
Tracking Visual Differences for Generation and Playback
of User-Customized Notifications

Saul Greenberg and Michael Boyle

Department of Computer Science, University of Calgary
Calgary, Alberta Canada T2N 1N4

E-mail: {saul, boylem}@cpsc.ucalgary.ca

ABSTRACT
Notification systems alert individuals or groups of changing
information that is of interest to them. The problem is that it
is difficult for people to gather notifications of personal
interest; they must either rely on the generic offerings of the
information provider, or construct their own services
through coding. In this paper, we contribute a simple yet
effective method that lets people create custom notification
elements by image assembly, where notifications are trig-
gered through visual differencing. First, after finding in-
formation of interest on a web page, the person constructs a
visual collage selected from regions on the page. These are
regions of the fully rendered bitmap view of the page i.e.,
they are not coupled to the page’s underlying HTML
markup. The composite image created from this collage
will be used to assemble a notification of relevant changes
to that web page. Second, the person specifies one or more
regions on the page that will be compared for visual differ-
ences over time, and how often the page should be revisited
to check for these differences. The system will automati-
cally generate a notification (the composite image plus a
title and timestamp) when differences go beyond a user-
provided threshold. Finally, the person can view the notifi-
cations in several ways: as only the most recently changed
version (to illustrate current state), or as an image history
that can be either browsed individually or played back as a
continuous video stream (to see changes over time).

ACM Classification: H5.2 [Information interfaces and
presentation]: User Interfaces. - Graphical user interfaces.

General terms: Design, Human Factors

Keywords: Notifications, information customization.

INTRODUCTION
Notification systems let people selectively subscribe to per-
sonally interesting and dynamically changing information
sources. The system then delivers relevant changes of that
information – notifications – to those people. The actual
information can be quite varied, with typical examples in-

cluding stock prices, currency values, weather reports, traf-
fic conditions, on-line status of people, new postings to
newsgroups, sports reports, flight status, upcoming meeting
appointments, webcam snapshots, and so on.
Many of these systems – especially the commercial ones –
rely on a content provider to supply notifications. Often,
however, these content providers offer only a few varieties
of notifications. When a person’s interests do not match the
offerings available, they are essentially excluded from the
service. This mismatch will not disappear over time be-
cause most content providers are motivated by commerce
and mass market needs vs. individual needs and idiosyncra-
sies.
Even when a person finds matching content, problems re-
main. Content providers will charge for notifications – fees,
advertisements, requirements for account creation (ex-
ploited for mailing lists), restrictions to a particular service
(e.g., schedule alerts tied to the provider’s calendaring sys-
tem) – that may deter a person from subscribing to that ser-
vice. In addition, the provider may not deliver notifications
at a rate or in a form that satisfies the demands of that per-
son (e.g., MSN currently delivers weather warning at pre-
specified times vs. when the weather changes).
In contrast, several systems – mostly research ones – allow
people to create their own custom notification elements
[2,3,5,7,14,18]. Yet creation is usually restricted to techni-
cally savvy programmers. They need to know how to tap
into web services or other raw information sources; they
need to parse this information; they need to program behav-
iors; they need to build specialized interface that displays
the notification data in the end system. While custom cod-
ing is a powerful tool for prototyping and demonstrating
different types of notifications, it is clearly not an option for
the vast majority of people.
Consequently, our research goal was to develop a method
that would let people (who are not programmers) generate
their own custom notification elements. We wanted these
people to be able to easily specify:
• an information source to be tracked, where that informa-

tion appears in some form on a standard web page;
• the criteria for determining when changes in these

sources are significant enough to warrant notification;
• how this information is be presented visually; and
• several methods for reviewing the notification history.
The remainder of this paper details how this goal was Ci

Cite as:
Greenberg, S. and Boyle, M. (2005) Tracking Visual Differences for
Generation and Playback of User-Customized Notifications. Report
2005-777-08, Department of Computer Science, University of Calgary,
Calgary, Alberta Canada. T2N 1N4. April.

achieved. To preview our approach, a user marks regions
of interest on a web page, which are automatically stored as
bitmaps. The system then periodically revisits that page at a
user-specified time interval to see if the current regions
visually differ from the stored ones by a user-determined
threshold. If they do, the system generates and delivers a
notification, which is itself automatically assembled as a
collage of user-specified image regions from that page. The
user views this notification in a form that best fits the type
of information contained within it: a single snapshot, a
browsable history of consecutive snapshots, or even a play-
able video stream.

