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ABSTRACT 
Many tools exist for developing real-time distributed groupware, 
but most of these tools focus primarily on the performance of the 
resulting system, or on simplifying the development process. 
There is a need, however, for groupware that is both easy to build 
and that performs well on real-world networks. To better support 
this combination, we present a new toolkit called GT/SD. It 
combines new and existing solutions to address the problems of 
real-world network performance without sacrificing the simple 
programming approach needed for rapid prototyping. GT/SD 
builds on the successes of earlier groupware toolkits and game 
networking libraries, and implements seven ideas that help solve 
problems of network delay, quality of service, rapid development, 
flexibility, and testing.   

Categories and Subject Descriptors 
H.5.2. [Information Interfaces]: User Interfaces—prototyping. 
D.2.2 [Software Engineering]: Design Tools and Techniques— 
user interfaces. 

General Terms 
Performance, Design, Human Factors 

Keywords 
Toolkits, network programming, groupware, extensibility. 

1. INTRODUCTION 
Real-time distributed groupware is software that lets people 
communicate, work, and play together at the same time but from 
different places. Examples include shared editors, screen-sharing 
tools, communication applications, and networked multiplayer 
games. There are now many tools available to help application 
programmers develop real-time distributed groupware: specific 
toolkits are available, such as GroupKit [22], JSDT [16], Suite 
[4], or Fiaa [30]; lower level distributed-object protocols are being 
built into development environments (e.g., Java RMI or C# 
Remoting), and several game libraries (e.g., TNL or Raknet) also 
provide network support. 

We can broadly categorize existing tools such as these in terms of 
how they approach the simplicity-power tradeoff. That is, they 
either make things easy for the groupware programmer (giving a 

‘low threshold’ to entry), or they provide maximum control and 
power over detailed aspects of their system (giving ‘high ceilings’ 
of expressiveness) [8][25]. Very few tools do both. For example, 
game toolkits provide a great deal of control over networking 
issues, but are complex and have a steep learning curve; as a 
result, they are generally adopted only by skilled developers 
committed to game production. At the other end, groupware 
toolkits like GroupKit [22] are easy to learn by average 
programmers. However, these tools hide most of their internal 
details. The lack of precise control means that applications may 
not perform well in real-world settings, and that programmers 
may hit ceilings that stop their exploration [8][25]. With these 
tools, programmers are typically restricted to proof-of-concept 
prototypes. 

No existing groupware toolkit takes on the dual challenge of 
providing control over vital aspects of groupware networking, 
while still maintaining a simple approach for the application 
programmer. This middle ground is important for a large number 
of potential developers and a large number of groupware 
applications. Added control over networking is vital for any 
application that is to be used on the Internet or a mobile network. 
Simplicity is also important because rapid prototyping of new 
ideas may not warrant full development efforts – for example, for 
groupware researchers and students who create many different 
prototypes rather than a long-term product line. 

To address this need, we have built a new groupware toolkit 
called the Groupware Toolkit / Shared Dictionary (GT/SD for 
short). GT/SD focuses on issues of networking performance and 
simple data sharing. It grows out of our experiences building 
groupware toolkits [22] and working with game libraries [6], and 
is designed to support rapid development of groupware that can 
run successfully on real-world networks. In this paper, we focus 
on seven ideas that set GT/SD apart in the world of groupware 
toolkits: 
• Latency-management techniques to avoid situations where 

groupware systems exceed available bandwidth; 
• Application-level network control to provide service levels that 

match groupware messaging requirements; 
• A generic shared dictionary to allow rapid prototyping of data-

intensive applications; 
• Different types of message content from basic data types, to 

custom objects, to very large objects; 
• Multiple messaging paradigms that let developers use polling, 

events, shared data, and publish/subscribe; 
• Debugging and testing support through replay mechanisms and 

statistics gathering; 
• Extensibility to enable experimentation and support novel 

research ideas. 
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The underlying philosophy of the GT/SD toolkit is that it should 
be easy to build groupware that performs well on real-world 
networks. In the next sections we review previous research into 
groupware toolkits, provide an overview of GT/SD, and then 
discuss each part of the toolkit. 

2. Related Work 
GT/SD evolved through our experiences with three areas of 
previous work: distributed-systems infrastructure, other 
groupware toolkits, and game networking libraries. Much of this 
prior work can be organized at a high level by the idea of 
distribution transparency [20], that is, the degree to which the 
environment hides the details of the distributed system from the 
application programmer.  

2.1 Distributed-systems infrastructure 
Networking tools are now a familiar part of many programming 
languages and environment, as briefly summarized below. 

Sockets. BSD Sockets are the de facto network programming 
interface; they provide a low-level, byte-oriented perspective on 
network communication. Although sockets provide maximum 
control, they are tedious to use for all but the simplest networking 
applications. As a result, application programmers often look for 
higher-level programming abstractions for network 
communication. 

Remote Procedure Call (RPC) mechanisms. Java RMI and C# 
Remoting are examples of synchronous RPC systems. RPC 
systems disguise client/server communication as method calls. 
Although this approach is powerful, the transparent approach of 
RPC breaks down when network problems occur [16]. The RPC 
model is also problematic in data sharing situations that do not 
match the model’s semantics or assumptions. RPC systems 
typically expose only limited parts of their implementation to the 
programmer. 

Middleware. Loosely-coupled communication middleware 
solutions, such as store-and-forward messaging queues (e.g., IBM 
MQ series, Java Message Service) offer guaranteed delivery, but 
sacrifice real-time or near-real-time performance. The reliability 
and ordering guarantees provided by these systems can be overkill 
for some groupware requirements (e.g., for telepointer updates).  

