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ABSTRACT 
Distributed physical user interfaces comprise networked 
sensors, actuators and other devices attached to a variety of 
computers in different locations. Developing such systems 
is no easy task. It is hard to track the location and status of 
component devices, even harder to understand, validate, test 
and debug how events are transmitted between devices, and 
hardest yet to see if the overall system behaves correctly. 
Our Visual Environment Explorer supports developers of 
these systems by visualizing the location and status of 
individual and/or aggregate devices. It visualizes the current 
event flow between devices as they are received and 
transmitted, as well as the event history. Events are 
displayable at various levels of detail. The visualization 
also shows the activity of applications that use these 
physical devices. The tool is highly interactive: developers 
can explore system behavior through spatial navigation, 
zooming, multiple simultaneous views, event filtering, 
details-on-demand, and time-dependent semantic zooming. 

Author Keywords 
Event flow visualization, prototyping, physical and tangible 
interfaces, geographical map overlays, distributed systems. 

ACM Classification Keywords 
D.2.6 Programming Environments: Programmer work-
bench; H.5.2 User Interfaces: Prototyping 

General Terms  Human Factors, Design 

INTRODUCTION 
Physical and tangible user interfaces [8] let people interact 
with and benefit from digitally-controlled physical devices 
situated in their everyday environment. Motivated by 
ubiquitous computing (ubicomp) ideas [25], these systems 
comprise devices embedded in homes and workplaces, in a 
manner that fuse digital and physical interaction [3,14]. They 
usually include a variety of input sensors (e.g., motion, light, 
temperature, or distance sensors), input controls (e.g., physical 
buttons, dials, or sliders), and output actuators (e.g., displays, 
motors, or lights). They form a distributed system when device 
inter-operation is computer controlled over a network.  

Developers can use various toolkits to prototype such 
systems (mostly research, but a few are commercial, e.g. 
Phidgets [www.phidgets.com] or Arduino [www.arduino.cc]). 
The majority facilitate programming of locally connected 
devices [12,13,24], although several recent toolkits allow 
similar access to distributed devices [16,21,22]. Such 
toolkits radically lower the barrier for developers to use 
physical devices in distributed settings. Even so, developing 
these systems is no easy task. It is hard to track the location 
and status of component devices, even harder to understand, 
validate, test and debug how events are transmitted between 
devices, and hardest yet to see if the overall system behaves 
correctly [15,17]. 

To address these issues, we developed the Visual 
Environment Explorer (VEE). Using VEE, developers can 
visualize ongoing activities of the distributed physical 
interface infrastructure (e.g., Fig. 1). Specifically, VEE 
displays the location and status of individual and/or 
aggregate devices. It visualizes the received and transmitted 
event flow between devices, as well as the event history.  
The visualization also shows the activity of active 
applications that control these interconnected physical 
devices. Developers can also interactively explore: system 
topology through spatial navigation and zooming; system 
behavior by examining event transmission/reception at 
various levels of detail (including filtering) and with 
multiple simultaneous views; and system history through 
time-dependent semantic zooming. 
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Figure 1. Exploring distributed sensors and actuators. 
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This paper describes VEE. First, we illustrate its basic 
workings by showing how VEE supports a person 
prototyping a simple distributed physical user interface. We 
then explain how developers interact with the various 
device and event visualizations offered by VEE. 
Subsequent sections describe its implementation, 
limitations and future work, and summarize related work in 
visualizing ubicomp system operations.  

SCENARIO: PROTOTYPING AGING IN PLACE UBICOMP 
We illustrate the basic visualization provided by the Visual 
Environment Explorer through a scenario, where we show 
how Sam (a developer) uses VEE to help prototype a 
distributed physical user interface. For clarity, our scenario 
uses a deliberately simplified set of interoperating devices. 

The idea. Sam is prototyping an aging in place environment 
[4,18] containing several devices at two different locations. 
The elderly person’s home will contain two motion sensors 
that monitor the elder as he moves around the home (Fig. 1, 
top left). At the caretaker’s home (e.g., the elderly person’s 
adult child), a picture of the elder affixed to a servo motor 
will wiggle to reflect the elder’s activity as detected by the 
motion sensors. In addition, a two-line LCD display will 
summarize the elder’s overall activity during the day (Fig. 
1, top right). In this way, the caretaker will maintain remote 
awareness of the elder’s current and daily activity; no 
activity is cause for concern and follow up.  

