxemic-aware systems is
difficult. Even if the sensing hardware is available, translat-
ing low-level sensing information into proxemic infor-
mation is hard (e.g., calibration, managing noise, calcula-
tions such as 3D math). This introduces a high threshold
for those wishing to develop proxemic interaction systems.
As a result, most do not bother. Of the few that do, they
spend most of their time with low-level implementation
details to actually access and process proxemic information
vs. refining the interaction concepts and techniques of in-
terest.

Nicolai Marquardt1, Robert Diaz-Marino2, Sebastian Boring1, Saul Greenberg1

Figure 1. Left: three entities – person, tablet and vertical surface; Center: proxemic relationships between entities, e.g.,
orientation, distance, pointing rays; Right: visualizing these relationships in the Proximity Toolkit visual monitoring tool.

Cite as:
Marquardt, N., Diaz-Marino, R., Boring, S., Greenberg, S. (2011)
The Proximity Toolkit: Prototyping Proxemic Interactions in
Ubiquitous Computing Ecologies.
Research Report 2011-1001-13, Department of Computer Science,
University of Calgary, Calgary, AB, Canada T2N 1N4, April.

1 Department of Computer Science
University of Calgary, 2500 University Drive NW

Calgary, AB, T2N 1N4, Canada
[nicolai.marquardt, sebastian.boring, saul.greenberg]@ucalgary.ca

2 SMART Technologies
3636 Research Road NW

Calgary, AB, T2L 1Y1, Canada
robdiaz-marino@smarttech.com

2

To alleviate this problem, we built the Proximity Toolkit.
Our goal was to facilitate rapid exploration of proxemic
interaction techniques. To meet this goal, the Proximity
Toolkit transforms raw tracking data gathered from various
hardware sensors into rich high-level proxemic information
accessed via an event-driven object-oriented API. The
toolkit includes a visual monitoring tool that displays the
physical environment as a live 3D scene and shows the
proxemic relationships between entities within that scene.
It also provides other tools: one to record events generated
by entities for later playback during testing; another to rap-
idly calibrate hardware and software. Thus our work offers
three contributions:
1. The design of a toolkit architecture, which fundamen-

tally simplifies access to proxemic information.
2. Interpretation and representations of higher level prox-

emic concepts (e.g., relationships, fixed/semi-fixed fea-
tures) from low level information.

3. The design of complementing visual tools that allow
developers to explore proxemic relationships between
entities in space without coding.

The remainder of the paper is structured as follows. First,
we recap the concepts behind proxemic interaction and
derive challenges for developers. Next, we introduce the
design of our toolkit; we include a running example, which
we use to illustrate all steps involved in prototyping a
proxemic interaction system. Third, we introduce our visu-
al monitor and other tools. Fourth, we explain the toolkit’s
API. Fifth, we discuss the flexible toolkit architecture and
implementation. This is followed by an overview of appli-
cations built by others using our toolkit. Finally, we discuss
related toolkit work in HCI.

BACKGROUND: PROXEMIC INTERACTION
Proxemics – as introduced by anthropologist Edward Hall in
1966 [8] – is a theory about people’s understanding and use
of interpersonal distances to mediate their interactions with
other people. Hall’s theory correlates people’s physical dis-
tance to social distance. He noticed zones that suggest certain
types of interaction: from intimate (6-18”), to private (1.5-
4’), social (4-12’), and public (12-25’). The theory further
describes how the spatial layout of rooms and immovable
objects (fixed features) and movable objects such as chairs
(semi-fixed features) influence people’s perception and use
of personal space when they interact [8].

Research in the field of proxemic interaction [2,7,24] in-
troduces concepts of how to apply this theory to ubicomp
interaction within a small area such as a room. In particu-
lar, such ubicomp ecologies mediate interaction by exploit-
ing fine-grained proxemic relationships between people,
objects, and digital devices. The design intent is to leverage
people’s natural understanding of their proxemic relation-
ships to the entities that surround them.

Proxemic theories suggest that a variety of physical, social,
and cultural factors influence and regulate interpersonal
interaction. Not all can be (or needs to be) directly applied

to a proxemic ubicomp ecology. Thus the question is: what
information is critical for ubicomp proxemics? Greenberg
et al. [7] identified and operationalized five essential di-
mensions.
1. Orientation: the relative angles between entities; such

as if two people are facing towards one another.
2. Distance: the distance between people, objects, and

digital devices; such as the distance between a person
and a large interactive wall display.

3. Motion: changes of distance and orientation over time;
such as a person approaching a large digital surface to
interact with it directly.

4. Identity: knowledge about the identity of a person, or a
particular device.

5. Location: the setup of environmental features; such as
the fixed-feature location of walls and doors, and the
semi-fixed features including movable furniture.

Previous researchers have used a subset of these five di-
mensions to build proxemic-aware interfaces that react
more naturally and seamlessly to people’s expectations of
proxemics. Hello Wall [23] introduced the notion of ‘dis-
tance-dependent semantics’, where the distance of a person
to the display defined the possible interactions and the in-
formation shown on the display. Similarly, Vogel’s public
ambient display [24] relates people’s presence in four dis-
crete zones around the display to how they can interact
with the digital content. Ju [12] explored transitions be-
tween implicit and explicit interaction with a proxemic-
aware office whiteboard: interaction from afar is public and
implicit, but becomes more explicit and private when clos-
er. Ballendat et al. [2] developed a variety of proxemic-
aware interaction techniques, illustrated through the exam-
ple of a home media player application. The system ex-
ploits almost all of the 5 dimensions: it activates when the
first person enters, reveals more content when approaching
and looking at the screen, switches to full screen view
when a person sits down, and pauses the video when the
person is distracted (e.g., receiving a phone call). If a se-
cond person enters, the way that the information displays is
altered to account for two viewers in the room.