Distributed-object systems. Industrial-strength approaches, such 
as CORBA and J2EE, are powerful but usually too heavyweight 
for the needs of prototype-oriented groupware developers. In 
particular, programmers require substantial training to use these 
techniques effectively. 

2.2 Groupware toolkits 
Previous groupware toolkits have focused on a variety of design 
approaches and goals. Early toolkits were primarily concerned 
with simplifying the problems of basic connectivity (e.g., [2]). 
The second generation of toolkits went beyond network 
connectivity to provide additional features or explore different 
design approaches. There were several main themes. For example: 
• supporting architectural flexibility to allow experimentation 

with different architectural styles (e.g., [2]); 
• supporting algorithmic flexibility and architectural nuances to 

experiment with optimization and consistency strategies (e.g., 
Clock [11] or Prospero [5]); 

• highly specific types of groupware, such as the transformation 
of existing single-user applications for use by groups (e.g., 
JAMM [1]), or single-display groupware for co-located groups 
(e.g., SDG toolkit [28]); 

• simple development of groupware, including simple 
programming paradigms  (e.g., GroupKit [22]) and provision of 
groupware widgets (e.g., MAUI [15]); 

• investigations of particular groupware features such as 
interface coupling (e.g., Suite [4]); 

• investigations of metaphors for organizing groupware 
applications, such as a rooms environment [10]. 

These toolkits emphasize particular themes in developing 
groupware applications, but none of them focuses on the issues of 
building groupware that performs well on real-world networks. 
Performance has been looked at in considerable detail, however, 
by game libraries, as described below. 

2.3 Game networking libraries 
Game networking libraries have much in common with real-time 
groupware, and networked multiplayer games already have a 
proven record in efficient networking. Multiplayer games are 
similar to groupware in that they send short, frequent messages 
that are generated from human interactions with the game, and 
they send several different types of messages with different 
requirements for reliability and latency. Thus, a reasonable 
starting point for improving groupware networking is to learn 
from games. 

Commercial or open game networking libraries such as TNL 
(opentnl.sourceforge.net), Raknet (rakkarsoft.com), or Zoidcom 
(www.zoidcom.com) provide a number of techniques for 
improving the performance of real-time network-based games. As 
analysed by Dyck et. al., [6], these libraries provide three main 
types of support:  
• bandwidth reduction techniques includes methods for encoding 

and compressing data, for rate and flow control, and 
aggregating messages; 

• reliability and ordering techniques includes multiple reliability 
levels and message-level reliability;  

• latency reduction techniques include streams with different 
order requirements, lazy state data policies, and quickest-
delivery policies for critical data. 

Although game libraries provide a great deal of control over 
network performance, these libraries are not well suited to the 
needs of groupware developers for several reasons. First, game 
libraries are complex and difficult to learn, with large APIs and 
unintuitive programming conventions. Second, game libraries 
often require that application programmers understand network 
concepts (such as loss patterns) or implementation details (such as 
Nagle’s algorithm or socket buffer sizes) in order to use the tools. 
Third, game libraries are set up for the needs of games, and often 
provide capabilities (or enforce programming styles) that are not 
needed or are at odds with typical kinds of groupware such as 
shared editors, communication systems, or more casual games.  

We now turn to GT/SD. While certain aspects of GT/SD are new, 
its primary contribution is in synthesizing techniques and lessons 
from previous groupware toolkits and from game libraries into a 
single system that serves to improve network performance 
without unduly sacrificing development simplicity. 



3. OVERVIEW OF GT/SD 
GT/SD is a layered toolkit for building and managing the 
networking and data sharing of real-time groupware applications. 

The first layer is the Groupware Toolkit (GT), a modular 
communication framework supporting a typed messaging-
oriented paradigm. GT handles many of the mundane aspects of 
network communication while still providing control over 
communication channels, especially those that could affect the 
perceived performance of groupware systems by end users.  

The second layer is the Shared Dictionary (SD). It builds on top 
of GT to provide a distributed shared dictionary based on a 
publish/subscribe notification engine. This common data structure 
lets programmers think in terms of sharing data rather than 
networking. If greater control of network parameters is needed, 
SD give programmers access to certain features of the GT layer. 

3.1 GT: The Groupware Toolkit  
GT is a toolkit (currently written in C#) that provides message-
based network connections between distributed computers. The 
core abstraction in GT is the logical connexion between two 
endpoints. Although the implementation has been primarily 
directed towards supporting client-server architectures, other 
higher-level architectures such as peer-to-peer architectures are 
also easily supported using this connection model. 

GT exports a notion of connection-oriented, message-based 
communication between two endpoints. A logical connexion is 
divided into a set of one or more channels, which are allocated by 
the programmer to match the application’s needs. Channels 
transport typed messages containing strings, byte arrays, objects, 
session notices, and typed 1-, 2-, and 3-tuples.  

GT’s modular design separates the different concerns involved in 
network communication (Figure 1). At a high level, programmers 
interact primarily with two classes representing client and server 
communicators (Figure 1, left). These two classes provide the 
bulk of the programmer-facing APIs. Client and server instances 
send and receive data with other remote endpoints through 
connexions. GT supports simultaneous use of a number of 
communication protocols, and each established network 
connection is represented as a transport. Thus, a connexion is a 
logical grouping of the different transports that connect to the 
same logical endpoint. A connexion uses a marshaller to 
transform a message to and from a byte array, and selects a 
transport for sending a message that best meets the message’s 
delivery requirements. The acceptor/connector design pattern is 
used to separate establishing a transport from the actual delivery 
of packets [23]. Programmers can also add new behaviours by 
adding, wrapping, or replacing these well-defined components 
(discussed in more detail later). 

