
GT/SD: Performance and Simplicity in a Groupware Toolkit
Brian de Alwis and Carl Gutwin

Department of Computer Science
University of Saskatchewan

110 Science Place, Saskatoon, Canada

bsd@acm.org, carl.gutwin@usask.ca

Saul Greenberg
Department of Computer Science

University of Calgary
2500 University Drive NW, Calgary, Canada

saul.greenberg@ucalgary.ca

ABSTRACT
Many tools exist for developing real-time distributed groupware,
but most of these tools focus primarily on the performance of the
resulting system, or on simplifying the development process.
There is a need, however, for groupware that is both easy to build
and that performs well on real-world networks. To better support
this combination, we present a new toolkit called GT/SD. It
combines new and existing solutions to address the problems of
real-world network performance without sacrificing the simple
programming approach needed for rapid prototyping. GT/SD
builds on the successes of earlier groupware toolkits and game
networking libraries, and implements seven ideas that help solve
problems of network delay, quality of service, rapid development,
flexibility, and testing.

Categories and Subject Descriptors
H.5.2. [Information Interfaces]: User Interfaces—prototyping.
D.2.2 [Software Engineering]: Design Tools and Techniques—
user interfaces.

General Terms
Performance, Design, Human Factors

Keywords
Toolkits, network programming, groupware, extensibility.

1. INTRODUCTION
Real-time distributed groupware is software that lets people
communicate, work, and play together at the same time but from
different places. Examples include shared editors, screen-sharing
tools, communication applications, and networked multiplayer
games. There are now many tools available to help application
programmers develop real-time distributed groupware: specific
toolkits are available, such as GroupKit [22], JSDT [16], Suite
[4], or Fiaa [30]; lower level distributed-object protocols are being
built into development environments (e.g., Java RMI or C#
Remoting), and several game libraries (e.g., TNL or Raknet) also
provide network support.

We can broadly categorize existing tools such as these in terms of
how they approach the simplicity-power tradeoff. That is, they
either make things easy for the groupware programmer (giving a

‘low threshold’ to entry), or they provide maximum control and
power over detailed aspects of their system (giving ‘high ceilings’
of expressiveness) [8][25]. Very few tools do both. For example,
game toolkits provide a great deal of control over networking
issues, but are complex and have a steep learning curve; as a
result, they are generally adopted only by skilled developers
committed to game production. At the other end, groupware
toolkits like GroupKit [22] are easy to learn by average
programmers. However, these tools hide most of their internal
details. The lack of precise control means that applications may
not perform well in real-world settings, and that programmers
may hit ceilings that stop their exploration [8][25]. With these
tools, programmers are typically restricted to proof-of-concept
prototypes.

No existing groupware toolkit takes on the dual challenge of
providing control over vital aspects of groupware networking,
while still maintaining a simple approach for the application
programmer. This middle ground is important for a large number
of potential developers and a large number of groupware
applications. Added control over networking is vital for any
application that is to be used on the Internet or a mobile network.
Simplicity is also important because rapid prototyping of new
ideas may not warrant full development efforts – for example, for
groupware researchers and students who create many different
prototypes rather than a long-term product line.

To address this need, we have built a new groupware toolkit
called the Groupware Toolkit / Shared Dictionary (GT/SD for
short). GT/SD focuses on issues of networking performance and
simple data sharing. It grows out of our experiences building
groupware toolkits [22] and working with game libraries [6], and
is designed to support rapid development of groupware that can
run successfully on real-world networks. In this paper, we focus
on seven ideas that set GT/SD apart in the world of groupware
toolkits:
• Latency-management techniques to avoid situations where

groupware systems exceed available bandwidth;
• Application-level network control to provide service levels that

match groupware messaging requirements;
• A generic shared dictionary to allow rapid prototyping of data-

intensive applications;
• Different types of message content from basic data types, to

custom objects, to very large objects;
• Multiple messaging paradigms that let developers use polling,

events, shared data, and publish/subscribe;
• Debugging and testing support through replay mechanisms and

statistics gathering;
• Extensibility to enable experimentation and support novel

research ideas.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
EICS’09, July15–17, 2009, Pittsburg, Pennsylvania, USA.
Copyright 2009 ACM 978-1-60558-600-7/09/07...$5.00.

The underlying philosophy of the GT/SD toolkit is that it should
be easy to build groupware that performs well on real-world
networks. In the next sections we review previous research into
groupware toolkits, provide an overview of GT/SD, and then
discuss each part of the toolkit.

2. Related Work
GT/SD evolved through our experiences with three areas of
previous work: distributed-systems infrastructure, other
groupware toolkits, and game networking libraries. Much of this
prior work can be organized at a high level by the idea of
distribution transparency [20], that is, the degree to which the
environment hides the details of the distributed system from the
application programmer.

2.1 Distributed-systems infrastructure
Networking tools are now a familiar part of many programming
languages and environment, as briefly summarized below.

Sockets. BSD Sockets are the de facto network programming
interface; they provide a low-level, byte-oriented perspective on
network communication. Although sockets provide maximum
control, they are tedious to use for all but the simplest networking
applications. As a result, application programmers often look for
higher-level programming abstractions for network
communication.

Remote Procedure Call (RPC) mechanisms. Java RMI and C#
Remoting are examples of synchronous RPC systems. RPC
systems disguise client/server communication as method calls.
Although this approach is powerful, the transparent approach of
RPC breaks down when network problems occur [16]. The RPC
model is also problematic in data sharing situations that do not
match the model’s semantics or assumptions. RPC systems
typically expose only limited parts of their implementation to the
programmer.

Middleware. Loosely-coupled communication middleware
solutions, such as store-and-forward messaging queues (e.g., IBM
MQ series, Java Message Service) offer guaranteed delivery, but
sacrifice real-time or near-real-time performance. The reliability
and ordering guarantees provided by these systems can be overkill
for some groupware requirements (e.g., for telepointer updates).

Distributed-object systems. Industrial-strength approaches, such
as CORBA and J2EE, are powerful but usually too heavyweight
for the needs of prototype-oriented groupware developers. In
particular, programmers require substantial training to use these
techniques effectively.