RELATED WORK
Information sources for notifications. Several well-known
methods are available for producing and/or publishing in-
formation that will eventually become a notification. First,
various applications have built-in methods to generate noti-
fications; a common example is a meeting calendar that
publishes upcoming meeting times. Second, many commer-
cial content providers now let people subscribe to ‘alerting
services’, e.g., Microsoft’s alerting service offers a myriad
of alerts from various 3rd party companies [10]. Third, most
research-based notification systems let programmers cus-
tom code hooks into their own information source. For ex-
ample, users of the Notification Collage can code new mul-
timedia notification elements as COM objects, which are
registered and dynamically incorporated into the running
system [7,14]. Similarly, users of MessyBoard can change
its run-time behavior through Python scripting [3,4]. Fi-
nally, standards are being developed for alerts, where the
information source can be accessed and interpreted by any
system. For example, RSS is a set of XML elements for
content syndication and distribution that are widely used by
many news providers [15]. An RSS XML document de-
scribes channels of items and the URLs by which these
items are retrieved. Yet, all these systems limit user cus-
tomization of an information source in one way or another.
The information source is fixed in some. Others require
coding to add information sources or to interpret them and
“translate” them into a form already recognized by the sys-
tem. Invariably, most systems require proprietary software
to generate and interpret the notifications.
Notification servers. These distributed computing systems
provide the technical infrastructure for routing content from
an information source to the users who want to be notified
about it. In a typical scenario, an ‘information producer’
monitors the state of the source and sends updates about
changes to this state to a centralized notification server.
Consumers are notified whenever updates arrive, and can
present that information in any form they wish. On the
commercial side, some notification servers are inextricably
linked to the software generating and displaying the notifi-
cations, while others are proprietary / paid services avail-
able only to specific content providers. However, many
research systems work as independent, repurposable ser-
vices. For example, with the Elvin Event Notification Ser-
vice, producers publish notifications to Elvin as simple data
types with named attributes, while consumers subscribe to
sets of notifications using Boolean subscription expressions

[5]. The Collabrary shared dictionary system allows arbi-
trary multimedia data to be published, where it is stored in a
central repository [1]. Because of this storage, notifications
in the Collabrary can be delivered to subscribers not only
when they occur but also at a later time (e.g., as updates
received when a subscriber ‘logs on’ to the service).
Notification displays. Many alternatives for how a notifica-
tion is displayed to the user have been previously offered
and explored. One approach leverages the capabilities of
existing messaging applications. For example, a notification
can be wrapped as an email message, which is then deliv-
ered and presented as conventional email message in the
user’s inbox. Similarly, it can be delivered as an SMS mes-
sage to the user’s mobile phone. Another display approach
recognizes that each kind of notification has unique charac-
teristics, and thus should be presented in its own interface.
Examples include tickertapes and alerting icons [5], ‘toasts’
that appear and disappear on the display (e.g., as used in
nearly all popular email and instant messenger applica-
tions), a series of windows that progressively reveal detail
as they are queried in depth [2], and even as physical appli-
ances [8]. A third approach aggregates the display of multi-
ple notifications inside a container: e.g., a side bar [2]; a
collage of visual elements [7,14,3,4,18]; or a tickertape that
cycles through multiple notifications displaying each one
by one [5].
Custom notifications. By customization, we mean that us-
ers can configure notifications to come from an arbitrary
information source, where they also have considerable free-
dom to indicate how notifications are to be displayed. Some
systems let users create arbitrary notifications as long as the
information source belongs to a (usually very restricted) set
of well-known data types. For example, both the Notifica-
tion Collage [7,14] and Messyboard [3,4] let users publish
arbitrary text, pictures and web links as notifications by
manually dragging and dropping information onto the inter-
face1. As previously mentioned, when the information
source is not one of the well-known types, further customi-
zation requires scripting or programming [2,4,7,14,]. This
requirement makes customization generally out of the reach
of most users. A further caveat is that some systems cannot
incorporate these custom notifications without recompila-
tion, and that many systems (especially commercial ones)
disallow arbitrary alerting services to be added by the gen-
eral public.
Custom displays. Most notification systems either do not
permit customization of the notification display or require
scripting / programming to achieve this kind of customiza-
tion. However, there are a few related systems - not notifi-
cation systems - that allow users to customize an informa-
tion display. With Tan et. al.’s WinCuts [17], users can clip
regions of live source windows and assemble them to create
a new interactive display, which can even appear on a dif-
ferent machine. That is, WinCuts allows ‘remixing’ of an