Setting up the environment. Sam strategically places two 
Phidget motion detectors [10] in the elder’s home, which 
communicate with a computer running the Shared Phidgets 

toolkit [16]. Similarly, Sam affixes the picture frame (using 
clay) atop a Phidget servo motor, and places it and a 
Phidget text display on the mantle in the caretaker’s home; 
both are attached to another computer also running Shared 
Phidgets. Under the covers, Shared Phidgets seamlessly 
manages access and control of these distributed devices via a 
distributed Model-View Controller (dMVC) architecture [16]. 

Spatially locating devices. Sam starts VEE, which auto-
matically hooks into the Shared Phidget’s dMVC. Sam sees 
the four attached devices. He brings up VEE’s geographical 
map view as shown in Fig. 2, and uses the map controls 
and/or the controls in Fig. 2b to split the view, and to 
navigate/zoom into the elder and caretaker’s home locations 
(e.g., by searching for a city name, or selecting previously 
saved locations). Sam has crafted a floor plan of the elder’s 
home, and adds that to the view (Fig. 2e). He then places 
the motion sensors and actuators at these two locations. Fig. 
2e is the elder’s home; its two motion sensors represented 
as orange circles (Fig. 2c) on the floor plan. Fig. 2f is the 
caretaker’s home: the moving picture frame and the text 
display are represented as green circles. The overview map 
in Fig. 2a shows a zoomed-out view.  

Observing sensor activity. Sam also sees a live overview of 
the motion sensors’ activity by observing each of the 
orange circles (Fig. 2c). The bar charts at their centers 
indicate the recent motion activity in front of the 
corresponding sensor. Sam then opens information panels 
that reveal more details about each sensor, e.g., the detailed 
graph of sensor values in Fig. 2d. This provides valuable 

Figure 2. The VEE user interface: visual exploration of distributed sensors and actuators. 



information for Sam; in this case, he sees the typical ranges 
of the sensed values produced by motion, and will use those 
ranges to tune the sensitivity of the servo motor’s wiggle. 

Control of distributed actuators. For each of the distributed 
actuator devices, Sam opens panels that show device status 
and controls for altering device properties. These panels 
allow both the testing of the correct device functionality 
and the configuration or reset of the device. With the panel 
in Fig. 2g Sam can change the displayed text on the LCD 
by typing the message in the textbox (e.g., ‘High activity 
today’). Similarly, Sam can use the slider in Fig. 2h to 
change the rotation angle of the servo motor.  

Programming the application. Sam now implements his 
software. It will estimate the elderly person’s activity from 
the sensor values, and use those measures to control the 
amount of servo wiggle and content of the text display. He 
uses the Microsoft VisualStudio IDE, which has been 
augmented to include the Shared Phidgets developer 
library. Sam drags and drops four proxy objects into his 
project; each represents a particular device type. He then 
maps these objects to the four physical devices by selecting 
them on the map. The IDE then automatically generates the 
basic application framework: the networking of physical 
devices to corresponding device proxy objects is done, and 
all necessary event handlers are created. In the code view of 
the IDE, Sam adds a few lines of code to calculate the 
average motion activity in the elderly parent’s home. He 
then adds two more lines of code to link the servo position 
and the displayed text to this average motion activity value. 
All this takes Sam just a few minutes. 

Observing configuration and event flow. Sam starts his 
application. A representation for this application appears in 
the map view – shown as the red circle in Fig. 3b,d. Lines 
from this circle show that the application is connected to 

each of the four distributed devices. Sam 
immediately observes the incoming sensor 
events, where each transmitted event is 
displayed as an animated icon (Fig. 3a). In 
a similar way, Sam observes control events 
that the application sends to change the 

servo motor position and the displayed text (Fig. 3c). 

While observing the runtime behaviour of his prototype, 
Sam notices that the application is generating considerable 
network traffic, as it transmits control events for the servo 
and display at a very high frequency (Fig. 3c). Sam revisits 
the source code and changes the thresholds that determine 
how the application responds to incoming sensor values. 
Sam then observes the runtime behaviour of this changed 
prototype, where he sees that his changes have, in fact, 
drastically reduced the number of messages sent to the 
display and servo (Fig. 3d,e). 

While this scenario illustrated a simple distributed physical 
user interface, it nevertheless highlights how VEE supports 
various steps in the development, debugging, testing, and 
deployment process of such systems.  