DERIVED CHALLENGES FOR DEVELOPERS
This previous research in proxemic interaction opened up a
promising direction of how to mediate people’s interaction
with ubicomp technology based on proxemic relationships.
Building each of these individual systems is, however, a
difficult and tedious task; mostly because of the serious
technical challenges that developers face when integrating
proxemic information into their application designs. Sever-
al challenges are listed below.
1. Exploring and observing proxemic properties between

entities in the ecology. Developers need to do this to
help them decide which properties are important in their
given situation.

2. Accessing proxemic measurements from within soft-
ware that is developed to control the ubicomp system.
Developers currently do this through very low-level

3

programming against a particular tracking technology,
requiring complex 3D transformations and calculation,
and often resulting in brittleness.

3. Support for proxemic concepts is created by developers
from scratch, e.g., when considering distance of spatial
zones or the properties of the fixed and semi-fixed fea-
tures (e.g., the spatial arrangement) in applications.

4. Debugging and testing of such systems is difficult due
to a lack of matching monitoring tools.

THE PROXIMITY TOOLKIT
The Proximity Toolkit directly addresses these challenges.
It facilitates programmers’ access to proxemic information
between people, objects, and devices in a small space
ubicomp environment (such as the room shown in Fig-
ure 3). It contains four main components.
a) Proximity Toolkit server is the central component in

the distributed client-server architecture, allowing mul-
tiple client devices to access the captured proxemic in-
formation.

b) Tracking plug-in modules connect different tracking /
sensing systems with the toolkit and stream the raw in-
put data of tracked entities to the server.

c) Visual monitoring tool visualizes tracked entities and
their proxemic relationships.

d) Application programming interface (API) is an
event-driven programming library used to easily access
all the available proxemic information from within de-
veloped ubicomp applications.

We explain each of these components in more detail below,
including how each lowers the threshold for rapidly proto-
typing proxemic-aware systems.

However, we first introduce a scenario of a developer creat-
ing a proxemic interaction system. Through this scenario, we

will illustrate how
the Proximity Toolkit
is used in a real pro-
gramming task to
create a prototype of
a proxemic-aware
ubicomp application.
The example is de-
liberately trivial, as
we see it akin to a
Hello World illustrat-
ing basic program-
ming of proxemic
interaction. Still, it shares many similarities with more com-
prehensive systems built for explorations in earlier research,
e.g., [2], [12], or [24].

Scenario. Developer Steve is prototyping an interactive
announcement board for the lounge of his company. In
particular, Steve envisions a system where employees pass-
ing by the display are attracted to important announcements
as large visuals from afar, see and read more content as
they move closer, and post their own announcements
(typed into their mobile phones) by touching the phone
against the screen. To create a seamless experience for in-
teracting with the large ambient display, Steve plans to
recognize nearby people and their mobile devices. Steve
builds his prototype to match the room shown in Figure 3.

Proximity Toolkit Server
The Proximity Toolkit Server is the central component
managing proxemic information. It maintains a hierarchical
data model of all fixed features (e.g., walls), semi-fixed
features (e.g., furniture, large displays), and mobile entities
(e.g., people or portable devices). This model contains
basic information including identification, position in 3D

Figure 2. Proximity toolkit monitoring tool: the tracked ubicomp environment (a), the visual representation of tracked
entities in space (b-g), list of available input modules (h), list of all tracked entities (i,k), and relation visualizer (l,m)

Figure 3. The Proximity Toolkit cap-
tures proxemic relationships between:
people (b’ and c’), devices (d’ and e’),
and fixed- and semi-fixed features (f’).

4

coordinates, and orientation. The server component then
performs all necessary 3D calculations on this data re-
quired for modeling information about higher level proxe-
mic relationships between entities.

The server is designed to obtain raw data from various at-
tached tracking systems. For flexibility, each of the track-
ing systems is connected through a separate plugin module
loaded during the server’s start-up. These plugins access
the captured raw input data and transfer it to the server’s
data model. The current version of our toolkit contains two
plugins: the marker-based VICON motion capturing system
which allows for sub-millimeter tracking accuracy
[www.vicon.com], and the KINECT sensor, which allows
tracking of skeletal bodies [www.kinect.com]. (A later sec-
tion discusses the implementation, integration, and combi-
nation of these tracking technologies, and how to setup the
server to match the environment.) Importantly, the server’s
unified data model is the basis for a distributed Model-
View-Controller architecture, which in turn is used by the
toolkit client API, the monitoring tool, and to calculate
proxemic relationships between entities.

Scenario. Developer Steve begins by starting the server.
The server automatically loads all present tracking plugins.
Based on the information gathered from these plugins, it
populates and updates the unified data model in real-time.
By default, our toolkit already includes a large pre-
configured set of tracked entities with attached markers
(such as hats, gloves, portable devices) and definitions of
fixed and semi-fixed features (large interactive surface,
surrounding furniture). To add a new tracked object, Steve
attaches markers to it and registers the marker configura-
tion as a new tracked entity. This process takes minutes.

Visual Monitoring Tool: Tracked Entities
The visual monitoring tool helps the developer see and
understand what entities are being tracked and how the
data model represents their individual properties. Figure 2
is a screen snapshot of this tool, where the visualized enti-
ties in Figure 2 b-f corresponds to the real-world entities
captured in Figure 3b’-f’ .

Specifically, the visual monitoring tool connects to the
server (through TCP) and presents a 3D visualization of the
data model (Figure 2 centre). This view is updated in real-
time and always shows:
 the approximate volume of the tracked space as a rec-

tangular outline box (Fig. 2a)
 position and orientation of people (Fig. 2bc)
 portable digital devices, such as a tablet pc (Fig. 2d)
 digital surfaces, such as the large wall display (Fig. 2e)
 fixed and semi-fixed features, such as a table, couch

(Fig. 2f), and entranceway (Fig. 2g).