GT provides four transports. First, a TCP-based transport provides 
reliable and ordered delivery. Second, a UDP-based transport 
provides unreliable and unordered delivery. Third, a sequenced 
UDP transport provides unreliable but sequenced delivery. 
Fourth, a local transport provides reliable and ordered intra-
process delivery using a shared queue, which is useful for testing.  

GT applications use a client-server architecture, where the server 
typically acts as a message repeater. This pattern has proven itself 
in networked games over the past decade [6] as well as in 
complex groupware systems [10]. The core idea is to centralize 
message-passing to reduce communication overhead between 
clients and guarantee all clients receive messages in the same 
sequence [9]. All messages are sent to a central server, which then 
broadcasts (or repeats) messages to all connected clients. We 
reified this pattern as the ClientRepeater server shipped with GT. 
This server can be extended, and thus acts as a starting point for 
applications requiring more server sophistication – for example, a 
server that processes incoming messages, or one that makes 
decisions about whether to relay messages to a particular client. 

3.2 GT Example 
Using the above facilities, a groupware programmer can easily 
create a networked groupware system. If and when performance 
needs warrant, the connection can be tuned to best fit the data 
needs sent over the connexion, and to choose the most appropriate 
transports that fit that data.    

To demonstrate the simplicity of using the GT layer, we show the 
steps necessary to construct the simple chat client shown in 
Figure 2 (we deliberately use trivial examples in this paper to ease 
the reader’s task of going through our code examples). Our chat 
client broadcasts messages to other connected clients via the 
client-repeater server. Because the server broadcasts messages to 
all clients including the one that sent the message, the chat client 
can respond to its own sent message in exactly the same way that 
other clients do. We do not show the actual UI code (which in fact 
dwarfs the GT networking code). 

When the user presses <enter> after writing a new chat message 
in the lower text box (named messageBox in Figure 2), the client 
will send this message to the client-repeater. Clients receiving this 
message then append the text in the upper text box (named 
transcriptBox) to form a chat transcript.  

First, we create and start a GT Client instance; this is often 
performed from the application constructor: 

 Client client = new Client();     // create a client instance  
Next, we want a channel suitable for sending and receiving chat 
messages. We will use a channel supported by GT specifically for 
sending string objects. We assume that we already have the host 
and port IDs for the client-repeater, and that we have a unique 
channelNumber that identifies a new channel. As we do not want 

 
Figure 1: High-level design of the GT framework 



to lose any chat messages, we use a predefined channel delivery 
method called ChatLike (an ordered and reliable method described 
in more detail later). 

  IStringStream chatChannel;   
  chatChannel = client.OpenStringChannel(host, port, 
 channelNumber, ChannelDeliveryRequiremengts.ChatLike); 

The network setup is now complete. To determine when to send 
text, we hook the messageBox‘s KeyPressed event. If the key is 
Enter, we send the messageBox text over the channel. 

  void messageBox_KeyPressed (object sender, KeyEventArgs e) {
 if (e.KeyCode == Keys.Enter) {  
  chatChannel.Send (messageBox.Text); 
  messageBox.Text = "" ;      }} 

To receive messages, the application polls the incoming chat 
channel for messages, using a timer-invoked method. When 
messages are available, we update the transcript: 

  void timer_Tick(object sender, EventArgs e) { 
 string msg; 
 client.Update();            // process all connexions 
 while((msg=chatChannel.DequeueMessage(0))!=null){ 
    transcriptBox.Text += msg + “\n”;        }} 

This example illustrates how easy it is to create a network 
connection in GT, but also hints at the powerful ways this 
connection can be configured. 

3.3 SD: The Shared Dictionary 
GT allows programmers to think about their systems in terms of 
data networking – what and how to send data over a channel. In 
many cases, however, it is far easier for a programmer to think 
about data sharing between clients – how data structures store 
information for shared access – rather than how that data should 
be delivered. Consequently, we developed the Shared Dictionary 
(SD) to provide a distributed shared-data abstraction.  

The Shared Dictionary is a centrally coordinated shared-memory 
system for inter-application communication. It grew out of early 
work with shared dictionaries in GroupKit [22] and TeamRooms 
[10] (which they called ‘environments’), and has been replicated 
as a distributed hash table in other systems (e.g., Sync [18]). The 
primary programming abstraction of SD is a distributed hash 
table, instantiated as a shared dictionary object. It contains 
hierarchical keys represented as string paths (e.g., /person/1/name, 
/person/1/age, etc.). Values can be any data or object, including 
multimedia. Programmers simply set data within the hash table, 
for example SD["/person/1/name"] = "Sam". A programmer can 
subscribe to notifications on any changes made to keys as 
specified by wildcards. For example, subscription.Pattern = 
"/person/*/name" will generate a notification whenever any 
person’s name changes. Notifications typically trigger 
programmer-specified callbacks so they can act on these 

notifications. Each participant in an SD is identified by a 
globally-unique identifier that can be used as a component of an 
SD path.  

As a shared data structure, all keys, values, and notifications are 
transparently shared across the distributed shared dictionary. 
Under the covers, clients connect and send data to a central 
server. Unlike GT’s ClientRepeater, this server stores the data in 
its internal hash table, and may also persist the data for resiliency. 
The server also tracks all clients subscriptions, and forwards data 
changes only to the interested clients. Data is stored centrally so 
that latecomers can be brought up to date with other clients. None 
of the networking or architectural setup is normally seen by the 
groupware programmer, except for a few lines of code where the 
programmer indicates the location of the SD server. 