2.2 Groupware toolkits
Previous groupware toolkits have focused on a variety of design
approaches and goals. Early toolkits were primarily concerned
with simplifying the problems of basic connectivity (e.g., [2]).
The second generation of toolkits went beyond network
connectivity to provide additional features or explore different
design approaches. There were several main themes. For example:
• supporting architectural flexibility to allow experimentation

with different architectural styles (e.g., [2]);
• supporting algorithmic flexibility and architectural nuances to

experiment with optimization and consistency strategies (e.g.,
Clock [11] or Prospero [5]);

• highly specific types of groupware, such as the transformation
of existing single-user applications for use by groups (e.g.,
JAMM [1]), or single-display groupware for co-located groups
(e.g., SDG toolkit [28]);

• simple development of groupware, including simple
programming paradigms (e.g., GroupKit [22]) and provision of
groupware widgets (e.g., MAUI [15]);

• investigations of particular groupware features such as
interface coupling (e.g., Suite [4]);

• investigations of metaphors for organizing groupware
applications, such as a rooms environment [10].

These toolkits emphasize particular themes in developing
groupware applications, but none of them focuses on the issues of
building groupware that performs well on real-world networks.
Performance has been looked at in considerable detail, however,
by game libraries, as described below.

2.3 Game networking libraries
Game networking libraries have much in common with real-time
groupware, and networked multiplayer games already have a
proven record in efficient networking. Multiplayer games are
similar to groupware in that they send short, frequent messages
that are generated from human interactions with the game, and
they send several different types of messages with different
requirements for reliability and latency. Thus, a reasonable
starting point for improving groupware networking is to learn
from games.

Commercial or open game networking libraries such as TNL
(opentnl.sourceforge.net), Raknet (rakkarsoft.com), or Zoidcom
(www.zoidcom.com) provide a number of techniques for
improving the performance of real-time network-based games. As
analysed by Dyck et. al., [6], these libraries provide three main
types of support:
• bandwidth reduction techniques includes methods for encoding

and compressing data, for rate and flow control, and
aggregating messages;

• reliability and ordering techniques includes multiple reliability
levels and message-level reliability;

• latency reduction techniques include streams with different
order requirements, lazy state data policies, and quickest-
delivery policies for critical data.

Although game libraries provide a great deal of control over
network performance, these libraries are not well suited to the
needs of groupware developers for several reasons. First, game
libraries are complex and difficult to learn, with large APIs and
unintuitive programming conventions. Second, game libraries
often require that application programmers understand network
concepts (such as loss patterns) or implementation details (such as
Nagle’s algorithm or socket buffer sizes) in order to use the tools.
Third, game libraries are set up for the needs of games, and often
provide capabilities (or enforce programming styles) that are not
needed or are at odds with typical kinds of groupware such as
shared editors, communication systems, or more casual games.

We now turn to GT/SD. While certain aspects of GT/SD are new,
its primary contribution is in synthesizing techniques and lessons
from previous groupware toolkits and from game libraries into a
single system that serves to improve network performance
without unduly sacrificing development simplicity.

3. OVERVIEW OF GT/SD
GT/SD is a layered toolkit for building and managing the
networking and data sharing of real-time groupware applications.

The first layer is the Groupware Toolkit (GT), a modular
communication framework supporting a typed messaging-
oriented paradigm. GT handles many of the mundane aspects of
network communication while still providing control over
communication channels, especially those that could affect the
perceived performance of groupware systems by end users.

The second layer is the Shared Dictionary (SD). It builds on top
of GT to provide a distributed shared dictionary based on a
publish/subscribe notification engine. This common data structure
lets programmers think in terms of sharing data rather than
networking. If greater control of network parameters is needed,
SD give programmers access to certain features of the GT layer.

3.1 GT: The Groupware Toolkit
GT is a toolkit (currently written in C#) that provides message-
based network connections between distributed computers. The
core abstraction in GT is the logical connexion between two
endpoints. Although the implementation has been primarily
directed towards supporting client-server architectures, other
higher-level architectures such as peer-to-peer architectures are
also easily supported using this connection model.

GT exports a notion of connection-oriented, message-based
communication between two endpoints. A logical connexion is
divided into a set of one or more channels, which are allocated by
the programmer to match the application’s needs. Channels
transport typed messages containing strings, byte arrays, objects,
session notices, and typed 1-, 2-, and 3-tuples.

GT’s modular design separates the different concerns involved in
network communication (Figure 1). At a high level, programmers
interact primarily with two classes representing client and server
communicators (Figure 1, left). These two classes provide the
bulk of the programmer-facing APIs. Client and server instances
send and receive data with other remote endpoints through
connexions. GT supports simultaneous use of a number of
communication protocols, and each established network
connection is represented as a transport. Thus, a connexion is a
logical grouping of the different transports that connect to the
same logical endpoint. A connexion uses a marshaller to
transform a message to and from a byte array, and selects a
transport for sending a message that best meets the message’s
delivery requirements. The acceptor/connector design pattern is
used to separate establishing a transport from the actual delivery
of packets [23]. Programmers can also add new behaviours by
adding, wrapping, or replacing these well-defined components
(discussed in more detail later).

GT provides four transports. First, a TCP-based transport provides
reliable and ordered delivery. Second, a UDP-based transport
provides unreliable and unordered delivery. Third, a sequenced
UDP transport provides unreliable but sequenced delivery.
Fourth, a local transport provides reliable and ordered intra-
process delivery using a shared queue, which is useful for testing.

GT applications use a client-server architecture, where the server
typically acts as a message repeater. This pattern has proven itself
in networked games over the past decade [6] as well as in
complex groupware systems [10]. The core idea is to centralize
message-passing to reduce communication overhead between
clients and guarantee all clients receive messages in the same
sequence [9]. All messages are sent to a central server, which then
broadcasts (or repeats) messages to all connected clients. We
reified this pattern as the ClientRepeater server shipped with GT.
This server can be extended, and thus acts as a starting point for
applications requiring more server sophistication – for example, a
server that processes incoming messages, or one that makes
decisions about whether to relay messages to a particular client.