The left side of the monitoring window shows a list of the
activated input tracking plugins (Figure 2h) and another list
with an overview of all currently tracked entities (Figure
2i). Clicking on any of the items in this list opens a hierar-
chical list of properties showing the item’s current status
(e.g., its location, or orientation). When Steve selects any
of these properties, the monitoring window shows the cor-
responding value (e.g., the current position as a 3D Vector,
or the velocity; Fig 2k). Part A of Table 1 shows an over-
view of the most important available properties.

Scenario. Before Steve starts to program, he explores all
available proxemic information through the visual monitor-
ing tool. He inspects the currently tracked entities (Figure 2
left, also displayed in the center), as well as what entity prop-

Property name Description Data type

.A.
Individual
entity

I1 Name Identifier of the tracked entity string █
I2 IsVisible True if entity is visible to the tracking system bool █
I3 Location Position in world coordinates Point3D █
I4 Velocity Current velocity of the entity’s movement double █
I5 Acceleration Acceleration double █
I6 RotationAngle Orientation in the horizontal plane (parallel to the ground) of the space double █
I7 [Roll/Azimuth/Incline]Angle The orientation angles (roll, azimuth, incline) double █
I8 Pointers Access to all pointing rays (e.g., forward, backward) Array [] █
I9 Markers/Joints Access individual tracked markers or joints Array [] █

.B.
Relationships
between
two entities
A and B

R1 Distance Distance between entities A and B double █

R2 ATowardsB, BTowardsA Whether entity A is facing B, or B is facing A bool █

R3 Angle, HorizontalAngle, ... Angle between front normal vectors (or angle between horizontal planes) double █

R4 Parallel, ATangentalToB, ... Geometric relationships between entities A and B bool █

R5 [Incline/Azimuth/Roll]Difference Difference in incline, azimuth, or roll of A and B double █

R6 VelocityDifference Difference of A’s and B’s velocity double █

R7 AccelerationDifference Difference of A’s and B’s acceleration double █

R8 [X/Y/Z]VelocityAgrees True if X/Y/Z velocity is similar between A and B bool █

R9 [X/Y/Z]AccelerationAgrees True if X/Y/Z acceleration is similar bool █

R10 Collides, Contains True if the two volumes collide, or if volume A contains volume of B bool █ █

R11 Nearest The nearest point of A’s volume relative to B Point3D █ █

.C.
Pointing
Relationships
between
A and B

P1 PointsAt Pointing ray of A intersects with volume of B bool █

P2 PointsToward A points in the direction of B (w/ or w/o intersection) bool █

P3 IntersectionDegree Angle between ray and front facing surface of B double █

P4 DisplayPoint Intersection point in screen/pixel coordinates Point2D █ █

P5 Intersection Intersection point in world coordinates Point3D █ █

P6 Distance Length of the pointing ray double █

P7 IsTouching A is touching B (pointing ray length ~ 0) bool █
Table 1. Accessible proxemic information in the Proximity Toolkit: individual entities, relationships between two entities, and pointing
relationships. This information is accessible through the toolkit API and the toolkit monitor visualization.

5

erties are available for him to use. Steve finds this visual
overview particularly important to his initial design, as he is
still investigating the possible mappings of proxemic rela-
tionship to system behaviour. In later stages, he will also use
this monitoring tool to test and debug his program.

Visual Monitoring Tool: Relationships
Another major feature of the visual monitoring tool is to let
people set and observe particular proxemic relationships
between entities, where developers will use these relation-
ships to define particular proxemic interaction behaviours.
Specifically, the Relation Visualizer panel (Fig. 2, l-m) al-
lows a developer to select a type of relationship between
entities, and then to observe the values of all related proper-
ties. The complete list of proxemic relationships that are
available to observe are summarized in part B/C of Table 1.

Scenario. Steve wants to observe a relationship between Per-
son1 (representing the first person entering the space) and the
Smartboard display. Steve drags the two entries from the list
of tracked entities (Fig. 2i) to the top of the Relation Visual-
izer panel (Fig. 2l). Next, Steve selects one of the following
relationship categories from a drop down menu.

 Orientation (e.g., angles between entities)
 Location (e.g., changes in distance between the person

and the smartboard)
 Direction (e.g., if the front of the person’s body faces

towards the screen)
 Movement (e.g., acceleration or velocity)
 Pointing (e.g., the display intersection point of the right

arm pointer of the person)
 Collision (e.g., if the volumes of two tracked entities

are so close that they collide)

Steve can now observe how those entities relate to each
other. The panel in Fig. 2m shows the numeric values of
any properties belonging to this category. The categories
plus the properties within them operationalize the 5 essen-
tial elements of proximity mentioned previously.

With his public announcement application in mind, Steve is
interested in knowing when a person is in close distance to
the display. He selects the Location category, and views the
values of the Distance property, which in this case
measures the distance of the person’s body to the board
(Fig. 2m). Next, he wants to know when the person is fac-
ing towards the screen. He selects the Direction category
from the menu, and immediately sees the related proxemic
properties with their current values and their graphical ap-
pearance in the visualization. He is particularly interested
in the ATowardsB property (is true if the person [A] is fac-
ing towards the smartboard [B]). He decides to use the in-
formation about direction and distance to adapt the content
shown on the announcement board.