1 In these two systems, notifications happen only when a user explicitly
adds the information to the interface through manual action; hence, these
systems are more akin to multimedia groupware (communication-oriented)
than a true notification service (alerting-oriented).

existing user interface. Similarly, C3W - Clip, Connect and
Clone for the Web – lets users create new web interfaces
(especially forms) by remixing regions garnered from vari-
ous web pages [6]. Hunter Gatherer lets users create con-
tent collections by harvesting page snippets as they navi-
gate the web [16] (this is done by HTML extraction vs.
images). More generally, Olsen et al. [12,13] argue that
surface representations of applications – the display images
that the user sees – can be leveraged as a uniform service
that can be applied to many application settings. Later in
this paper, it will be apparent why these ideas of somehow
clipping information from source documents are highly
relevant to our own method that allows users to easily cre-
ate custom notifications.
In subsequent sections, we detail how we have combined
and extended aspects of this related work to create a notifi-
cation system that has users specify regions of interest
taken from the rendered display of a web page, where the
system then periodically polls the page to perform visual
comparisons over time to determine when notification gen-
eration is warranted.

WHAT THE USER SEES AND DOES
Before delving into technical details, we describe the end
user experience as she creates and displays custom notifica-
tions. For simplicity, we will walk through a detailed ex-
ample of how ‘Jane’ creates a notification that displays new
postings to the Slashdot web site. Later examples will
summarize how the same steps can be applied to other
styles of notifications.
We stress that describing this interactive process in an aca-
demic paper – with text and static diagrams – makes the
system appear more complex to use than it actually is; in
practice, the sequence of user actions outlined below are
easily accomplished in under a minute. As well, portions of
these steps are optional; the defaults for most settings usu-
ally suffice for most situations.

A. Creating the Custom Notification
Motivation. Jane is interested in the postings on Slashdot, a
very popular ‘news for nerds’ web site. However, she finds
it tedious to regularly revisit the Slashdot web page: there
may be no new postings, the many postings are not particu-
larly relevant, or through neglect she has missed earlier
postings and has to scan for them. Consequently, she de-
cides to create a custom notification to Slashdot by using
the Notification Editor. Figure 1 annotates this editor, and
displays the final results of her editing actions.
Step 1. Selecting the information source. Jane types in
the Slashdot URL in the Address Bar. The current Slashdot
web page appears in editor’s left pane as a bitmap image.
Step 2. Specifying change region(s) of interest. Jane
knows that changes to a web page can occur for many rea-
sons: advertiser content may differ between visits; anima-
tions and scripts may be triggered at different times; new
but irrelevant information may be posted. What she is
mostly interested in is the lead article at the top of the page;
she only wants to be notified if that article has changed.

Using the Tool palette at the top of the editor, she selects
the Change region tool that lets her specify what regions of
interest should by later monitored by the system for
changes, as determined by visual differencing between page
revisits. This tool lets her drag out a rectangle in the Con-
tent editor (left side, Figure 1) that surrounds the content to
track. In this case, she positions a change region so that it
surrounds the caption of the first article, as she expects this
to change when new postings appear.
She then adjusts the properties of this region using the con-
trols in the Region properties pane (top right, Figure 1).
First, she labels this change region ‘Article title’ for easy
reference – this label then appears as part of the change
region on the Content editor. Next, using the Change track-
bar she sets a change threshold2, i.e., the amount of visual
changes that must occur in this region between the current
page and its previously visited version if it is to trigger gen-
eration of a notification. In this case, she leaves it at its
smallest setting, as she believes that any visual changes in
this region is likely the result of a new posting.
Jane can continue this process by creating other change
regions of interest on this page; in this example, the single
change region suffices. If multiple change regions are
specified, each may be assigned its own change threshold:
in the current implementation, a notification is triggered for
the whole page if any one of the change regions triggers a
notification.
Step 4. Specifying the notification title and history. Jane
is now ready to configure the notification. Using the con-
trols in the Notification properties pane (mid-right, Figure
1), Jane specifies a title of the notification “Slashdot Lead
Articles”. This title will eventually be displayed as part of
the notification that appears in a Notification viewer.
Jane also leaves the Record history checkbox checked. This
means that the underlying system will save a history of all
generated notifications, which she will be able to later re-
view via the Notification viewer.
Step 5. Specifying revisit frequency. While in the notifi-
cation properties pane, she adjusts the contained trackbar to
specify how often the web page should be checked to see if
the change regions have changed, e.g., every few minutes.
When the system is instructed to track this page, it will
automatically revisit the page based on this interval and
will compare the bitmaps defined by the changed regions to
those on the previous version of the page. This time interval
can range from 15 seconds, to minutes, hours, days, and
even weeks. Based on her knowledge of Slashdot postings
as well as her own very high interest in Slashdot, she sets
the revisit frequency for 15 minutes.
Step 6. Assembling a notification. When the system gen-
erates a notification (because it detected changes) it creates
and publishes a scaled down version of the whole web page
as a high quality thumbnail. However, Jane would rather
see a readable fragment of the most recent posting in the