3.2 GT Example
Using the above facilities, a groupware programmer can easily
create a networked groupware system. If and when performance
needs warrant, the connection can be tuned to best fit the data
needs sent over the connexion, and to choose the most appropriate
transports that fit that data.

To demonstrate the simplicity of using the GT layer, we show the
steps necessary to construct the simple chat client shown in
Figure 2 (we deliberately use trivial examples in this paper to ease
the reader’s task of going through our code examples). Our chat
client broadcasts messages to other connected clients via the
client-repeater server. Because the server broadcasts messages to
all clients including the one that sent the message, the chat client
can respond to its own sent message in exactly the same way that
other clients do. We do not show the actual UI code (which in fact
dwarfs the GT networking code).

When the user presses <enter> after writing a new chat message
in the lower text box (named messageBox in Figure 2), the client
will send this message to the client-repeater. Clients receiving this
message then append the text in the upper text box (named
transcriptBox) to form a chat transcript.

First, we create and start a GT Client instance; this is often
performed from the application constructor:

 Client client = new Client(); // create a client instance
Next, we want a channel suitable for sending and receiving chat
messages. We will use a channel supported by GT specifically for
sending string objects. We assume that we already have the host
and port IDs for the client-repeater, and that we have a unique
channelNumber that identifies a new channel. As we do not want

Figure 1: High-level design of the GT framework

to lose any chat messages, we use a predefined channel delivery
method called ChatLike (an ordered and reliable method described
in more detail later).

 IStringStream chatChannel;
 chatChannel = client.OpenStringChannel(host, port,
 channelNumber, ChannelDeliveryRequiremengts.ChatLike);

The network setup is now complete. To determine when to send
text, we hook the messageBox‘s KeyPressed event. If the key is
Enter, we send the messageBox text over the channel.

 void messageBox_KeyPressed (object sender, KeyEventArgs e) {
 if (e.KeyCode == Keys.Enter) {
 chatChannel.Send (messageBox.Text);
 messageBox.Text = "" ; }}

To receive messages, the application polls the incoming chat
channel for messages, using a timer-invoked method. When
messages are available, we update the transcript:

 void timer_Tick(object sender, EventArgs e) {
 string msg;
 client.Update(); // process all connexions
 while((msg=chatChannel.DequeueMessage(0))!=null){
 transcriptBox.Text += msg + “\n”; }}

This example illustrates how easy it is to create a network
connection in GT, but also hints at the powerful ways this
connection can be configured.

3.3 SD: The Shared Dictionary
GT allows programmers to think about their systems in terms of
data networking – what and how to send data over a channel. In
many cases, however, it is far easier for a programmer to think
about data sharing between clients – how data structures store
information for shared access – rather than how that data should
be delivered. Consequently, we developed the Shared Dictionary
(SD) to provide a distributed shared-data abstraction.

The Shared Dictionary is a centrally coordinated shared-memory
system for inter-application communication. It grew out of early
work with shared dictionaries in GroupKit [22] and TeamRooms
[10] (which they called ‘environments’), and has been replicated
as a distributed hash table in other systems (e.g., Sync [18]). The
primary programming abstraction of SD is a distributed hash
table, instantiated as a shared dictionary object. It contains
hierarchical keys represented as string paths (e.g., /person/1/name,
/person/1/age, etc.). Values can be any data or object, including
multimedia. Programmers simply set data within the hash table,
for example SD["/person/1/name"] = "Sam". A programmer can
subscribe to notifications on any changes made to keys as
specified by wildcards. For example, subscription.Pattern =
"/person/*/name" will generate a notification whenever any
person’s name changes. Notifications typically trigger
programmer-specified callbacks so they can act on these

notifications. Each participant in an SD is identified by a
globally-unique identifier that can be used as a component of an
SD path.

As a shared data structure, all keys, values, and notifications are
transparently shared across the distributed shared dictionary.
Under the covers, clients connect and send data to a central
server. Unlike GT’s ClientRepeater, this server stores the data in
its internal hash table, and may also persist the data for resiliency.
The server also tracks all clients subscriptions, and forwards data
changes only to the interested clients. Data is stored centrally so
that latecomers can be brought up to date with other clients. None
of the networking or architectural setup is normally seen by the
groupware programmer, except for a few lines of code where the
programmer indicates the location of the SD server.

SD’s design also incorporates programming abstractions that are
not only convenient for the programmer, but efficient in terms of
performance. For example, sequential lists can be a nuisance to
set up in a dictionary. SD provides a special object called a
sequenced vector, where a programmer can set items in the vector
by its absolute or relative position (e.g., SD[“/item#3”] accesses the
4th item in the 0-based list, and SD[“/item#-3”] accesses the 3rd item
from the end). For efficiency, SD sends only the changed list
items rather than sending the entire list.

SD supports several common patterns in groupware development.
First, and most basic, it behaves as shared memory. If a
programmer subscribes to all data (by subscribing to "*"), then
they can access any data posted by others. Second, it can behave
as a pure notification server [7][19], where data is propagated via
notifications and handled purely by associated callbacks. Third,
automatic notification combined with the ability to retrieve data at
any time supports a distributed Model-View-Controller (dMVC)
paradigm [11][22]. That is, a program is structured as a set of
controllers that trigger data changes to the underlying model
(typically in response to user input), views that respond to
notifications about model changes (typically by adjusting what is
seen on the screen), and the model that contains the state of the
system (which can be accessed at any time to regenerate the view,
e.g., by latecomers).

SD is built on top of the GT connection facilities. It uses GT for
network communication, but abstracts this communication away
from the programmer through the shared data structure paradigm.
It automatically maintains the data model, and handles the
client/server connections, data serialization, and data
marshalling/unmarshalling.

3.4 Shared Dictionary Example
The code below shows the same chat client in Figure 2, but
written as a distributed MVC pattern built atop SD. First, an SD-
based chat client connects to the server via a shared dictionary
object. We assume that the server has been started, and that its
host/port ids are known.

SharedDictionary SD = new SharedDictionary();
SD.Url = “tcp://” + host + “:” + port;
SD.Open();

Second, we create a subscription to the key ‘/chat/message’, a
sequenced vector whose value will contain the contents of the
entire chat transcript, i.e., the model. Note that when the value

Figure 2: The Client Chat interface

associated with this key is changed, our notification method
chat_UpdateView (the view) will be called.