VISUALIZING DISTRIBUTED PHYSICAL DEVICES 
We now dive into greater detail about how VEE visually 
represents distributed physical devices, and the interactions 
afforded by these representations. 

Basic Device Visualization 
VEE’s basic visualization of any device contains four key 
characteristics: interactive icons, spatial location, views, 
and bar charts, as described below.  

Interactive icons represent two categories of physical 
devices. Sensors (e.g., motion, distance, light, temperature) 
are represented as circles with orange background color. 
Actuators (e.g., displays, motors, lights) are circles with a 
green background.  

Spatial location. Each interactive icon is located atop a 3rd 
party geographic map (VEE uses Microsoft Virtual Earth 
[http://dev.live.com/virtualearth/sdk]), or a user-supplied 2D 
spatial diagram (e.g., a floor plan). These locations 

 
Figure 4. Visualizing device status and activity. 

Figure 3. Observing changes in the event flow.



 

represent the actual or desired location of the 
physical device. Typically, icons are 
manually placed atop a location. Alternately, 
VEE will automatically place a GPS-enabled 
device at its GPS map location. 

Views. Interactive icons have three views, 
each revealing greater detail (Fig. 4). 
 Small views embed a unique identifier 

letter (associated with the device) at the 
icon’s center. Its orange or green border 
indicates the device type (Fig. 4a). 

 Normal views wrap a bar chart 
(discussed shortly) of the last 30 seconds 
of device activity inside the icon’s center 
region (Fig. 4b). 

 Expanded views include the device type 
and its unique hardware serial number in 
the icon’s center. The last six minutes of 
device activity are shown in an additional 
bar chart drawn between the outer bar 
chart and the center region (Fig. 4c). 

View choice is automatic or manual. When a developer 
zooms in or out of a spatial view, the icon’s size increases 
or decreases in response; the view type switches at certain 
size thresholds. As well, a developer can manually resize an 
icon, where again the view type switches accordingly.   

Bar chart visualizations provide information about the 
recent activity of each device. For sensors, the numeric 
values are mapped to the minimum and maximum range of 
the bar chart. For actuators, the peaks in the 
bar chart represent device activity (e.g., 
changed position of a motor, or changed text 
of a display).   

Through these four visuals, developers can 
quickly identify particular devices by their 
labeling and spatial location on a map. As they 
zoom into particular regions, they can see 
event details about particular devices via the 
bar charts. The overview map in Fig. 2a, for 
example, shows each device in the small view, 
whereas the main window in Fig. 2c,f uses the 
expanded view. By manually enlarging 
particular icons (not shown), they can 
selectively see greater details about the devices 
they are interested in. 

Recognizing Device Status and 
Characteristics 
The icon representation shows not only the 
device status, but also reveals specific 
characteristics of the device activity. For 
example, Fig. 5A represents an actuator device 
that is currently connected and available, but 
that has no recent activity. Fig. 5B shows a 
device that has become unavailable (e.g., 
disconnected cable, turned off, or failure), 

where its color is altered to be shaded. 
Even so, the past activity of the device 
remains visible as values in the circle 
bar chart. Figs. 5C-F show how the bar 
chart activity pattern provides helpful 
information about device 
characteristics. Fig. 5C identifies a 
sensor with a very high rate of triggered 
events. Fig. 5D shows a distinctive 
pattern of events triggered at regular 
time intervals. Fig. 5E illustrates an 
activity pattern where its sensor value 
oscillates in a distinctive way. Fig. 5F, 
on the other hand, shows a sensor with 
only infrequent sporadic activity (in 
this example a reader hardware 
detecting RFID tags). 

Details-on-Demand 
To view and interact with device details 
and device settings, a developer can 
open specialized views for each device. 

Shared Phidgets provides interface skins that visualize 
sensor and actuator devices and that provide controls to 
change device settings [16]. VEE seamlessly integrates 
these interface skins into its map user interface, where the 
developer can select the device and choose one of several  
views via the view selection dialog panel (Fig. 6a). 
 Control interfaces (Fig. 6b-d) show the current device 

properties (e.g., display resolution of a color display, Fig. 
6b), show details about device activity (e.g., found RFID 

Figure 5. Device visualizations and 
activity patterns. 

Figure 6. Details-on-demand. 



tags, Fig. 6c), and allow changing of device settings (e.g., 
accelerometer sensitivity, Fig. 6d). 