2 To fine tune the threshold, the Test change regions command on the
Tool palette displays before, after, and ‘differenced’ images of the regions
between successive page visits in a transient window (not shown).

notification. This will allow her to read its partial contents:
if it is interesting and she would like further details she
could then opt to visit the actual web page. Consequently,
she decides to construct the notification visuals by assem-
bling a collage of selected regions from the Slashdot page.
Jane selects the Copy region tool from the Tool palette. As
with the Change region tool, she can drag out rectangles to
specify regions on the web page displayed in the content
editor. As she does so, these regions are automatically cop-
ied to the Notification editor pane (lower right, Figure 1).
These copied images are still linked to the original regions
in the content editor: any changes made to the rectangle that
defines these regions (size, location) will be immediately
reflected in these copies. At any time, she can rearrange
these image fragments in the Notification editor pane. She
can select, move, and resize these copied images (resizing
scales the image to a larger or smaller size). She can also
overlap images, where she can fine tune which image is on
top by using the Bring to front / Send to back tools in
the Tool palette. This visual layout of copy regions in the
pane becomes the notification presented to her when a
change to the page is detected. Figure 2 shows an example.
Figure 1 shows the notification that Jane constructed in the

Notification editor pane. It has four copy regions: the
Slashdot logo at the upper right, the title of the lead article,
the poster’s name and time, and about 7 lines of the body of
the lead article. Full sized versions of these are automati-
cally copied to the thumbnail palette. (The arrows in Figure
1 show the source copy regions in the Content editor and
where they appear in the Notification editor.) As illustrated
in the Notification editor in the figure, she creates a visual
banner by abutting the regions containing the Slashdot logo
and the poster’s name/time, and by resizing the Slashdot
logo so that it is the same height as the poster’s line. She
then moves and scales the region containing the lead article
title to fit below this banner. Below that, she repositions the
region containing the article body, and shrinks it down to a
size that fits nicely will still being readable.
At this point, Jane has completely specified the notification
description: the information source (the web page), the re-
gions of interest on it, how often that page should be revis-
ited to see if content in those regions has changed, and the
visual appearance of the notification to be generated when
changes are detected. By selecting the Save file tool on
the Tool palette, she can save this specification (stored as
an XML file). She can later reload this or another file for

Figure 1: The Notification Editor.

further editing by selecting the Open file tool. She could
also send this file to a friend (e.g., by email) so her friend
can get similar notifications of changes to Slashdot. Alter-
natively, her friend could further edit and customize this
description to meet his own needs.

B. Publishing / Posting Notifications
Jane needs to activate the notification generator. This can
be done through an external program or within the editor.
In this case Jane will do it from the editor. First, she selects
the Connect tool on the Tool palette, and through a
simple dialog box she specifies the URL location of the
notification server, e.g., tcp://jane.site.ca:server. Next, she
starts the notification generator by selecting the Generate

 tool.
At this point, the Notification generator will use the notifi-
cation description to determine if a relevant change has
occurred on the web page. If it has, the Notification genera-
tor will assemble a notification image, and publish it to the
notification server which in turn will publish it to Notifica-
tion viewer clients. For immediate local feedback, the Con-
tent editor pane and the Notification editor pane are up-
dated to display the most recent revisitation of the page and
the corresponding generated notification.
Of course, other notifications may be published to the
server at the same time. The server stores this information
centrally, and will publish it to the Notification viewer cli-
ents (described next) that are connected to it.