SharedDictionary.Subscription messageChanges =
 new SharedDictionary.Subscription();
messageChanges.Dictionary = SD;
messageChanges.Pattern = “/chat/message”;
messageChanges.Notified += chat_UpdateView;

When the user has finished composing a new message, we append
it to the transcript value and thus update the model (i.e., the
controller).

void messageBox_KeyPressed(object s, KeyEventArgs e) {
 if(e.KeyCode == Keys.Enter) {
 SD[“/chat/message#-1”] = messageBox.Text + “\n”;
 messageBox.Text = “”; }}

When notified, we add the new chat message to the transcript (i.e., the
view is updated):

void chat_UpdateView(object s, SubscriptionEventArgs e) {
 transcriptBox.Text += e.Value; }

If a new client arrives, they can immediately update their view
simply by using the data values associated with the
‘/chat/message’ key.

While the SD code above is slightly longer than the equivalent
GT code, the differences concern simple boiler-plate one-time
setup of the shared dictionary and subscriptions. At this point, it
would be easy to create the quite complex shared data structures
typically found in real groupware applications.

4. PERFORMANCE AND DEVELOPMENT
The above examples show that building basic groupware is simple
using GT/SD. In the following sections, we detail the features of
GT/SD that provide support for real-world performance and real-
world development. In some of these features, programmers can
set parameters to exploit knowledge of the data or the network; in
other cases, the toolkit will automatically deal with performance
issues. We begin with features that improve network performance,
and then discuss development support.

4.1 Support for Latency Reduction
End-to-end network delay (latency) is a major problem for
synchronous groupware. Since visual information about other
people (e.g., the location of their avatar or telepointer) is vital in
many groupware tasks, latency makes it difficult for people to
coordinate shared actions or use deictic references [6]. Previous
work shows that close coordination is disrupted at latencies above
100ms, and is nearly impossible at delays above 500ms [14].

Reducing latency is therefore a critical issue for the groupware
developer. Previous work suggests that one of the most common
problems is that applications exceed their available network
bandwidth and fill up their own communication channel. This
behaviour is particularly evident in systems built with earlier
groupware toolkits such as GroupKit [22]. Fortunately, this
problem can often be addressed by controlling both the amount of
data sent and how that data is sent across the network. GT/SD
provides four mechanisms for controlling outgoing data: rate
control, aggregation, protocol choice, and compression.

Rate control. GT/SD provides two types of rate control. First,
communication channels that are attached to specific local data

values (e.g., the streamed tuple channel) allow the programmer to
set specific send rates in milliseconds. Second, for channels where
the system does not know what data will be sent next (e.g.,
generic text or object channels), GT/SD provides a standard
programming pattern in which all message sending is put under
the control of a send timer. Although not explicitly part of the
toolkit, the tutorials and example programs highlight the need for
rate control and the way it can be implemented.

Aggregation. Messages sent by groupware systems are often
small (e.g., position updates typically only require a few bytes),
and are generally much smaller than the maximum payload size
of a network packet. Sending each message immediately in a
single packet (often done in previous toolkits) wastes the space
needed for extra packet headers, and wastes resources needed to
process packets en route. Aggregation solves this problem by
placing multiple messages into a single packet. Aggregation
works by filling packets from an outgoing send queue: messages
are aggregated until either the maximum packet size is reached,
the queue empties, or a signal is received from the send timer.
Although aggregation slightly increases the latency of individual
messages, the savings in data volume can dramatically improve
the overall delay.

Multiple reliability options. Several distributed-systems toolkits
provide only reliable and ordered transmission using TCP (e.g.,
GroupKit, JSDT, Java RMI, C# Remoting). However, most
messages in many groupware systems are awareness messages
with no reliability requirements [6]. As a result, one of the main
causes of latency in these systems is the unnecessary TCP-level
retransmission of lost packets. For example, telepointer position
updates are very small packets sent at a high data rate. It matters
little if an update or two are lost, as the next one will contain
sufficient information to update a client’s telepointer position. In
this situation, loss is preferable to delay.

An important part of reducing unnecessary data, therefore, is in
providing appropriate reliability levels for messages, and in
particular, providing unreliable transport that does not retransmit
packets. GT/SD provides this flexibility with custom transport
mechanisms built on top of the UDP and TCP protocols.
Provision of unreliable transport is standard in game networking
libraries, but is still uncommon in groupware toolkits.

Compression. Compression is a standard technique for reducing
the size of digital data, and several game networking libraries
provide mechanisms for message compression [6]. However,
these mechanisms are either complex (e.g., requiring the
application programmer to determine the minimum encoding
required for the data ranges in the message [6]), or do not work
well with the short messages that are common in real-time
groupware (e.g., ZIP compression is not very effective on
messages that are only a few dozen bytes long).

GT provides a message compressor – GMC – that provides good
compression and requires very little programmer effort [13]. The
key observation underlying GMC is that streaming groupware
messages are often self-similar: because many of the fields in a
message are repeated (e.g., tag names or participant IDs) one
message in the stream is often very similar to the preceding and
succeeding messages. GMC uses the messages themselves as
templates, and replaces repeated sections of later messages with
pointers to the template. Our experiments show that GMC reduces

the size of simple text-based telepointer messages by more than
50% and works much better than message-at-a-time compression
techniques such as ZIP [13].

Data compression is a good example of how knowledge of the
specific behaviours and requirements of real-time groupware can
lead to improved performance without sacrificing simplicity. A
specific advantage of GMC is that it allows application
programmers to use long message formats that contain redundant
information (e.g., sending a participant’s name as well as their
numerical ID in each message). These long formats are useful for
readability and debugging. With GMC, the redundant information
is automatically removed by the compressor, ensuring that
network performance is not compromised.

4.2 Application-Level Network / QoS Control
Many groupware applications require differing delivery
requirements for particular types of data. For example, telepointer
update messages have very different requirements compared with
chat messages or model updates. Applications typically managed
these requirements by using multiple communication protocols,
such as using TCP for sending some data types and UDP for
others. However, implicitly tying delivery requirements to
particular protocols leads to brittleness, as substantial work may
be necessary to adapt the application to a new, better-suited
protocol.

