
Promoting Creative Design through Toolkits

Saul Greenberg
Department of Computer Science, University of Calgary

Calgary, Alberta T2N 1N4 CANADA
saul.greenberg@ucalgary.ca

http://www.cpsc.ucalgary.ca/~saul

Abstract—Computer science academics and professionals
typically consider their contributions in terms of the
algorithms, applications, and techniques that they develop. Yet
equally important are the tools computer scientists provide to
others, including toolkits, libraries, APIs, SDKs and
frameworks. Such tools radically shape how most developers
think about possible solutions within an unfamiliar problem
space. In this keynote, I describe how interface toolkits for
novel application areas enhance the creativity of ‘average’
developers. By removing low-level implementation burdens
and supplying appropriate building blocks, toolkits give people
a language to think about new interface genres, which in turn
allows them to concentrate on creative designs. As a
consequence, programmers can rapidly generate and test new
ideas, replicate and refine ideas presented by others, and
create demonstrations for others to try. To illustrate, I describe
example toolkits we have built and how people have leveraged
them to create innovative interfaces.

Keywords-toolkits, creativity, interface design.

I. THE COMPUTER PROGRAMMER AS DESIGNER
Computer programmers are often charged with designing

– at least in part – the user interface of a product. While
some programmers have solid design experience and are able
to produce quite creative interfaces, most average
programmers do not. Consequently, many programmers take
the path of least resistance. They rely on their existing
knowledge of how things are done in a particular genre, and
use standard tools to mimic current styles. For example, most
programmers depend upon the standard user interface
widgets and controls available in a development environment
to create an interface that (more or less) looks like other
graphical user interfaces.1

Yet today’s world is full of new technologies that can go
far beyond standard windows/icons/mouse interface. The
problem is that the average programmer can rarely use these
technologies as part of one’s design. Even when the
programmer wants to do something different, he or she often
has to work around system limitations and program at a very
low level. Because this type of programming is costly, it
often goes undone or it becomes a poorly functioning hack.
Because programmers lack appropriate design training and
only have conservative tools, most of the designs they
produce are uninteresting variations of interfaces that have

1 A full version of this paper, replete with examples, can be found in [1].

been around for decades. The consequence is that innovative
interface design is stifled.

II. INTERFACE TOOLKITS AS A CREATIVE MEDIUM
Interface toolkits – software libraries, APIs, SDKs,

frameworks, and supporting architectures – are one way out
of this dilemma, for they make creative idea exploration
simple to do in a particular domain. That is, we as a
community must develop toolkits appropriate for everyday
programmers, where such programmers can use them to
develop their own creative ideas in a new domain. By
appropriate, I mean that a good toolkit should (see also [2]):

• be embedded within a familiar platform and
language in common use so that people can leverage
their existing knowledge and skills;

• remove low level implementation burdens;
• minimize housekeeping and other non-essential tasks
• encapsulate successful design concepts known by

the research community into programmable objects
included with little implementation effort;

• present itself through a concise API that encourages
how people think about that domain;

• make simple things achievable in a few lines of
code, and complex things possible.

If we remove low-level implementation burdens and supply
appropriate building blocks, we provide people a language to
think about design [1], which in turn allows them to
concentrate on replicating and varying designs in creative
ways.

Perhaps surprisingly, the benefit of good toolkits is much
more apparent in non-programming communities. Consider
hypertext tools. In 1987, Apple produced HyperCard. Its
building blocks were simple: a fixed-sized card that could be
linked with other cards, bitmap images that could be drawn
onto cards, a few UI controls such as buttons and form fields,
a direct manipulation development environment, and (for
‘advanced’ use) a rudimentary scripting language. Yet that
was enough to cause an explosion of creativity, where non-
programmers (especially teachers) created a rich and varied
repository of hypertext applications. Later, HTML combined
with a browser’s ability to transparently handle networking,
spread hypertext page and site authoring to the masses.
Today, designers using powerful authoring tools such as
Adobe Flash to create a plethora of interactive, multimedia
and highly animated web pages that have considerably
elevated expectations of web browsing experience. Wikis,
blogs and social networking sites have trivialized easy

Greenberg, S. (2009) Promoting Creative Design Through Toolkits. In Proceedings of the Latin-American
Conference on Human-Computer Interaction (CLIHC'09) CPS, 2 pages, November 9-11.

construction of template-based but still quite personal web
sites. All these tools embody the above-mentioned criteria,
and wide-spread creativity happened as a consequence.