Steve continues exploring other proxemic relationships
categories and makes note of the types of relationships that
he will integrate into his application. As he selects these
other categories (Fig. 2l), the 3D visual representation

changes accordingly. Figure 4 illus-
trates three other visualizations of
proxemic relationships that Steve
explored: the distance between the
person and the display (Fig. 4a), the
forward pointer of the left arm and
its intersection point with the smart-
board (Fig. 4b), and the collision
volumes (Fig. 4c).

SIMPLIFIED API ACCESS TO
PROXEMIC INFORMATION
We now take a closer look at the
development API, offered via an
object-oriented C# .NET develop-
ment library. We designed it to be
fairly easy to learn and use by taking
care of and hiding low-level infra-
structure details and by using a con-
ventional object-oriented and event-
driven programming pattern. Essen-
tially, the API lets a developer pro-
grammatically access the proxemic
data previously observed in the mon-
itoring tool. We explain how this
works by continuing our scenario.

Scenario. Steve adds the Proximity
Toolkit API DLL to his own PC-based software project.
The only criteria is that his PC needs network access to the
proximity server. Steve begins by initializing his software.
To set up his software to use the server, he adds three lines
of code (lines 1-3 in Figure 5). First, he creates a new client
connection object, then starts the connection to the server
(at the given IP address and port), and finally creates a
ProximitySpace object which provides a high-level frame-
work for monitoring the interaction of tracked presences,
such as people and objects. The ProximitySpace object
maintains a list of all available tracked entities, and is used
to create instances of entities or for initializing event han-
dlers to monitor relationships. Next, Steve initializes three
of the entities he is interested in lines 4-6: the person rep-
resenting the first person entering the space, the smart‐
board, and a tablet (PresenceBase is a special object that
represents individual tracked or static objects).

The following describes how Steve then monitors the rela-
tionships between these entities. We go through each of the
five proxemic dimensions introduced earlier (albeit in a
slightly different order), explain how Steve writes his ap-
plication to monitor changes in each of these dimensions,
and how he uses that information to mediate interaction
with his interactive announcement board.

1. Orientation

Monitoring orientation changes allows (1)
accessing the exact angle of orientation be-
tween two entities or (2) determining whether
two entities are facing each other. Steve is

Figure 4. Visualiz-
ing proxemic rela-
tionships: distance
(a), pointing (b),
and collision (c).

6

mostly interested in the relationship between a person and
the smartboard display. He adds line 7, which creates a
relationship between these two as indicated by their param-
eters. The system is now tracking both entities relative to
each other. Steve is also interested in knowing when the
orientation and location between these two changes. For
orientation, he initializes an event handler to receive up-
dates of the Direction relationship between the person and
the smartboard (line 8). The OnDirectionUpdated method is
invoked when the system recognizes any changes in orien-
tation between the person and the smartboard (line 10).
While Steve could access each entity’s precise orientation
values (e.g., angles of orientation), he is only really inter-
ested in knowing whether a person is facing towards the
smartboard. Consequently, he writes the event handler
callback method (lines 10-12) to access the ATowardsB
property in the event arguments: it is true if the person is
facing the smartboard (line 11).

Entries R2-R5 and P1-P3 in Table 1 give an overview of
further orientation relationships that can be monitored. As
well, the programmer can access the absolute orientation of
an individual entity at any time (see entries I6 – I7 in Table
1). For example, the following property returns the current
yaw angle of the tablet: tablet.Orientation.Yaw;

2. Distance, including Location, Pointing and Touching

Similarly, Steve can monitor changes of dis-
tance between entities. We illustrate how Steve
can receive updates about distance changes by
adding another event callback for OnLoca‐

tionUpdated events (line 9). This callback
method (line 13-15) is invoked whenever the location of at
least one of the two entities changes. In line 14 Steve access-
es the current distance between the person and the smart-
board, and uses this distance value to make the visual content
on the announcement board vary
as a function of the distance be-
tween the person and the dis-
play. The closer the person, the
more content is revealed.

Other available properties relate
to distance. First, the actual
location property of each entity,
i.e, their position within the
space, is accessible at any time.
For example Steve can access
the current coordinates of the
person by accessing
this.person.Location. Second,
pointing relationships monitor
orientation and distance simul-
taneously. Pointing is similar
to ray-casting. Each entity can
have one or multiple pointers.
Each pointer has a pointing
direction, and the callback re-
turns the intersection of that

direction with the other entity. It also returns the length of
the pointing ray between entities, which may not be exactly
the same as distance. To illustrate, Steve tracks not only the
close distance of a tablet computer to the smartboard, but
where that tablet raycasts onto the smartboard. He initializ-
es a second RelationPair between the tablet and the
smartboard (line 16). He subscribes for OnPointingUpdat‐
ed events that are triggered whenever any of the pointers of
the tablet changes relative to the board (line 17). In the
event callback method (lines 18 to 22) Steve first checks if
the tablet’s forward pointer faces the display
(PointsTowards) and if the ray length between tablet and
board is smaller than 50 cm (line 19). If this is the case, he
shows an icon on the ray’s intersection point (line 20) on
the smartboard to let the person know they can touch the
surface to initiate a transfer.

Third, Steve checks if the tablet is touching the surface -
(IsTouching, line 21) – a distance of ~0. If so, he initiates
transfer of the content on the tablet to the large display. By
using the intersection point of the tablet with the screen
Steve can show the transferred content at the exact position
where the tablet touches the board.