GT uses a more robust approach. It allows programmers to
explicitly specify the delivery requirements to be used for
messages sent on a particular channel. Under the covers, these
delivery requirements are used to select the most appropriate
transport for sending the message. When needed, the programmer
can override these requirements on a message-by-message basis.

GT currently supports the following four types of delivery
requirements for each channel.
• Reliability describes the delivery guarantee for messages sent

on a channel: is it required that the messages be delivered, or
can they be sent on a best-effort basis?

• Ordering considers the delivery of a message with respect to
the other messages on the same channel. There are three
possibilities: unordered (delivery order does not matter);
sequenced (messages received out of order should be dropped);
and ordered (messages must be delivered in the order received).

• Timeliness describes the expected timeliness of the message:
can a new message be held back to be aggregated with other
messages? If not, should this message force sending all queued
messages on this channel, on all channels, or must it be sent
immediately before all other messages?

• Freshness. For channels configured to support aggregation, the
channel can also be configured to specify the freshness of the
messages sent on its channel: that is, whether all pending
messages or only the latest message should be sent.

Ready-made defaults are available to simplify programming,
tuned to the specific types of messages that are common in real-
time groupware [6]. We have already shown the ChatLike default
(reliable, ordered, aggregate messages, send all) in our GT Chat
example. This ChatLike delivery requirement ensures that all
messages are received in the order sent, but that brief delays are
acceptable in order to aggregate messages. Other defaults include
AwarenessLike (unreliable, sequenced, aggregate, latest-only),

CommandsLike to represent user commands or model updates
(reliable, ordered, flush-channel, all), SessionLike (reliable,
unordered, flush-all, send all), and Data (reliable, ordered,
aggregate messages, send all).

By default, SD assumes that all values require reliable and
ordered delivery. However, programmers can attach meta-data
attributes to key paths as hints to the underlying GT layer to
change quality of service. For example, one attribute that can be
attached to a path is ‘unreliable’, indicating a preference for data
updates to be sent on a best-effort basis. This makes sense for
many applications, such as a media space that sends video frames
as sequential data updates: losing the occasional frame (which
will likely be unnoticed by the end user) is preferable to flooding
the network and introducing lag.

In summary, selecting a protocol by matching its delivery
characteristics to the required delivery requirements reduces
contention for bandwidth for other protocols, and thus helps the
programmer manage network congestion.

4.3 Managing Different Types of Message
Content
Groupware applications are fundamentally concerned with
sharing information between different nodes. However, the actual
form of the data can affect program complexity and/or how it is
sent across the network.

Basic Data Types. As with most other network services, GT
supports sending and receiving of primitive information data
types, such as strings and byte arrays.

Objects. Simple data types often do not suffice. Most applications
actually exchange objects, such as telepointer positions or objects
containing data models. Forcing the developer to transform these
objects into byte arrays or strings is onerous; instead, GT/SD
provides direct support for sending application-level objects. A
customizable marshaller is used to convert these objects to and
from portable byte-based formats suitable for network transport.
GT/SD’s default marshaller uses .NET serialization, but other
marshalling schemes are easily supported.

Large Objects. GT also provides a special marshaller for handling
situations where the resulting byte format is too large for the
underlying network’s capacity. For example, UDP datagrams
have a theoretical limit of 65536 bytes, although some operating
systems limit this even further to 8192 bytes. Groupware
programmers will often run into this limit when sending common
data such as pictures or video frames. We solve this problem with
a large-object marshaller that automatically splits objects into
appropriately sized packets. Thus, groupware applications that
send large objects can be built without extra coding.

4.4 Multiple Messaging Paradigms
When a message or object is received over the network, an issue
that developers must deal with is how the message is presented to
the program. Ideally, the method used will fit well within the
programming paradigm used in the system. It is thus the
responsibility of the groupware toolkit to communicate the
message, object or updated value to the application in an
appropriate way. GT/SD supports a combination of the
approaches: polling, event-driven, data storage, and
publish/subscribe. These correspond to the well-known push, pull,

and lazy-update paradigms for sharing information. Since each of
these approaches are appropriate in different groupware
situations, GT/SD does not demand any particular paradigm.

GT Polling. The first method is polling (used in the GT chat
example above). The application regularly checks to see if a
channel has available content; if any exists, it is retrieved.

GT Events. The second method is event-based, where the toolkit
automatically triggers an event when a message is received on the
channel. This invokes a callback specified by the programmer. If
our GT chat example used an event-driven interface, we would
add an event listener when creating the chat stream. The method
chats_MsgReceived would then perform the message dequeueing
seen previously. No timer is needed:

chatChannel = client.OpenStringChannel(host, port, …);
chatChannel.MessagesReceived += msgsReceived;

SD Data Storage. The third method stores the value or object
received over the network by updating the data structure held by
the Shared Dictionary. These values are retrieved by accessing the
data structure directly.

SD Publish/Subscribe. Finally, the publish/subscribe paradigm
allows the programmer to selectively subscribe to data patterns
held by the shared dictionary. This is valuable for several reasons.
First, unsubscribed data is not sent to that particular client, which
relieves both network and memory load. Second, subscriptions
offer a very easy way to implement a notification server and/or
the dMVC pattern. Publish methods are equivalent to a controller,
while subscribe callbacks are usually equivalent to the view.

These mechanisms illustrate the design goal of providing
flexibility where it is needed. GT’s core functionality provides
two perspectives on providing multiple message paradigms, each
oriented towards building either the server side or client side of a
groupware application. Our server-side perspective is entirely
event-driven, because servers generally concentrate on
minimizing the response latency between a message being
received, processed, and the dispatching of any result arising from
the message. On the other hand, our client-side perspective offers
a combination of approaches using event handlers or polling.
Similarly, SD’s server uses somewhat more intricate methods to
decide what messages to forward to clients (i.e., corresponding to
subscriptions). However, its clients can use either data storage, or
publish/subscribe, or both.