SD’s design also incorporates programming abstractions that are 
not only convenient for the programmer, but efficient in terms of 
performance. For example, sequential lists can be a nuisance to 
set up in a dictionary. SD provides a special object called a 
sequenced vector, where a programmer can set items in the vector 
by its absolute or relative position (e.g., SD[“/item#3”] accesses the 
4th item in the 0-based list, and SD[“/item#-3”] accesses the 3rd item 
from the end). For efficiency, SD sends only the changed list 
items rather than sending the entire list. 

SD supports several common patterns in groupware development. 
First, and most basic, it behaves as shared memory. If a 
programmer subscribes to all data (by subscribing to "*"), then 
they can access any data posted by others. Second, it can behave 
as a pure notification server [7][19], where data is propagated via 
notifications and handled purely by associated callbacks. Third, 
automatic notification combined with the ability to retrieve data at 
any time supports a distributed Model-View-Controller (dMVC) 
paradigm [11][22]. That is, a program is structured as a set of 
controllers that trigger data changes to the underlying model 
(typically in response to user input), views that respond to 
notifications about model changes (typically by adjusting what is 
seen on the screen), and the model that contains the state of the 
system (which can be accessed at any time to regenerate the view, 
e.g., by latecomers).  

SD is built on top of the GT connection facilities. It uses GT for 
network communication, but abstracts this communication away 
from the programmer through the shared data structure paradigm. 
It automatically maintains the data model, and handles the 
client/server connections, data serialization, and data 
marshalling/unmarshalling. 

3.4 Shared Dictionary Example 
The code below shows the same chat client in Figure 2, but 
written as a distributed MVC pattern built atop SD. First, an SD-
based chat client connects to the server via a shared dictionary 
object. We assume that the server has been started, and that its 
host/port ids are known. 

SharedDictionary SD = new SharedDictionary(); 
SD.Url = “tcp://” + host + “:” + port; 
SD.Open(); 

Second, we create a subscription to the key ‘/chat/message’, a 
sequenced vector whose value will contain the contents of the 
entire chat transcript, i.e., the model. Note that when the value 

 
Figure 2: The Client Chat interface 



associated with this key is changed, our notification method 
chat_UpdateView (the view) will be called. 

SharedDictionary.Subscription messageChanges = 
                            new SharedDictionary.Subscription(); 
messageChanges.Dictionary = SD; 
messageChanges.Pattern = “/chat/message”; 
messageChanges.Notified += chat_UpdateView; 

When the user has finished composing a new message, we append 
it to the transcript value and thus update the model (i.e., the 
controller). 

void messageBox_KeyPressed(object s, KeyEventArgs e) { 
 if(e.KeyCode == Keys.Enter) { 
  SD[“/chat/message#-1”] = messageBox.Text + “\n”; 
  messageBox.Text = “”;         }} 

When notified, we add the new chat message to the transcript (i.e., the 
view is updated): 

void chat_UpdateView(object s, SubscriptionEventArgs e) { 
 transcriptBox.Text += e.Value;       } 

If a new client arrives, they can immediately update their view 
simply by using the data values associated with the 
‘/chat/message’ key.  

While the SD code above is slightly longer than the equivalent 
GT code, the differences concern simple boiler-plate one-time 
setup of the shared dictionary and subscriptions. At this point, it 
would be easy to create the quite complex shared data structures 
typically found in real groupware applications. 

4. PERFORMANCE AND DEVELOPMENT 
The above examples show that building basic groupware is simple 
using GT/SD. In the following sections, we detail the features of 
GT/SD that provide support for real-world performance and real-
world development. In some of these features, programmers can 
set parameters to exploit knowledge of the data or the network; in 
other cases, the toolkit will automatically deal with performance 
issues. We begin with features that improve network performance, 
and then discuss development support. 

4.1 Support for Latency Reduction 
End-to-end network delay (latency) is a major problem for 
synchronous groupware. Since visual information about other 
people (e.g., the location of their avatar or telepointer) is vital in 
many groupware tasks, latency makes it difficult for people to 
coordinate shared actions or use deictic references [6]. Previous 
work shows that close coordination is disrupted at latencies above 
100ms, and is nearly impossible at delays above 500ms [14].  

Reducing latency is therefore a critical issue for the groupware 
developer. Previous work suggests that one of the most common 
problems is that applications exceed their available network 
bandwidth and fill up their own communication channel. This 
behaviour is particularly evident in systems built with earlier 
groupware toolkits such as GroupKit [22]. Fortunately, this 
problem can often be addressed by controlling both the amount of 
data sent and how that data is sent across the network. GT/SD 
provides four mechanisms for controlling outgoing data: rate 
control, aggregation, protocol choice, and compression. 

Rate control. GT/SD provides two types of rate control. First, 
communication channels that are attached to specific local data 

values (e.g., the streamed tuple channel) allow the programmer to 
set specific send rates in milliseconds. Second, for channels where 
the system does not know what data will be sent next (e.g., 
generic text or object channels), GT/SD provides a standard 
programming pattern in which all message sending is put under 
the control of a send timer. Although not explicitly part of the 
toolkit, the tutorials and example programs highlight the need for 
rate control and the way it can be implemented. 

Aggregation. Messages sent by groupware systems are often 
small (e.g., position updates typically only require a few bytes), 
and are generally much smaller than the maximum payload size 
of a network packet. Sending each message immediately in a 
single packet (often done in previous toolkits) wastes the space 
needed for extra packet headers, and wastes resources needed to 
process packets en route. Aggregation solves this problem by 
placing multiple messages into a single packet. Aggregation 
works by filling packets from an outgoing send queue: messages 
are aggregated until either the maximum packet size is reached, 
the queue empties, or a signal is received from the send timer. 
Although aggregation slightly increases the latency of individual 
messages, the savings in data volume can dramatically improve 
the overall delay. 