 Linear graph views (Fig. 6e) visualize the recent 
activities of sensors (e.g., temperature, acceleration) as a 
line graph. While this view has some similarity with the 
circle bar chart views of the device activity, these linear 
graph views are more detailed, have higher resolution, 
and span longer time periods. 

 Table views (Fig. 6f) list all properties and events of a 
device in a table. This is a complete (albeit low-level) 
MVC representation of the current device status and its 
activities. This view includes sorting and search 
functionality to find specific entries in the table.  

All views are visualized as floating panels atop the map. 
They are anchored to the current map position so that they 
move when the map position changes. The developer can 
easily rearrange and resize these windows, and collapse the 
views (so that only the title is visible) to occupy less space.  

VISUALIZING EVENT FLOW AND INTERACTION 
We now explain how our tool visualizes the real-time event 
flow between devices, and how users can interact with the 
visualization to obtain the information they need.  

The Runtime Application 
As shown in the scenario, VEE displays the application 
icon (as a red circle, e.g., 3b,d), and tracks all devices used 
by an application. It displays the connections between 
device components and the application as a node-link 
diagram (e.g., Fig. 3). The red application icon also displays 
the incoming and outgoing event activity in a manner 
similar to the device visualization, i.e., it shows an 
identification label in the centre and a bar chart portraying 
the current and past activity of this application (Fig. 3b,d). 
Thus the application visualization summarizes the activity 
of all its sensors and actuators.  For example, developers 
can leverage this iconic summary by enlarging the 
application icon in an overview map view (leaving device 
icons small).   

The Events 
VEE animates the event activity of sensors and 
actuators as seen by the distributed application, 
where incoming and outgoing events of an 
application are represented as animated shapes that 
move along the connection lines.  

Specific shapes are used for encoding different 
types of events, and different grey levels are used 
to encode values. As shown in Fig. 7 top, boolean 
events are rendered as squares, where their 
black/white fill represent true/false values. 
Numeric events are circles, where grey levels 
approximate sensor values ranging from 0 to 1000.  
String events are shapes in the form of the letter 
‘T’, and binary data events are squares with 
rounded corners.  

Revisiting our aging-in-place 
application in Fig. 3, we see 
incoming numeric sensor events 
visualized as circles whose 
grayscale shading indicates its 
current numeric value (Fig 3a). 
Because they range from black 
to mid-grey, both sensors are 
detecting moderate motion. We 
also see outgoing events that 
change the servo position; here, 
the grayscale shading represents 
the transmitted servo position in 
degrees (Fig 3c). Similarly, we 
see outgoing events – the letter 
‘T’ – that change the text on the LCD display. Thus 
developers not only observe the number of transmitted 
events, but also gain some insight into the event data. 

Filtering 
Some applications can be quite complex, with large 
numbers of devices, event types, and connections. To 
control complexity and visual clutter, developers can apply 
filter settings to only visualize events of a specific type. 
This reduces the total number of visualized events to only 
those of immediate interest to the developer.  

In the map view, the developer opens the filter settings 
dialog as shown in Fig. 8b. In this example, the developer 
has set the filter so that only numeric events whose value 
ranges between 0 and 200 are shown on the map in Fig. 8a. 
The filter dialog lets developers filter events that fall into 
the following categories (or combinations of them): 
 Event data type. Events can be filtered by their data 

type, i.e., Boolean, string, integer, and/or binary values. 
 Event content. Events can be filtered to those holding 

specific values, i.e., true or false Boolean values, integer 
values in a specific range, or string events that contain a 
given keyword. 

FalseTrue

10000

String /
Text

Binary 
data

Boolean

Numeric

Figure 7. Event encoding.

Figure 8. Applying filter settings to show only specific events. 



 

The filter settings are by default applied globally to all 
current elements of the visualization. However, the filter 
settings can be selectively applied to the displayed devices, 
or to separate connections. Once a filter for any of the 
views is activated, an orange label (Fig. 8c top left) 
indicates that events in this view are filtered. A checkbox 
allows one to quickly activate and deactivate the filter 
without opening the filter settings dialog. 

Viewing Multiple Maps Simultaneously 
As shown earlier in Fig. 2, VEE can display more than one 
map view at the same time. When activating the split view 
of two maps, the visible part of the second map is the same 
as the main view by default. However, each map has 
independent navigation and zooming controls; thus one can 
navigate and zoom to different areas in each map view.  