4.5 Debugging Support
Debugging a distributed system such as a groupware application
is difficult because the execution state is defined by the state of
multiple nodes. Recreating an erroneous state may depend on
specific orderings of how messages were received and processed
by the individual nodes. Any slight perturbation in the
communication patterns, such as might occur when interrupting a
node with a breakpoint, may mask the bug entirely (that is, a
heisenbug). Even when the erroneous state can be recreated, it is
often only possible to approach the situation from a post-mortem
perspective: it is normally impossible to coordinate a
simultaneous suspension of the other nodes, where the remainder
of the system will continue to execute with attendant changes to
communication patterns.

Pedersen and Wagner studied debugging parallel programs in
their in Millipede system [20]. Their key insight was that certain
classes of parallel or distributed systems can be reduced to
debugging sequential programs. The proviso is that the program
executed by a node is deterministic in response to its incoming
network traffic. In such situations, a program can be debugged as
an independent process simply by replaying the received
messages.

GT/SD supports this Millipede-style packet recording and replay,
and requires no changes in the applications. If the programmer
wants this to occur, he or she merely sets a special debug
environment variable. On startup, GT client and server processes
check this variable for one of three values: “record” to record the
incoming and outgoing messages for this session to a file,
“replay” to replay the messages from a file, and “passthrough” to
run as normal. When replaying, the program runs in complete
isolation from any GT-related communication, and no GT-related
traffic is sent live to the network. Since the program runs in
isolation, developers can use their traditional tools for debugging
sequential programs, such as using breakpoints for in vivo
examination of their system.

Our debugging support may not exactly reproduce the recorded
behaviour when programs are non-deterministic for reasons other
than GT communication (e.g., keyboard and mouse input or
timeouts). There are, however, workarounds for these cases, such
as integrating the sources of the non-determinism into the GT-
Millipede framework.

4.6 Testing Support
Testing and monitoring of applications is done via various GT/SD
tools. First, GT includes a local transport that channels all
communication through a shared queue; this transport is helpful
for isolating networking problems, for creating unit tests, as well
as for GT-Millipede replay. Second, GT includes a statistical
monitoring package. It produces graphs of various statistics, such
as the numbers of messages and packets both sent and received,
average round-trip latency, and per-protocol statistics. Under the
covers, GT is self-instrumenting, where it monitors activity
through its events mechanism. Third, SD includes several tools
for monitoring and manipulating the contents of a shared
dictionary, and for performing speed tests. Programmers (and end
users) can optionally see the contents of the shared dictionary as it
is being updated, and can even add, delete, or change values
through an external tool to see what effects it will have.

4.7 Extensibility and Experimentation
We wanted GT/SD to be extensible for two reasons. First, we
know that we will want to add new features to it as we gain
experience developing groupware, especially applications that are
quite different from those we are now working on. Second, we are
researchers, and we want GT/SD to serve as an experimental
platform that will allow us to prototype and test new toolkit
features.

GT’s modular design permits adding or modifying behaviour by
replacing or wrapping different components. Indeed, we have
implemented significant portions of GT’s functionality simply by
wrapping existing components:
• the GMC message compressor is implemented as a wrapper

around a marshaller;

• the GT-Millipede functionality is implemented by wrapping
transport, acceptor, and connector objects;

• we have implemented variants of the leaky-bucket and token-
bucket traffic-shaping algorithms [27] as a wrapper around a
transport;

• we have implemented a custom marshaller for one application
to produce minimal-sized messages, with no attendant effects
on the application;

• the ability to wrap components helped us investigate the effects
of delay on group performance [26].

GT also exports a variety of fine-grained events to provide
notification of network events. These include the creation and
removal of connexions and transports, of messages being received
and sent, of ping round-trip messages. We have used these events
to provide diagnostic functions, and to provide application-level
disconnects such as when a repeated number of pings fail.

5. EXPERIENCES WITH GT/SD
GT/SD stakes out the middle ground of groupware toolkits. For
those building prototypes, its basic networking and shared data
facilities likely suffice: simple things are kept simple. For those
who need to build robust Internet applications, it provides control
over vital aspects of groupware networking, debugging and
experimentation with only a modest amount of extra effort by the
programmer.

Our earlier example of a chat system shows how simple GT and
SD application development can be. However, the toolkit can be
used for much more complex systems. Using GT, we have built
several group games, a distributed chalkboard application, and a
screen-sharing system. Similarly, SD has been used for many
different applications – for example, the powerful Shared
Phidgets project that uses dMVC to collect, store and propagate
values between hardware devices, as well as visualize sensor and
actuator traffic between them [17].

The examples below illustrate other projects in somewhat more
detail. While they are not an empirical proof that GT/SD is

‘easier’ to program than other systems, or that it offers better
performance, we do claim that our experiences have been positive
in both regards.

GT Example: Real-Time Chess. As a more concrete example,
Real-Time Chess (Figure 3) is a fast-paced multiplayer game
based on the classic board game [12]. While most of the rules of
chess still apply, any number of players can join, any player can
move any of their team’s pieces, a king can move into check, and
movement of pieces is limited only by the players’ speed in
manipulating the interface and the network delay to the server.
The result is a very fast chess variant.

RTChess was built using two GT channels. The first channel
carries awareness and presence information, such as telepointers,
and is configured with AwarenessLike delivery requirements; this
channel was updated every 0.1 seconds. The second channel
carries game commands, such as join-game, select-piece, or
move-piece, and is configured with Commands delivery
requirements. We implemented an earliest-arrival server to
arbitrate commands: clients make requests of the server, and the
server either sends the resulting commands to the group, or sends
refusals to individual clients (e.g., the piece requested is no longer
in play).

To minimize network latency, we implemented a custom
marshaller to send minimally-sized packets using 317 lines of
code. Typical game messages are expressed as a dozen bytes or
less, as compared to a minimum of 300 bytes when using the
.NET Serialization-based marshaller. The marshalling knowledge
is entirely contained within the RTChess marshaller, and could be
substituted with the .NET Serialization marshaller with no effect
on the rest of the application.