Multiple reliability options. Several distributed-systems toolkits 
provide only reliable and ordered transmission using TCP (e.g., 
GroupKit, JSDT, Java RMI, C# Remoting). However, most 
messages in many groupware systems are awareness messages 
with no reliability requirements [6]. As a result, one of the main 
causes of latency in these systems is the unnecessary TCP-level 
retransmission of lost packets. For example, telepointer position 
updates are very small packets sent at a high data rate. It matters 
little if an update or two are lost, as the next one will contain 
sufficient information to update a client’s telepointer position. In 
this situation, loss is preferable to delay. 

An important part of reducing unnecessary data, therefore, is in 
providing appropriate reliability levels for messages, and in 
particular, providing unreliable transport that does not retransmit 
packets. GT/SD provides this flexibility with custom transport 
mechanisms built on top of the UDP and TCP protocols. 
Provision of unreliable transport is standard in game networking 
libraries, but is still uncommon in groupware toolkits. 

Compression. Compression is a standard technique for reducing 
the size of digital data, and several game networking libraries 
provide mechanisms for message compression [6]. However, 
these mechanisms are either complex (e.g., requiring the 
application programmer to determine the minimum encoding 
required for the data ranges in the message [6]), or do not work 
well with the short messages that are common in real-time 
groupware (e.g., ZIP compression is not very effective on 
messages that are only a few dozen bytes long). 

GT provides a message compressor – GMC – that provides good 
compression and requires very little programmer effort [13]. The 
key observation underlying GMC is that streaming groupware 
messages are often self-similar: because many of the fields in a 
message are repeated (e.g., tag names or participant IDs) one 
message in the stream is often very similar to the preceding and 
succeeding messages. GMC uses the messages themselves as 
templates, and replaces repeated sections of later messages with 
pointers to the template. Our experiments show that GMC reduces 



the size of simple text-based telepointer messages by more than 
50% and works much better than message-at-a-time compression 
techniques such as ZIP [13]. 

Data compression is a good example of how knowledge of the 
specific behaviours and requirements of real-time groupware can 
lead to improved performance without sacrificing simplicity. A 
specific advantage of GMC is that it allows application 
programmers to use long message formats that contain redundant 
information (e.g., sending a participant’s name as well as their 
numerical ID in each message). These long formats are useful for 
readability and debugging. With GMC, the redundant information 
is automatically removed by the compressor, ensuring that 
network performance is not compromised. 

4.2 Application-Level Network / QoS Control 
Many groupware applications require differing delivery 
requirements for particular types of data. For example, telepointer 
update messages have very different requirements compared with 
chat messages or model updates. Applications typically managed 
these requirements by using multiple communication protocols, 
such as using TCP for sending some data types and UDP for 
others. However, implicitly tying delivery requirements to 
particular protocols leads to brittleness, as substantial work may 
be necessary to adapt the application to a new, better-suited 
protocol. 

GT uses a more robust approach. It allows programmers to 
explicitly specify the delivery requirements to be used for 
messages sent on a particular channel. Under the covers, these 
delivery requirements are used to select the most appropriate 
transport for sending the message. When needed, the programmer 
can override these requirements on a message-by-message basis.  

GT currently supports the following four types of delivery 
requirements for each channel. 
• Reliability describes the delivery guarantee for messages sent 

on a channel: is it required that the messages be delivered, or 
can they be sent on a best-effort basis? 

• Ordering considers the delivery of a message with respect to 
the other messages on the same channel. There are three 
possibilities: unordered (delivery order does not matter); 
sequenced (messages received out of order should be dropped); 
and ordered (messages must be delivered in the order received). 

• Timeliness describes the expected timeliness of the message: 
can a new message be held back to be aggregated with other 
messages? If not, should this message force sending all queued 
messages on this channel, on all channels, or must it be sent 
immediately before all other messages?  

• Freshness. For channels configured to support aggregation, the 
channel can also be configured to specify the freshness of the 
messages sent on its channel: that is, whether all pending 
messages or only the latest message should be sent. 

Ready-made defaults are available to simplify programming, 
tuned to the specific types of messages that are common in real-
time groupware [6]. We have already shown the ChatLike default 
(reliable, ordered, aggregate messages, send all) in our GT Chat 
example. This ChatLike delivery requirement ensures that all 
messages are received in the order sent, but that brief delays are 
acceptable in order to aggregate messages. Other defaults include 
AwarenessLike (unreliable, sequenced, aggregate, latest-only), 

CommandsLike to represent user commands or model updates 
(reliable, ordered, flush-channel, all), SessionLike (reliable, 
unordered, flush-all, send all), and Data (reliable, ordered, 
aggregate messages, send all).   

By default, SD assumes that all values require reliable and 
ordered delivery. However, programmers can attach meta-data 
attributes to key paths as hints to the underlying GT layer to 
change quality of service. For example, one attribute that can be 
attached to a path is ‘unreliable’, indicating a preference for data 
updates to be sent on a best-effort basis. This makes sense for 
many applications, such as a media space that sends video frames 
as sequential data updates: losing the occasional frame (which 
will likely be unnoticed by the end user) is preferable to flooding 
the network and introducing lag. 

In summary, selecting a protocol by matching its delivery 
characteristics to the required delivery requirements reduces 
contention for bandwidth for other protocols, and thus helps the 
programmer manage network congestion.  

4.3 Managing Different Types of Message 
Content 
Groupware applications are fundamentally concerned with 
sharing information between different nodes. However, the actual 
form of the data can affect program complexity and/or how it is 
sent across the network.  