Multiple map views are very useful for visualizing 
distributed ubicomp, for developers can simultaneously 
probe different parts of the distributed system at different 
levels of detail. We saw this in our scenario that included 
two geographically distant homes (e.g., Fig. 2). Multiple 
map views can also be applied to the same geographical 
location, but in this case different filter settings can be 
applied to each view, e.g., one view showing only numeric 
events, while another view showing only binary events. 

Muting the Geographical Layer 
Visualizing the distributed devices at their geographical 
location on the map provides useful information about the 
context of the device (e.g., affected area of actuators, 
sensors nearby, separated areas by walls). At some point, 
the fidelity of these maps can distract the person when 
observing the details of a particular running application. 
VEE allows the developer to set the opacity of the map 
layer from any value between 0 and 100%. Fig. 2 shows the 
map with 100% opacity, and Figs. 3 and 8 with only 20% 
opacity. In the latter cases, the visual focus is on the 
distributed devices, their connections, and the animated 
events. 

Time-dependent Semantic Zoom 
VEE lets developers observe device events as they occur in 
real-time. This can be overwhelming when large quantities 
of events are transmitted at a high frequency. For example, 
Fig. 9a illustrates a situation in which a large quantity of 
numeric events (circles) is transmitted in a short interval. In 
such cases, it is difficult to track inter-device activities, 
single events of interest, or to identify errors in the stream 
of transmitted events. 

To address this issue, the visualization lets the developer 
slow down the visualization speed to a specific percentage 
of the real time speed. All the events are still visualized on 
top of the device connection paths; however, they are 
animated at a much slower speed and include more in-depth 
information about the actual event (Fig. 9b). We call this 
time-dependent semantic zooming. This detailed 
information now includes the transmitted data type of the 

event, as well as the current value of the event itself (e.g., 
the integer value of numeric sensor events, or the 
transmitted text of string events), as illustrated in the close-
up in Fig. 9c. This slowed-down visualization facilitates the 
tracking of specific events. It even allows the developer to 
immediately freeze the visualization in its current state (this 
stops all event animations and other visualizations), 
affording in-depth analysis of the shown (paused) 
visualizations. When time is set back to normal, the events 
immediately catch up with real time.  

IMPLEMENTATION 
We now briefly describe the Visual Environment Explorer 
architecture and how we implemented and integrated it into 
the existing Shared Phidgets toolkit [16].   

The VEE application is implemented primarily in C# (.NET 
Framework 3.5), including extensions to the source of 
Shared Phidgets toolkit. VEE uses JavaScript to interact 
with a geographical map web service, where VEE retrieves 
maps from the Microsoft Virtual Earth web service SDK, 
and use the Microsoft Research Map Cruncher 

[http://research.microsoft.com/mapcruncher/] to integrate 
custom overlay maps (Fig. 10a); this tool also allows us to 
use higher zoom levels than in the default Virtual Earth web 
service. VEE connects to the Shared Phidgets server (Fig. 
10b) using the Shared Phidgets kit’s API and programming 
library [http://grouplab.cpsc.ucalgary.ca/cookbook/]. VEE then 
registers for updates of sensors, actuators, and running 
applications. Once a new physical device is connected, the 
tool subscribes for all events of this device (Fig. 10c).  

All currently running applications of the Shared Phidgets 
infrastructure are monitored (Fig. 10d), and the connections 
in-between devices are rendered on the map. Events of all 
devices are forwarded to the filter (Fig. 10e) and, if they 
pass the filter, are forwarded to a local event buffer (Fig. 
10f). The buffer then sends the events to the view triggered 
by a timer, whose value depends on the visualization speed 
set by the developer. Events are then visualized as activity 
indicators in the device representations (Fig. 10g), and as 
animated events along the links between nodes (Fig. 10h). 
User interaction is by direct interaction with the map views 
(e.g., navigation, zooming, details-on-demand), and/or by 
changing the visualization control settings (Fig. 10i). Here, 

Figure 9. Time-dependent semantic zoom reveals detailed 
information when slowing down the visualization speed. 



the user interface provides options to change the filter 
settings, the visualization speed for time-dependent 
semantic zooming, and the settings of the visualized layers. 

DISCUSSION AND FUTURE WORK 
While VEE is powerful, it could be improved even further 
in several ways. 

Better control of event history. VEE focuses on visualizing 
the actual real-time activity of the devices themselves as 
well as the event flow between them. This information, 
however, only shows a few minutes of previous device 
activity. It should be extended to allow the selection of time 
intervals¸ perhaps via a dynamic query. This would let one 
explore past activity of the system, and could in turn 
provide information about the long-term device activity.  