SD Example: The ME-dia Space. Media spaces contain an
always-on video connection between people. We constructed the
ME-dia Space [29], shown in Figure 4, which connects a
telecommuter working at home with his work office. People
would then drop into the work office to talk to him. It sends
streaming video frames, sensor data (to signal when people enter

Figure 4: ME-dia space home node, built using the SD. The
distant person is visible in the large video, while the local person’s
sent video is mirrored at the lower left to provide feedback.

Figure 3: RTChess, built with GT. Ten players are represented
with telepointers and name tags. Players jareddd and oli2 are
moving pieces; the black rook has just been moved.

the office), actuator data (to remotely open/close the work office
door), and a text chat system (voice is handled via the Skype
API). While it generally uses SD to share data, it also uses the GT
layer to transmit video frames in a performance-efficient way.

6. DISCUSSION
In this section we discuss several questions that arise from our
experiences with the GT/SD toolkit, including issues of
generalization, flexibility, and design rationale for our approach.
Are performance and simplicity mutually exclusive?
Earlier we characterized previous toolkits in terms of a tradeoff
between simplicity and power – but these two qualities are not
necessarily an either-or proposition. Although the toolkits that
inspired GT/SD have focused on either network performance
(e.g., game libraries such as OpenTNL) or simplicity (e.g.,
GroupKit [22]), there is no real reason that systems cannot
provide both. A toolkit should simplify at least some otherwise-
complex operations: even game toolkits, which we characterize as
‘powerful but difficult’, can be seen as providing simpler APIs
than the raw socket implementations that they are built on. Our
goal in GT/SD is to provide important performance capabilities
without increasing programmer effort to the point where
researchers and students would be unable to quickly and easily
build prototypes. We attempt to achieve this in three ways: first,
by building certain capabilities in as automatic features (such as
the SD layer, or GT’s compression module) that improve
performance without the application programmer having to do
any extra work; second, by building the toolkit around patterns
that avoid common design errors (e.g., the error of sending
telepointers at a high rate through TCP [6]); and third, by
abstracting the design in ways that are easier for groupware
programmers to understand and optionally extend (e.g., providing
QoS defaults such as ‘chat-like’ or ‘awareness-like’, rather than
requiring knowledge of different network transports).
Why focus on the qualities of performance and simplicity?
Our main motivation in developing GT/SD was that groupware
prototypes built from existing toolkits did not work well when
deployed on real-world networks. Therefore, our goal was to
provide a toolkit that would be as simple (or nearly so) as earlier
examples, but that would allow researchers and developers to test
groupware in realistic network situations. Groupware toolkits in
general have tended to focus on a fairly narrow set of concerns –
which is understandable, given the difficulty and effort needed to
produce and maintain a robust and usable library. Therefore, we
chose to focus on network performance and development
simplicity at the expense of other possible features and qualities
such as flexibility in architectural style, user-interface coupling,
collaboration transparency, or consistency management.
Additional features will be added in future (as described below),
but we plan to maintain a relatively small set of core functionality
that concentrates on our main goals.
In support of this approach, earlier reviews (e.g., [23]) suggest
that utility layers and middleware should reduce their feature
count, since toolkit designers are rarely able to anticipate the
different needs faced by application programmers. Focusing on
network performance may therefore be a more general approach,
since most real-time groupware systems must deal with
performance issues. In contrast, issues of architectural style or
data consistency are often highly application dependent. Tools

should be available for programmers to deal with these issues, but
they can be dealt with through additions to the toolkit or separate
modules.
What types of groupware are best suited to GT/SD?
The design of GT/SD means that the toolkit’s strengths can be
seen most easily in a particular class of groupware – that is,
distributed client-server systems that send a mixture of message
types (i.e., mostly awareness messages with some transactions).
In this design we are following the lead of networked-game
libraries, who have validated this architectural style over several
years. GT on its own best supports groupware requiring efficient
transfer of data, while SD works well with either dMVC or
notification-based styles. The most common application types that
fit these constraints include communication systems (e.g., instant
messaging or awareness systems), systems with shared visual
workspaces (e.g., drawing and design applications), and real-time
multi-player games (e.g., real-time chess as described above).
There are limits in the current version of GT/SD, however, and so
not all applications in each of these genres are suitable for the
toolkit. First, GT/SD does not provide streaming video or audio
transmission, so real-time conferencing must be handled out of
band. Ideally, we would like to add another facility to GT called
'stream-like' which could support this type of data. Second, GT
does not yet supply a consistency-management system, which
means that shared editors built with GT/SD must have only minor
data dependencies (in our experience, however, the ‘social
locking protocols’ that are easy to implement through awareness
support provide sufficient consistency maintenance for most
shared-workspace systems [9]). Third, GT does not provide the
types of game tools (e.g., 3D support, level builders, cheating
detectors) that are seen in other gaming libraries, so the games
built with GT/SD are more likely to feature simpler graphics and
are more likely to be explorations of new game ideas (such as
real-time chess) rather than production systems. Although GT/SD
is primarily designed for real-time and distributed groupware,
however, it can be used to build asynchronous systems, co-located
groupware, and intermediate forms between these endpoints. For
example, we are using the toolkit to connect two tabletop
groupware systems, making a hybrid of co-located and distributed
interaction.

7. CONCLUSIONS AND FUTURE WORK
We have introduced the GT/SD toolkit, a new toolkit that
provides good real-world network performance while maintaining
programming and development simplicity. The base GT layer
provides core networking and development services, and the SD
layer builds onto GT to provide a simple yet powerful
programming abstraction for rapid prototyping. GT/SD
implements ideas from previous groupware toolkits and from
game libraries that help solve problems of network delay, quality
of service, rapid development, flexibility, and testing.

Our experiences with the toolkit suggest that we have succeeded
in meeting our design goal – that it should be easy to build
groupware that performs well on real-world networks. GT/SD
dramatically simplifies network setup and data sharing, provides
simple access to vital aspects of network control, and still gives
full power to application developers when needed.

GT/SD solves many problems facing groupware developers, but
does not address all issues – many additional groupware

capabilities and features could be added to the toolkit. We plan
two streams of further work. First, we will improve the core
networking capabilities of GT/SD and add further application-
level networking techniques, deeper QoS support, firewall
traversal, and more comprehensive network monitoring.