3. Identity

The toolkit allows access to the identity in-
formation of all tracked entities. The Name
property provides the identifier string of each
entity, and IsVisible is true if the entity is
currently tracked by the system. A developer can subscribe
to events notifying about any new tracked entities that enter
the ubicomp space through the space.OnPresenceFound event.
In the associated event callback method, the event argu-
ments give information about the type and name of the
detected entity. For example, Steve could have his system
track and greet a previously unseen person with a splash

01 ProximityClientConnection client = new ProximityClientConnection();
02 client.Start("192.168.0.11", 888);

03 ProximitySpace space = client.GetSpace();
04 PresenceBase person = space.GetPresence("Person1");
05 PresenceBase smartboard = space.GetDisplay("SmartBoard");
06 PresenceBase tablet = space.GetDisplay("Tablet");

07 RelationPair relation = space.GetRelationPair(person, smartboard);
08 relation.OnDirectionUpdated += new DirectionRelationHandler(OnDirectionUpdated);
09 relation.OnLocationUpdated += new LocationRelationHandler(OnLocationUpdated);

10 void OnDirectionUpdated(ProximitySpace space, DirectionEventArgs args) {
11 if (args.ATowardsB) { [... person is facing the display, show content ...] } else { [...hide…] }
12 }
13 void OnLocationUpdated(ProximitySpace space, LocationEventArgs args) {
14 double distance = args.Distance; [... change visual content as a function of distance ...]
15 }

16 RelationPair relationTablet = space.GetRelationPair(tablet, smartboard);
17 relationTablet.OnPointingUpdated += new PointingRelationHandler(OnPointingUpdated);

18 void OnPointingUpdated(ProximitySpace space, PointingEventArgs args) {
19 if (args["forward"].PointsToward && (args["forward"].Distance < 500.0)) {
20 Point intersection = args["forward"].DisplayPoint;

[... show awareness icon on smartboard display ...]
21 if (args["forward"].IsTouching) {

[... transfer content from the tablet to the large display ...]
22 }}}

E
ve

n
ts

C
a

llb
a

c
ks

C
allb

ack
S

e
tu

p
E

ven
t

Figure 5. Partial source code for the proxemic-aware announcement board application.

7

screen on first appearance, and dynamically initialize any
necessary event callbacks monitoring that person to other
entities in a scene.

4. Motion

Motion events describe the changes of dis-
tance and orientation over time. For example,
it is possible to receive updates of changes in
acceleration and velocity of any entity. For
example, Steve can have his application ignore
people moving quickly by the display, as he thinks they
may be annoyed by any attempts to attract their attention.
To receive such velocity updates, Steve would add an event
handler (similar to lines 8 and 9) through OnMotionUpdat‐
ed and then simply access the value of the args.Velocity
property. Based on that value, he would activate the display
only if the velocity was less than a certain threshold. Of
course, Steve could have determined a reasonable threshold
value by observing the velocity value of a person rushing by
the display in the visual monitoring tool.

5. Location: Setup of Environment

Using location, the toolkit lets one track the
relationships of people and devices to the
semi-fixed and fixed features in the physical
environment. For example, the model may
contain the fixed-feature position of the en-
tranceway to a room, allowing one to know if someone has
crossed that threshold and entered the room. It may also
contain the location of semi-fixed features, such as the
chairs and table seen in Figure 3. Monitoring event han-
dlers for fixed and semi-fixed features can be initialized
similarly to the ones we defined earlier.

Steve sets up several fixed feature entities – the smartboard
and the entrance-way – through several initial configura-
tion steps. This only has to be done once. Using a physical
pointer (the stick in Figure 6a), he defines each entity’s
volume by physically outlining them in space. Under the
covers, the toolkit tracks the 3D tip location of this stick
and builds a 3D model of that entity. Each location point of
the model is confirmed by pressing a button (e.g., of a
wirelessly connected mouse). Figure 6 illustrates how Ste-
ve defines the smartboard. After placing the pointer in the
four corners of the display plane (Fig. 6a), the coordinates
appear in the visualiza-
tion (6b), and a control
panel allows fine adjust-
ments. He saves this to
the Proximity Toolkit
server as a model. Simi-
larly, Steve defines the
entrance-way by outlin-
ing the door (Fig. 2g),
and the couch by outlin-
ing its shape (Fig. 2f).
Steve can now monitor
proxemic relationships
between all moving enti-

ties and these new defined features. For example, he can
create an event handler to receive notifications when a per-
son passes through the entrance-way (by using the OnColli‐
sionUpdated event) and when a person sits on the couch
(using the Distance property of the OnLocationUpdated).

Semi-fixed features differ. While they are part of the envi-
ronment, they are also movable. As with fixed features, a
developer would model a shape by outlining it with the
stick. Unlike fixed features, he would also add markers to
that entity. The toolkit tracks those markers, and reposi-
tions the entity accordingly. For example, Steve could have
modeled a chair, tracked where it is in the room, and ad-
justed the presentation if a person was sitting on it.

We should also mention that we believe location should
also include further contextual information about this par-
ticular environment, e.g., the meaning of that place. Such
contextual information is not yet included in the toolkit, but
could be easily added as metadata.

Additional Tools Facilitating Prototyping Process
The toolkit is more than an API, as it offers additional tools
to lower the threshold for developing proxemic-aware sys-
tems. The already-discussed visual monitoring tool is one of
these. Several others are described below.

Recording and playback of proxemic sequences. To test
applications, developers would
need actors to perform the prox-
emic movements between entities every time. This is prob-
lematic for many reasons. First, it is tedious. Second, it
may involve multiple people and multiple devices moving
at the same time, which may be both hard to gather logisti-
cally and/or to choreograph. Third, the sensing equipment
may not be available, e.g., if a developer works at their
desk. Fourth, it is difficult to repeat particular test sequenc-
es. To alleviate this, the toolkit provides a record/playback
tool within the visual monitoring tool. With the click of a
button, developers can record events generated by entities
moving in the environment. They can later play back these
sequences for testing. Under the covers, each individual
sequence is recorded as an XML file, where the toolkit uses
that record to recreate all events. In turn, this drives the
application as if these events were actually happening in
real time. Because the tracking hardware is not necessary
during playback, testing can be done anywhere, e.g., a
desktop workstation located elsewhere. For example, Steve
could have recorded test sequences such as: a person pass-
ing by the screen, a person approaching the display, or a
device pointing towards the display. He would then replay
these sequences while developing and testing his software
at his desk.