Alternative layouts. VEE positions devices on the screen by 
its simulated or actual physical location. While powerful, 
alternative 2D representations could be used to reveal other 
aspects of the relations between devices. For example, 
devices could be grouped together into clusters depending 
on their device properties, characteristics, and activity 
patterns. Alternatively, devices that have connection links 
with many transmitted events could be located closer to 
each other than to those that only sporadically 
communicate. Ideally, developers could switch between the 
visualizations to match the information they currently need. 

Improved links. The connection links in our diagram are 
currently rendered as straight lines. Yet these links are bi-
directional connections, which means that incoming and 
outgoing events are overlaid atop – and thus sometimes 
occlude – each other. This could be remedied easily by 
using opposing arcs that separate incoming vs. outgoing 
events.  

End-user interfaces. Although our visualization is 
specifically targeting ubicomp developers’ requirements, 
the introduced concepts of the visualization can be also 
applied to end-user interfaces. Considering that more and 

more distributed electronic devices might be available in 
peoples’ homes in the near future, the overview and 
reconfiguration of these devices and their connections 
would become increasingly important. A user interface that 
includes the visualization of the spatial distribution of 
devices and their connections, but provides simplified 
controls for reconfiguration, would help people to control 
and manage these (often invisibly working) ubicomp 
applications in their changing everyday environments. 

RELATED WORK 
Our work relates to visualizations as used in three areas: 
ubiquitous computing systems, software programming, and 
large-scale sensor networks. We briefly review this work. 

Some existing systems visualize device connections. The 
Orbital Browser [5] allows configuration of media device 
connections and provides visualizations of these 
connections. Similarly, the Equator Component Toolkit [6] 
provides a display editor for creating configurations of 
distributed physical devices and visualizing their 
connections. The CollaborationBus editor [11] also allows 
the graphical composition of ubicomp applications. VEE 
extends this work, where we specifically target 
requirements of ubicomp application developers, e.g., 
visualizing event flow between devices, or viewing details 
about specific devices. 

Graphical view representations of developed software can 
facilitate the programming, debugging, and testing process 
of applications [1,20]. Developers can visually observe 
application behaviour at run-time to recognize unexpected 
behaviour [1], detect coordination problems in distributed 
multi-agent systems [20], or view the internal processes of 
internet routers and network infrastructures [26]. The 
Stanford iRoom Event Heap visualization [17] used 
visualizations for the debugging of ubicomp applications. 
Their Visualizer application provides helpful information to 
developers about the activities in the shared data space, so 
that developers and users of the systems can detect reasons 

Figure 10. Architecture of the Visual Environment Explorer. 



 

for technical breakdowns. In this spirit, VEE also visualizes 
run-time behaviour, albeit in a different manner. 

Geographical overview visualisations have been developed 
to observe large scale distributed sensor network behaviour. 
For instance, the SenseWeb system [23] provides views of 
aggregated sensor data (e.g., temperature) through the 
SensorMap application [19]. GRASS [7] also visualizes 
environmental data, for example temperature and rainfall. 
These systems are optimized to provide users views of 
aggregated and interpreted information, such as average 
values of geographical regions, or changes over time. 
Another class of software tools focuses on visualizing the 
technical properties of these networks: data traffic, load 
balance, node attributes, as well as logical links between 
nodes. Instances of these systems are EmView [9] and 
SpyGlass [2]. While VEE includes analogous visual 
representations of sensors, it also displays individual 
device/events, actuator devices status, and the detailed 
event flow between devices. 

SUMMARY AND CONCLUSION 
We contributed the Visual Environment Explorer – a 
visualization tool that supports developers when proto-
typing ubicomp applications containing distributed devices 
such as sensors, controls, and actuators. Using VEE in 
combination with Shared Phidgets, developers can rapidly 
build such systems, and observe, test, and debug their run-
time distributed behaviour.  

In particular, VEE reveals the usually invisible data flow 
between the distributed device components. It visualizes 
representations for sensors and actuators on a geographical 
map layer, reveals the inter-connections between these 
devices, and shows the actual data flow of events. This 
allows ubicomp developers to observe the status of devices, 
as well as the transmission of events and their processing 
between devices. Various interaction techniques like detail-
on-demand, filtering, and time-dependent semantic zoom 
facilitate the exploration and observation of large device 
infrastructures with many transmitted events between the 
single devices.  
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