Second, we will add several modules that provide other important
groupware services. Included in this list are features such as
application-level concurrency control [9], groupware widgets
[15][22], real-time protocols for audio and video, persistence and
disconnection support, data consistency and convergence
techniques, and deployment of GT/SD to mobile platforms.

Acknowledgements
Several people have worked on versions of GT and SD, including
Dane Stuckel, Mike Boyle, Chris Fedak, Mark Watson, and
Adrian Reetz. We gratefully acknowledge support from NSERC
and the NECTAR research network.

Software, documentation, and examples available at
hci.usask.ca/research/gt/ & grouplab.cpsc.ucalgary.ca/cookbook/

REFERENCES
[1] Begole, J., Struble, C., Shaffer, C. & Smith, R. Transparent

sharing of Java applets: A replicated approach. Proc. ACM
UIST, 55-64, (1997)

[2] Chung, G. & Dewan, P. Towards dynamic collaboration
architectures. Proc. ACM CSCW, (2004)

[3] Crowley, T., Milazzo, P., Baker, E. & Forsdick, H.
MMConf: An infrastructure for building shared multimedia
applications. Proc. ACM CSCW, (1990)

[4] Dewan, P. A tour of suite user interface software. Proc. ACM
UIST, 57-65, (1990)

[5] Dourish, P. Using metalevel techniques in a flexible toolkit
for CSCW applications. ACM TOCHI. 5(2), 109–155 (1998)

[6] Dyck, J., Gutwin, C., Graham, T.C.N. & Pinelle, D. Beyond
the LAN: Techniques from network games for improving
groupware performance. Proc. ACM GROUP, 291–300,
(2007)

[7] Fitzpatrick, G., Kaplan, S., Mansfield, T., Arnold, D. &
Segall, B. Supporting public availability and accessibility
with Elvin: Experiences and reflections. Comp. Supp. Coop.
Work, 11(3-4), 447–474, (2002)

[8] Greenberg, S. Toolkits and interface creativity. J.
Multimedia Tools and Applications, 32(2), 139-159, (2007)

[9] Greenberg, S. & Marwood, D. Real time groupware as a
distributed system: concurrency control and its effect on the
interface. Proc. ACM CSCW, 207-17, (1994)

[10] Greenberg, S. & Roseman, M. Using a Room Metaphor to
Ease Transitions in Groupware. In Sharing Expertise:
Beyond Knowledge Management. (M. Ackerman, V. Pipek,
V. Wulf, Eds.) MIT Press, (2003)

[11] Graham, T. N., Urnes, T. & Nejabi, R. Efficient distributed
implementation of semi-replicated synchronous groupware.
Proc. ACM UIST, 1-10, (1996)

[12] Gutwin, C., Barjawi, M. & de Alwis, B. Chess as a twitch
game: RTChess is real-time multiplayer chess.
Demonstration at ACM CSCW, (2008). (Summary at
hci.usask.ca/publications/2008/cscw-demo/summary.pdf)

[13] Gutwin, C., Fedak, C., Watson, M., Dyck, J. & Bell, T.
Improving network efficiency in real-time groupware with
General Message Compression. Proc. ACM CSCW, 119–
128, (2006)

[14] Gutwin, C., Benford, S., Dyck, J., Fraser, M., Vaghi, I. &
Greenhalgh, C. Revealing delay in Collaborative
environments, Proc. ACM CHI, 503-510, (2004)

[15] Hill, J. & Gutwin, C. The MAUI toolkit: Groupware widgets
for group awareness. Comp. Supp. Coop. Work, 13(5-6),
539-571, (2004)

[16] Kendall, S.C., Waldo, J., Wollrath, A. & Wyant, G. A note
on distributed computing. Tech. Rep. TR-94-29, Sun
Microsystems Inc., (1994)

[17] Marquardt, N. & Greenberg, S. Distributed physical
interfaces with Shared Phidgets. Proc. ACM Tangible and
Embedded Interaction, 13-20, (2007)

[18] Munson, J. & Dewan, P. Sync: A Java Framework for
Mobile Collaborative Applications, IEEE Computer,
30(6):59-66, June (1997)

[19] Patterson, J.F., Day, M. & Kucan, J. Notification servers for
synchronous groupware. Proc. ACM CSCW, 122–129,
(1996)

[20] Pedersen, J.B. & Wagner, A. Sequential debugging of
parallel message passing programs. Proc. Commun. in
Comput. (CIC), 55–61, (2000)

[21] Rodden, T., Mariani, J. A. & Blair, G. Supporting
cooperative applications. Comp. Supp. Coop. Work, 1(1-2),
41–67, (1992)

[22] Roseman, M. & Greenberg, S. Building real-time groupware
with GroupKit, a groupware toolkit. ACM TOCHI, 3(1), 66–
106, (1996)

[23] Saltzer, J., Reed, D., and Clark, D. End-to-end arguments in
system design. ACM Trans Comput. Syst. 2(4):277–288,
(1984)

[24] Schmidt, D.C. Acceptor and connector: A family of object
creational patterns for initializing communication services.
Pattern Languages of Program Design 3. Addison-Wesley,
(1997)

[25] Schneiderman, B. Creativity support tools: A grand
challenge for HCI researchers. In Engineering the User
Interface (M. Redondo, Ed.), Springer, (2009)

[26] Stuckel, D. & Gutwin, C. The effects of local lag on tightly-
coupled interaction in distributed groupware. Proc. ACM
CSCW, 447–456, (2008)

[27] Tanenbaum, A.S. Computer Networks. Prentice-Hall, 4th
edition, (2003)

[28] Tse, E. & Greenberg, S. Rapidly prototyping single display
groupware through the SDGToolkit. Proc. 5th Australasian
User Interface Conference, Australian Computer Society
Inc., 101-110, (2004)

[29] Voida, A., Voida, S., Greenberg, S. & He, H. Asymmetry in
media spaces. Proc. ACM CSCW, 313—322, (2008)

[30] Wolfe, C., Smith, J., Phillips, W.G. & Graham, T.C.N. A
model-based approach to engineering collaborative
augmented reality, in Engineering of Mixed Reality, (E.
Dubois, P. Gray & L. Nigay, Eds), Springer, (2009)