Toolkit component library. Most developers are well-
practiced with existing languages and development envi-
ronments. We leverage these existing practices by seam-
lessly integrating the toolkit into the familiar capabilities of
a popular IDE, Microsoft Visual Studio (but our ideas are
generalizable to other IDEs). For example, the toolkit in-

Figure 6. Defining new fixed and
semi-fixed features (e.g., display)
using a tracked physical pointer
(a) and visual feedback (b).

8

cludes a library of drag-and-drop components compatible
with both WPF and WinForms. This includes representa-
tions of all tracked entities via ProximitySpace and Pres‐
enceBase components, and their relationships via a Rela‐
tionPair component. As with other visual components in
an IDE, the programmer can view and set all its properties
and generate event handlers for all available events via
direct manipulation rather than coding. This not only re-
duces tedium and coding errors, but reduces the threshold
for inexperienced developers (such as students) as all prop-
erties and events are seen.

Templates, example library, and documentation. Our
toolkit includes various facilities to ease learning of how to
program with the Proximity Toolkit. First, programmers
starting from scratch would almost always have to write
some setup code to initialize their program to use proxemic
interactions. We reduce start-up effort to almost zero by
including a set of templates containing this code. Second,
there are several standard patterns that we expect pro-
grammers to use when designing proxemic interactions. To
ease learning, we provide a large set of teaching applica-
tions. Each illustrates, using a very simple example, the
code required to implement a particular proxemic relation-
ship. Third, programmers expect good documentation. Thus
we include extensive API documentation and tutorial videos.

FLEXIBLE AND EXTENSIBLE ARCHITECTURE
Our first version of the toolkit [4] was tightly linked to a
particular tracking technology. This means that other tech-
nologies could not be exploited. The current version of the
toolkit decouples the API from underlying tracking technol-
ogies. We describe our extensible plugin architecture, the
two tracking systems we integrated, and how those are re-
flected in the API.

Plugin architecture. The data providers of raw tracking
input data are implemented as separate plugin modules,
which are dynamically loaded into the proximity server at
start-up. We currently have plugins for two different track-
ing technologies: the VICON motion capturing system that
tracks infrared reflective markers, and the Microsoft
KINECT depth camera. The plugin for each of these track-
ing systems accesses the underlying system software (the
NEXUS software for VICON cameras, and the PRIMESENSE
OPENNI for the depth camera [www.openni.org]) to get the
raw data of tracked people, objects, and/or devices in 3D
space. This raw data is then transmitted to the Proximity
Toolkit server and stored in a unified data model as proxe-
mic information of each entity. The server calculates the
necessary proxemic relationships (distance, orientation,
collision, etc.) for the entities present in the data model. To
reduce computational overhead, the necessary 3D calcula-
tions are done only on demand, i.e., when any of the con-
nected clients subscribe to the particular information. We
foresee a variety of further plugins for tracking systems,
such as other IR marker-based recognition systems.

Extensions. The Proximity Toolkit provides development
templates, base classes, interfaces, and utility classes to fa-
cilitate integration of additional tracking technologies. To
add a tracking system, programmers begin with the plugin
template, derived from the plugin base class. They then im-
plement several mandatory methods, including one that reg-
isters with the toolkit server on start-up, and another that
implements the update method responsible to stream sensed
tracking data into the toolkit. This base class also provides a
set of utility methods, such as one for affine transformations
from the tracking system’s local coordinate system to the
Proximity Toolkit’s unified coordinate system (this affine
matrix is calculated through a simple one time calibration
process). As mentioned before, no high-level calculations on
the raw input data are required for the plugin implementa-
tion, as these are performed by the proximity server.

Diverse tracking capabilities. In order to allow the integra-
tion of hardware with different tracking capabilities, devel-
opers specify the kinds of proxemic information (provided
by that particular hardware) in the plugin implementation.
For example, a tracking system might gather information
about the position of an entity, but not its orientation. At any
time, the visual monitoring tool allows to inspect all available
types of proxemic information that are supported by the
plugins (and therefore tracking systems) activated at that
time. This can also be checked from within the client API
through the IsVisible and LastUpdated properties of each
available proxemic dimension.

Substitution. Tracking systems/plugins can be substituted,
providing that their hardware gathers similar tracking infor-
mation. For example, instead of using the depth camera for
tracking people’s position and posture, a programmer can
use the IR motion capture system instead by attaching IR
reflective markers to a person’s body. A programmer’s ac-
cess to this proxemic information via the toolkit API remains
unchanged, regardless of the tracking mechanism used.

Combination. In case different plugins provide complemen-
tary tracking information of a single entity, the information is
combined in the proximity server’s data model. For example,
the KINECT and VICON systems could both track a person
simultaneously: the KINECT system then provides infor-
mation about the person’s body position in 3D space, and the
VICON system tracks a glove the person is wearing in order
to retrieve fine-grained information of the person’s finger
movements. Both plugins then update the entity’s data model
in the server with their tracked information. If two systems in
fact provide overlapping/conflicting tracking data (e.g., two
systems provide information about an entity’s location), the
information will be merged in the server’s data model. In
principle, the plugins set a Confidence property (ranging from
0.0 to 1.0) when supplying tracking information of an entity
to the server. The server then calculates a weighted average of
all values received in a certain time frame (i.e., one update
cycle) and updates the proxemic data model of that entity.