Basic Data Types. As with most other network services, GT 
supports sending and receiving of primitive information data 
types, such as strings and byte arrays. 

Objects. Simple data types often do not suffice. Most applications 
actually exchange objects, such as telepointer positions or objects 
containing data models. Forcing the developer to transform these 
objects into byte arrays or strings is onerous; instead, GT/SD 
provides direct support for sending application-level objects. A 
customizable marshaller is used to convert these objects to and 
from portable byte-based formats suitable for network transport. 
GT/SD’s default marshaller uses .NET serialization, but other 
marshalling schemes are easily supported.  

Large Objects. GT also provides a special marshaller for handling 
situations where the resulting byte format is too large for the 
underlying network’s capacity. For example, UDP datagrams 
have a theoretical limit of 65536 bytes, although some operating 
systems limit this even further to 8192 bytes. Groupware 
programmers will often run into this limit when sending common 
data such as pictures or video frames. We solve this problem with 
a large-object marshaller that automatically splits objects into 
appropriately sized packets. Thus, groupware applications that 
send large objects can be built without extra coding. 

4.4 Multiple Messaging Paradigms 
When a message or object is received over the network, an issue 
that developers must deal with is how the message is presented to 
the program. Ideally, the method used will fit well within the 
programming paradigm used in the system. It is thus the 
responsibility of the groupware toolkit to communicate the 
message, object or updated value to the application in an 
appropriate way. GT/SD supports a combination of the 
approaches: polling, event-driven, data storage, and 
publish/subscribe. These correspond to the well-known push, pull, 



and lazy-update paradigms for sharing information. Since each of 
these approaches are appropriate in different groupware 
situations, GT/SD does not demand any particular paradigm.  

GT Polling. The first method is polling (used in the GT chat 
example above). The application regularly checks to see if a 
channel has available content; if any exists, it is retrieved. 

GT Events. The second method is event-based, where the toolkit 
automatically triggers an event when a message is received on the 
channel. This invokes a callback specified by the programmer. If 
our GT chat example used an event-driven interface, we would 
add an event listener when creating the chat stream. The method 
chats_MsgReceived would then perform the message dequeueing 
seen previously. No timer is needed: 

chatChannel = client.OpenStringChannel(host, port, …); 
chatChannel.MessagesReceived += msgsReceived; 

SD Data Storage. The third method stores the value or object 
received over the network by updating the data structure held by 
the Shared Dictionary. These values are retrieved by accessing the 
data structure directly. 

SD Publish/Subscribe. Finally, the publish/subscribe paradigm 
allows the programmer to selectively subscribe to data patterns 
held by the shared dictionary. This is valuable for several reasons. 
First, unsubscribed data is not sent to that particular client, which 
relieves both network and memory load. Second, subscriptions 
offer a very easy way to implement a notification server and/or 
the dMVC pattern. Publish methods are equivalent to a controller, 
while subscribe callbacks are usually equivalent to the view. 

These mechanisms illustrate the design goal of providing 
flexibility where it is needed. GT’s core functionality provides 
two perspectives on providing multiple message paradigms, each 
oriented towards building either the server side or client side of a 
groupware application. Our server-side perspective is entirely 
event-driven, because servers generally concentrate on 
minimizing the response latency between a message being 
received, processed, and the dispatching of any result arising from 
the message. On the other hand, our client-side perspective offers 
a combination of approaches using event handlers or polling. 
Similarly, SD’s server uses somewhat more intricate methods to 
decide what messages to forward to clients (i.e., corresponding to 
subscriptions). However, its clients can use either data storage, or 
publish/subscribe, or both. 

4.5 Debugging Support 
Debugging a distributed system such as a groupware application 
is difficult because the execution state is defined by the state of 
multiple nodes. Recreating an erroneous state may depend on 
specific orderings of how messages were received and processed 
by the individual nodes. Any slight perturbation in the 
communication patterns, such as might occur when interrupting a 
node with a breakpoint, may mask the bug entirely (that is, a 
heisenbug). Even when the erroneous state can be recreated, it is 
often only possible to approach the situation from a post-mortem 
perspective: it is normally impossible to coordinate a 
simultaneous suspension of the other nodes, where the remainder 
of the system will continue to execute with attendant changes to 
communication patterns. 

Pedersen and Wagner studied debugging parallel programs in 
their in Millipede system [20]. Their key insight was that certain 
classes of parallel or distributed systems can be reduced to 
debugging sequential programs. The proviso is that the program 
executed by a node is deterministic in response to its incoming 
network traffic. In such situations, a program can be debugged as 
an independent process simply by replaying the received 
messages.  

GT/SD supports this Millipede-style packet recording and replay, 
and requires no changes in the applications. If the programmer 
wants this to occur, he or she merely sets a special debug 
environment variable. On startup, GT client and server processes 
check this variable for one of three values: “record” to record the 
incoming and outgoing messages for this session to a file, 
“replay” to replay the messages from a file, and “passthrough” to 
run as normal. When replaying, the program runs in complete 
isolation from any GT-related communication, and no GT-related 
traffic is sent live to the network. Since the program runs in 
isolation, developers can use their traditional tools for debugging 
sequential programs, such as using breakpoints for in vivo 
examination of their system. 

Our debugging support may not exactly reproduce the recorded 
behaviour when programs are non-deterministic for reasons other 
than GT communication (e.g., keyboard and mouse input or 
timeouts). There are, however, workarounds for these cases, such 
as integrating the sources of the non-determinism into the GT-
Millipede framework. 