III. OUR EXPERIENCES
In our group’s investigation of the human and technical

factors of ‘unconventional’ interface genres over the years,
we recognized a recurring pattern, illustrated in Figure 1. that
led to our appreciating the critical importance of good tools
to the creative process.

1) Human factors perspective. Our initial goals were
typically oriented towards human factors. Essentially, we
wanted to understand how people interact when using a
particular style of yet-to-be developed application. We
would then generalize this understanding to inform other
designs (Figure 1a).

2) Initial prototype. Next, we would set about building
the first version of the application. This typically involved
huge effort as measured by lines of code, time, learning,
failed attempts, debugging, and so on. In spite of this effort,
the result was often a fragile and rudimentary system
(Figure 1b).

3) Prototype testing. We would then have people try out
this prototype. Because it was an early design, we often saw
major usability problems that required fixing (Figure 1c).

4) Design blocked for iterative prototyping. To fix
these usability problems, we would iteratively redesign the
prototype. Yet this often proved impractical. The prototype
code was frequently too complex to change, or the system
itself was too fragile. Redesigning from scratch, while
possible, was onerous due to the time involved (Figure 1d).

5) Retrenchment: building a toolkit. We would then
realize that—in the long run—iterative prototyping would
be far easier if we took the time to build a robust toolkit.
Thus we would set ourselves a new technically-oriented
goal, where we would delve into the challenges of
understanding and building this toolkit and its
accompanying run-time architecture. This often meant that
defering work on our main human factors goal (Figure 1e).

6) The payoff: rapid prototyping. After building the
toolkit, we would release it to our internally community.
There would then be an explosion of activity. Those with

core interests in the human factors challenges would rapidly
develop and test a variety of interaction techniques and
applications. Those with interests lying elsewhere would
often create innovative applications as a side project just to
satisfy their own curiousity (Figure 1f).

7) Testing, improvement and dissemination. Because
we would develop the toolkit and applications side by side,
we would bring well-tested good application ideas back into
the toolkit as building blocks that could be trivially included
in other applications. Of course, both prototype testing and
our experiences in rapid prototoyping fed back into our
understanding of the basic human factors behind design
(Figure 1g), thus acheiving our original project goal.

The keynote talk will briefly summarize the experiences
my research group has had with several toolkits that we
developed over two decades. Samples will be selected from
various domains including: real time distributed groupware,
single display groupware, physical user interfaces, and/or
proximity-based interfaces. These experiences serve as case
studies that show how toolkits helped promote creativity in
rapid prototyping and in idea replication and variation.

As researchers, we can promote creativity in innovate
areas through several means.

• Package the good lessons learnt from ‘one-off’
system design as reusable components (or as a clean
API) within a toolkit.

• Make them easy to learn by supplying
documentation, examples and tutorials.

• Disseminate these tools within our community.
• Recognize toolkit creation as an academic

contribution.
• Encourage the inclusion of these tools within

mainstream development tools.

REFERENCES
[1] Greenberg, S. (2007) Toolkits and Interface Creativity. Journal

Multimedia Tools and Applications (JMTA), 32(2):139-159. (Special
Issue on Groupware) Springer, February.

[2] Olson, D. Evaluating User Interface Systems Research. Proc. ACM
UIST (2007).

[3] Whorf, B. L. Language, Thought and Reality (ed. J. B. Carroll).
Cambridge, MA: MIT Press. (1956)

a) human factors

b) 1st prototype

c) user testing

d) design blocked

e) toolkit

g) test + improve

prototype
prototype

prototype
prototype

prototype
prototype

prototype
f) prototype

a) human factors

b) 1st prototype

c) user testing

d) design blocked

e) toolkit

g) test + improve

prototype
prototype

prototype
prototype

prototype
prototype

prototype
f) prototype

prototype
prototype

prototype
prototype

prototype
prototype

prototype
f) prototype

Figure 1. A recurring pattern: How toolkits promote rapid prototype designs.