9

APPLICATIONS OF PROXEMIC INTERACTION
The Proximity Toolkit allowed our colleagues – most of
whom were not involved in the toolkit design and coding –
to rapidly design a large variety of proxemic-aware ubicomp
systems. Suffice to say, the toolkit was invaluable. Instead of
struggling with the underlying low level implementation
details, both colleagues and students were able to focus on
the design of novel interaction techniques and applications
that considered people’s use of space. This includes compre-
hensive systems such as the proxemic media player by Bal-
lendat et al. [2], and other applications presented in [7].

To stress the ease of learning and developing with our
toolkit, we summarize a few projects built by students in a
graduate ubicomp class in Fall 2010. They received a one
hour tutorial presentation and a demonstration of two pro-
gramming examples. The students’ assignment was simply to
create a proxemic interface of their choosing, where they had
to demonstrate it in the next class. Thus all examples (listed
in Table 2 and briefly explained below) were built and
demonstrated by the students within a week of the tutorial.

Application Proxemic relationships between

Attention demanding advertisements 2 people, 1 large surface, 1 tablet
Spatial music experience 2 people, 4 objects
Proxemic-aware pong game 2 people, 1 large surface
Proxemic presenter 1 person, 1 large surface

Table 2. Overview of built proxemic-aware applications.

Attention-Demanding Advertisements explores how fu-
ture advertisement displays might try to grab and keep a per-
son’s attention. A digital
advertisement board
tries to attract the atten-
tion of a passer-by. The
board welcomes a per-
son by addressing them with their name (a), shows items of
interest to them (b), but then persistently tries to regain the
attention of that person if they look or move away by playing
sounds and flashing the background color (c).

Spatial Music Experience is an interactive music installa-
tion. The kinds of sounds generated and their volume is
determined by the proxemic
relationships of people and
physical objects in the space.
Generated sounds react flu-
ently as one or both people
move through the space, when they perform gestures, or
when they grab and move physical objects.

Proxemic-aware Pong Game is inspired by Atari’s Pong
game. A person controls the paddle for bouncing the ball
by physically moving left and
right in front of a large screen.
The system recognizes when a
second person enters, and cre-
ates a second paddle for multi-
player game play. To increase the game play difficulty later
during the game, the system increases the required physical

distance to move the paddles. The system also considers
the players’ front-back movements: when moving close the
screen they can adjust the paddle size through direct touch
on the screen, and when both players sit down on the couch
the game pauses.

Proxemic Presenter is a presentation controller that reacts to
the presenter’s position relative to a large display [7]. Presen-
tation slides are displayed full screen on the large display.
When the presenter stands at the side and turns his head to-
wards the display, a small panel appears next to him, show-
ing speaker notes, a timer, and buttons to navigate the slides.
If he switches sides, the panel will appear at that side. When
facing back to the audience, the panel disappears immediate-
ly. If the presenter moves directly in front of and turns to-
wards the display, the system shows an overview of all slides
as thumbnails. The presenter can directly select one of the
slides through direct touch. When he turns back to the audi-
ence, the presentation reappears.

In these examples, what is important is how the Proximity
Toolkit lowered the threshold for these students to begin
their exploration of proxemics in the ubicomp context. The
easy and direct access to proxemic information through the
toolkit and API allowed them to rapidly prototype alterna-
tive system designs, all leading towards exploring the de-
sign space of future proxemic-aware ubicomp systems.

RELATED WORK
Our research is inspired by earlier toolkits enabling the rapid
prototyping of ubicomp interactions. We sample and review
related work in three areas: toolkit support in HCI, ubicomp
development architectures, and 3D spatial tracking.

Post-GUI Toolkits
Several development toolkits facilitate the prototyping of
physical and tangible user interfaces that bridge the connec-
tion between the digital and physical world [11]. Many of
these toolkits focus on a low threshold, but simultaneously
aim for maintain a relatively high ceiling [20]. For example,
Phidgets [6] and the iStuff toolkit [1] provide physical build-
ing blocks (buttons, sensors) that programmers can easily
address from within their software. Shared Phidgets took this
concept further by simplifying the prototyping of distributed
(i.e. remote located) physical user interfaces [18]. Hart-
mann’s visual authoring environment in dTools [9] brought
similar concepts to interaction designers. Other toolkits sim-
plified the integration of computer vision techniques into
novel user interfaces, such as Klemmer’s PapierMache [13].

Ubicomp Development Architectures
On a somewhat higher level of abstraction, Dey introduced
an architecture to compose context-aware ubicomp systems
with the Context Toolkit [3]. They provide context widgets as
encapsulated building blocks, working in conjunction with
generators, interpreters, or aggregators. The context toolkit
allows the composition of new applications through a con-
catenation of the basic components – and thus facilitates
scaffolding approaches. Matthews applied similar concepts
to the programming of peripheral ambient displays [19].

10

Other systems facilitate access to location information of
devices in ubicomp environments. For example, Hightower’s
Location Stack [10] fuses the input data from various sources
to a coherent location data model. Krumm and Hinckley’s
NearMe wireless proximity server [15] derives the position
of devices from their 802.11 network connections (without
requiring calibration), and thus informs devices about any
other devices nearby. Li’s Topiary [16] introduced prototyp-
ing tools for location-enhanced applications.

3D Spatial Tracking
Few development toolkits support the exploration of novel
interfaces considering the presence, movements, and orienta-
tion of people, objects, and devices in 3D space. For exam-
ple, some toolkits allow development of augmented reality
(AR) applications. To illustrate, Feiner’s prototyping system
allows exploration of novel mobile augmented reality experi-
ences (e.g., with a head mounted 3D display, or a mobile
tablet like device) [5]. This was developed further in Mac-
Intyre’s DART [17], Open Tracker [21], and Sandor’s proto-
typing environment [22] for handheld-based AR applica-
tions. These toolkits mostly focus on supporting augmented
reality applications running on mobile devices, and not on
ubicomp ecologies in small rooms. Some commercial sys-
tems track 3D data of objects. For example, the VICON Nex-
us software gives access to 3D spatial information of tracked
objects. This information, however, only includes low level
position data, which developers need to process manually in
order to gain insights into proxemic relationships.