4.6 Testing Support 
Testing and monitoring of applications is done via various GT/SD 
tools. First, GT includes a local transport that channels all 
communication through a shared queue; this transport is helpful 
for isolating networking problems, for creating unit tests, as well 
as for GT-Millipede replay. Second, GT includes a statistical 
monitoring package. It produces graphs of various statistics, such 
as the numbers of messages and packets both sent and received, 
average round-trip latency, and per-protocol statistics. Under the 
covers, GT is self-instrumenting, where it monitors activity 
through its events mechanism. Third, SD includes several tools 
for monitoring and manipulating the contents of a shared 
dictionary, and for performing speed tests.  Programmers (and end 
users) can optionally see the contents of the shared dictionary as it 
is being updated, and can even add, delete, or change values 
through an external tool to see what effects it will have. 

4.7 Extensibility and Experimentation 
We wanted GT/SD to be extensible for two reasons. First, we 
know that we will want to add new features to it as we gain 
experience developing groupware, especially applications that are 
quite different from those we are now working on. Second, we are 
researchers, and we want GT/SD to serve as an experimental 
platform that will allow us to prototype and test new toolkit 
features.  

GT’s modular design permits adding or modifying behaviour by 
replacing or wrapping different components. Indeed, we have 
implemented significant portions of GT’s functionality simply by 
wrapping existing components: 
• the GMC message compressor is implemented as a wrapper 

around a marshaller; 



• the GT-Millipede functionality is implemented by wrapping 
transport, acceptor, and connector objects; 

• we have implemented variants of the leaky-bucket and token-
bucket traffic-shaping algorithms [27] as a wrapper around a 
transport; 

• we have implemented a custom marshaller for one application 
to produce minimal-sized messages, with no attendant effects 
on the application; 

• the ability to wrap components helped us investigate the effects 
of delay on group performance [26].  

GT also exports a variety of fine-grained events to provide 
notification of network events. These include the creation and 
removal of connexions and transports, of messages being received 
and sent, of ping round-trip messages. We have used these events 
to provide diagnostic functions, and to provide application-level 
disconnects such as when a repeated number of pings fail. 

5. EXPERIENCES WITH GT/SD 
GT/SD stakes out the middle ground of groupware toolkits. For 
those building prototypes, its basic networking and shared data 
facilities likely suffice: simple things are kept simple. For those 
who need to build robust Internet applications, it provides control 
over vital aspects of groupware networking, debugging and 
experimentation with only a modest amount of extra effort by the 
programmer.   

Our earlier example of a chat system shows how simple GT and 
SD application development can be. However, the toolkit can be 
used for much more complex systems. Using GT, we have built 
several group games, a distributed chalkboard application, and a 
screen-sharing system. Similarly, SD has been used for many 
different applications – for example, the powerful Shared 
Phidgets project that uses dMVC to collect, store and propagate 
values between hardware devices, as well as visualize sensor and 
actuator traffic between them [17]. 

The examples below illustrate other projects in somewhat more 
detail. While they are not an empirical proof that GT/SD is 

‘easier’ to program than other systems, or that it offers better 
performance, we do claim that our experiences have been positive 
in both regards. 

GT Example: Real-Time Chess. As a more concrete example, 
Real-Time Chess (Figure 3) is a fast-paced multiplayer game 
based on the classic board game [12]. While most of the rules of 
chess still apply, any number of players can join, any player can 
move any of their team’s pieces, a king can move into check, and 
movement of pieces is limited only by the players’ speed in 
manipulating the interface and the network delay to the server. 
The result is a very fast chess variant. 

RTChess was built using two GT channels. The first channel 
carries awareness and presence information, such as telepointers, 
and is configured with AwarenessLike delivery requirements; this 
channel was updated every 0.1 seconds. The second channel 
carries game commands, such as join-game, select-piece, or 
move-piece, and is configured with Commands delivery 
requirements. We implemented an earliest-arrival server to 
arbitrate commands: clients make requests of the server, and the 
server either sends the resulting commands to the group, or sends 
refusals to individual clients (e.g., the piece requested is no longer 
in play).  

To minimize network latency, we implemented a custom 
marshaller to send minimally-sized packets using 317 lines of 
code. Typical game messages are expressed as a dozen bytes or 
less, as compared to a minimum of 300 bytes when using the 
.NET Serialization-based marshaller. The marshalling knowledge 
is entirely contained within the RTChess marshaller, and could be 
substituted with the .NET Serialization marshaller with no effect 
on the rest of the application. 

SD Example: The ME-dia Space. Media spaces contain an 
always-on video connection between people. We constructed the 
ME-dia Space [29], shown in Figure 4, which connects a 
telecommuter working at home with his work office. People 
would then drop into the work office to talk to him. It sends 
streaming video frames, sensor data (to signal when people enter 

Figure 4: ME-dia space home node, built using the SD. The 
distant person is visible in the large video, while the local person’s 
sent video is mirrored at the lower left to provide feedback. 

Figure 3: RTChess, built with GT. Ten players are represented 
with telepointers and name tags. Players jareddd and oli2 are 
moving pieces; the black rook has just been moved. 



the office), actuator data (to remotely open/close the work office 
door), and a text chat system (voice is handled via the Skype 
API). While it generally uses SD to share data, it also uses the GT 
layer to transmit video frames in a performance-efficient way.  