Our Proximity Toolkit builds on this prior work. Like post-
GUI toolkits, it bridges the connection between the virtual
and real world, but in this case by tracking proxemic in-
formation. Similarly, it extends ubicomp architectures and
3D spatial tracking by capturing and providing fine-grained
information about 3D proxemic relationships in small
ubicomp spaces (i.e., not only location, but also orientation,
pointing, identity, etc.). Like the best of these, it supplies
an API that, in our case, makes the five essential proxemic
dimensions [7] easily accessible to developers. Like the
more advanced tools, it also provide additional develop-
ment tools, such as a monitoring tool for visualizing prox-
emic relationships, a record/playback tool to simplify test-
ing; templates, documentation, examples, and so on.

CONCLUSION AND FUTURE WORK
The Proximity Toolkit enables rapid prototyping and ex-
ploration of novel interfaces that incorporate the notion of
proxemic relationships. Through hiding most of the under-
lying access to tracking hardware and complex 3D calcula-
tions, our toolkit lets developers concentrate on the actual
design and exploration of novel proxemic interaction.

We invite other researchers to use it. The Proximity Toolkit
is available as open source: http://grouplab.cpsc.ucalgary.ca

ACKNOWLEDGMENTS
This research is partially funded by the iCORE/NSERC/SMART
Chair in Interactive Technologies, Alberta Innovates Technology
Futures, NSERC, and SMART Technologies Inc.

REFERENCES
1. Ballagas, R., Ringel, M., Stone, M., and Borchers, J. iStuff:

a physical user interface toolkit for ubiquitous computing
environments. Proc. of CHI'03, ACM (2003).

2. Ballendat, T., Marquardt, N., and Greenberg, S. Proxemic
Interaction: Designing for a Proximity and Orientation-
Aware Environment. Proc. of ITS'10, ACM (2010).

3. Dey, A.K., et al. A conceptual framework and a toolkit for
supporting the rapid prototyping of context-aware applica-
tions. Hum.-Comp. Int. 16, 2, L. Erlbaum (2001), 97-166.

4. Diaz-Marino, R. and Greenberg, S. The proximity toolkit
and ViconFace: the video. Ext. Abst. CHI '10, ACM (2010).

5. Feiner, S., et al. A touring machine: Prototyping 3D mobile
augmented reality systems for exploring the urban environ-
ment. Personal Technologies 1, 4 (1997), 208-217.

6. Greenberg, S. and Fitchett, C. Phidgets: Easy Development
of Physical Interfaces Through Physical Widgets. Proc. of
UIST'01, ACM (2001), 209–218.

7. Greenberg, S., et al. Proxemic interactions: the new
ubicomp? interactions 18, ACM (2011), 42–50.

8. Hall, E.T. The Hidden Dimension. Doubleday, 1966.
9. Hartmann, B., et al. Reflective physical prototyping through

integrated design, test, and analysis. Proc. UIST, ACM (2006).
10. Hightower, J., et al. The location stack: A layered model for

location in ubiquitous computing. Proc. of WMCSA'02, (2002).
11. Ishii, H. and Ullmer, B. Tangible Bits: Towards Seamless

Interfaces Between People, Bits and Atoms. Proc. of
CHI'97, ACM (1997), 234–241.

12. Ju, W., et al. Range: exploring implicit interaction through
electronic whiteboard design. Proc. of CSCW'08, ACM (2008).

13. Klemmer, S.R., et al. Papier-Mache: Toolkit Support for
Tangible Input. Proc. of CHI'04, ACM (2004), 399–406.

14. Kortuem, G., et al. Sensing and visualizing spatial relations
of mobile devices. Proc. of UIST'05, ACM (2005), 93-102.

15. Krumm, J. and Hinckley, K. The NearMe wireless proximity
server. Lecture notes in computer science, (2004), 283-300.

16. Li, Y., et al. Topiary: a tool for prototyping location-
enhanced applications. Proc. of UIST '04, ACM (2004).

17. MacIntyre, B., et al. DART: a toolkit for rapid design explo-
ration of augmented reality experiences. Proc. of UIST'04,
ACM (2004).

18. Marquardt, N. and Greenberg, S. Distributed Physical Inter-
faces with Shared Phidgets. Proc. of TEI'07, ACM (2007).

19. Matthews, T., et al. A toolkit for managing user attention in
peripheral displays. Proc. of UIST '04, ACM (2004).

20. Myers, B.A., et al. Past, Present, and Future of User Inter-
face Software Tools. TOCHI 7, 1, ACM (2000), 3–28.

21. Reitmayr, G. et al. OpenTracker: A flexible software design
for three-dimensional interaction. Virt. Reality 9, (2005).

22. Sandor, C. and Klinker, G. A rapid prototyping software
infrastructure for user interfaces in ubiquitous augmented
reality. Pers. and Ubiq. Comp. 9, (2005).

23. Streitz, N., et al. Ambient displays and mobile devices for
the creation of social architectural spaces. In Public and Sit-
uated Displays. Kluwer, 2003, 387-410.

24. Vogel, D. et al. Interactive public ambient displays: transi-
tioning from implicit to explicit, public to personal, interac-
tion with multiple users. Proc. of UIST'04, ACM (2004).

25. Weiser, M. The Computer for the 21st Century. Scientific
American 265, (1991), 94.