6. DISCUSSION 
In this section we discuss several questions that arise from our 
experiences with the GT/SD toolkit, including issues of 
generalization, flexibility, and design rationale for our approach. 
Are performance and simplicity mutually exclusive? 
Earlier we characterized previous toolkits in terms of a tradeoff 
between simplicity and power – but these two qualities are not 
necessarily an either-or proposition. Although the toolkits that 
inspired GT/SD have focused on either network performance 
(e.g., game libraries such as OpenTNL) or simplicity (e.g., 
GroupKit [22]), there is no real reason that systems cannot 
provide both. A toolkit should simplify at least some otherwise-
complex operations: even game toolkits, which we characterize as 
‘powerful but difficult’, can be seen as providing simpler APIs 
than the raw socket implementations that they are built on.  Our 
goal in GT/SD is to provide important performance capabilities 
without increasing programmer effort to the point where 
researchers and students would be unable to quickly and easily 
build prototypes. We attempt to achieve this in three ways: first, 
by building certain capabilities in as automatic features (such as 
the SD layer, or GT’s compression module) that improve 
performance without the application programmer having to do 
any extra work; second, by building the toolkit around patterns 
that avoid common design errors (e.g., the error of sending 
telepointers at a high rate through TCP [6]); and third, by 
abstracting the design in ways that are easier for groupware 
programmers to understand and optionally extend (e.g., providing 
QoS defaults such as ‘chat-like’ or ‘awareness-like’, rather than 
requiring knowledge of different network transports). 
Why focus on the qualities of performance and simplicity? 
Our main motivation in developing GT/SD was that groupware 
prototypes built from existing toolkits did not work well when 
deployed on real-world networks. Therefore, our goal was to 
provide a toolkit that would be as simple (or nearly so) as earlier 
examples, but that would allow researchers and developers to test 
groupware in realistic network situations. Groupware toolkits in 
general have tended to focus on a fairly narrow set of concerns – 
which is understandable, given the difficulty and effort needed to 
produce and maintain a robust and usable library. Therefore, we 
chose to focus on network performance and development 
simplicity at the expense of other possible features and qualities 
such as flexibility in architectural style, user-interface coupling, 
collaboration transparency, or consistency management. 
Additional features will be added in future (as described below), 
but we plan to maintain a relatively small set of core functionality 
that concentrates on our main goals. 
In support of this approach, earlier reviews (e.g., [23]) suggest 
that utility layers and middleware should reduce their feature 
count, since toolkit designers are rarely able to anticipate the 
different needs faced by application programmers. Focusing on 
network performance may therefore be a more general approach, 
since most real-time groupware systems must deal with 
performance issues. In contrast, issues of architectural style or 
data consistency are often highly application dependent. Tools 

should be available for programmers to deal with these issues, but 
they can be dealt with through additions to the toolkit or separate 
modules. 
What types of groupware are best suited to GT/SD? 
The design of GT/SD means that the toolkit’s strengths can be 
seen most easily in a particular class of groupware – that is, 
distributed client-server systems that send a mixture of message 
types (i.e., mostly awareness messages with some transactions). 
In this design we are following the lead of networked-game 
libraries, who have validated this architectural style over several 
years. GT on its own best supports groupware requiring efficient 
transfer of data, while SD works well with either dMVC or 
notification-based styles. The most common application types that 
fit these constraints include communication systems (e.g., instant 
messaging or awareness systems), systems with shared visual 
workspaces (e.g., drawing and design applications), and real-time 
multi-player games (e.g., real-time chess as described above). 
There are limits in the current version of GT/SD, however, and so 
not all applications in each of these genres are suitable for the 
toolkit. First, GT/SD does not provide streaming video or audio 
transmission, so real-time conferencing must be handled out of 
band. Ideally, we would like to add another facility to GT called 
'stream-like' which could support this type of data. Second, GT 
does not yet supply a consistency-management system, which 
means that shared editors built with GT/SD must have only minor 
data dependencies (in our experience, however, the ‘social 
locking protocols’ that are easy to implement through awareness 
support provide sufficient consistency maintenance for most 
shared-workspace systems [9]). Third, GT does not provide the 
types of game tools (e.g., 3D support, level builders, cheating 
detectors) that are seen in other gaming libraries, so the games 
built with GT/SD are more likely to feature simpler graphics and 
are more likely to be explorations of new game ideas (such as 
real-time chess) rather than production systems. Although GT/SD 
is primarily designed for real-time and distributed groupware, 
however, it can be used to build asynchronous systems, co-located 
groupware, and intermediate forms between these endpoints. For 
example, we are using the toolkit to connect two tabletop 
groupware systems, making a hybrid of co-located and distributed 
interaction. 

7. CONCLUSIONS AND FUTURE WORK 
We have introduced the GT/SD toolkit, a new toolkit that 
provides good real-world network performance while maintaining 
programming and development simplicity. The base GT layer 
provides core networking and development services, and the SD 
layer builds onto GT to provide a simple yet powerful 
programming abstraction for rapid prototyping. GT/SD 
implements ideas from previous groupware toolkits and from 
game libraries that help solve problems of network delay, quality 
of service, rapid development, flexibility, and testing.  

Our experiences with the toolkit suggest that we have succeeded 
in meeting our design goal – that it should be easy to build 
groupware that performs well on real-world networks. GT/SD 
dramatically simplifies network setup and data sharing, provides 
simple access to vital aspects of network control, and still gives 
full power to application developers when needed. 

GT/SD solves many problems facing groupware developers, but 
does not address all issues – many additional groupware 



capabilities and features could be added to the toolkit. We plan 
two streams of further work. First, we will improve the core 
networking capabilities of GT/SD and add further application-
level networking techniques, deeper QoS support, firewall 
traversal, and more comprehensive network monitoring. 

Second, we will add several modules that provide other important 
groupware services. Included in this list are features such as 
application-level concurrency control [9], groupware widgets 
[15][22], real-time protocols for audio and video, persistence and 
disconnection support, data consistency and convergence 
techniques, and deployment of GT/SD to mobile platforms. 
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