C. Viewing Notifications
Jane can now view this (and other) notifications whenever
she wishes, and from whatever machine she happens to be
working on.
Jane starts the Notification viewer client (Figure 2), which
connects to the notification server. She immediately sees
and scans the four visible notification items, including the
Slashdot notification she had specified: these all represent
items that have visually changed over the course of time.
All notifications also contain a link to the original web page
(the Web link URL under the image). Clicking this link
opens the page in her web browser.
Jane can manipulate these notification items in several
ways. Each is shown in its own small window, which she
can reposition and resize: the contained image is scaled to
fit. She can close the notification window when she has
read it: it reappears when a change is next detected and a
new notification generated.
Jane also notices that the video player controls (bottom of
the notification item) within the Slashdot notification are
active, and that 3 notification frames are available for view-
ing. These frames represent notifications received earlier
and are maintained in a history. Jane wants to see if any of
these earlier Slashdot postings are interesting, so she uses
the video player controls to step backwards through them,
one at a time. This allows her to rapidly scan the past post-
ings to see if she has missed anything of interest.
Jane had previously created a notification to her local ski

Figure 2: The Notification Viewer

Figure 3: Source document, including numbered
copy/change regions, used to build the Greenwich
Mean Time notification in Figure 2.

hill (top left). This notification displays two web camera
images as a picture in picture, captured every few minutes
as part of the change monitoring process. Jane hits the
video Play button, and sets up fast speed video playback by
adjusting the replay speed through the Playback speed
trackbar at the bottom of Figure 2. She notices that the ski
line-ups are consistently long and that the weather appears
to be worsening. While she was thinking of taking the af-
ternoon off to go skiing, she decides the ski hill is just too
busy and that white-out conditions are likely to develop by
the time she gets to the hill.
Over the course of the day, these notifications are updated
and new ones appear as information is published to the no-
tification server. In this way, Jane quickly sees new post-
ings to the Slashdot news site as well as changes to the
other pages. If she steps away from her machine, she can
catch up on any missed notifications when she returns by
replaying the individual notification histories.

THE RANGE OF NOTIFICATIONS
To illustrate the richness of this method, we detail how the
other notifications in Figure 2 were constructed. While the
construction, posting and viewing mechanism is identical to
the steps and actions taken above, the uses for these notifi-
cations are quite different.
Constructing a clock. The www.greenwichmeantime.com web
page displays both the Greenwich Mean Time (GMT) and
the local time – a cropped fragment of this page is visible in
Figure 3, with regions annotated by numbers. The simple
minute-sensitive clock notification at the bottom of Figure
2 was constructed from this source. The change region ‘5’
over the time area specifies what to monitor for changes.
The page revisit frequency was set to once per minute. The
notification was assembled from scaled copy regions 4 and
2, which hold the GMT and local time visuals, as well as
identifying labels harvested from regions 3 and 1. Because
there is no value in saving a history of these notifications,
the Record history option was turned off in the Notification
properties editor. Note that the time notification in Figure 2
includes only essential information relevant to its creator,
and it is quite small and compact when compared to the
original web page in Figure 3.
Constructing a publication and meeting notifier. Many
researchers, including ourselves, infrequently update a pub-
lication list as they produce papers. Yet seeing if new pa-
pers are available by revisiting these pages is tedious. How-
ever, a custom notification can be easily created to monitor
these pages. The notification titled ‘Grouplab papers’
shown at the bottom right of Figure 2 is one example. To
create this notification, a change region was dragged
around the current year’s publication list. The revisit fre-
quency was set at once a day, and the descriptive title en-
tered. Instead of creating custom notification visuals by
selecting copy regions, it is acceptable in this case to use a
thumbnail of the whole page as the notification image. This
is selected using the radio buttons at the bottom of the Noti-
fication properties pane in Figure 1. When the notification

generator detects the (rare) change, it automatically pro-
duces the thumbnail image seen in Figure 2’s notification.
Along with the title, this provides enough information to
indicate what this notification is about. The person can then
decide to visit that site.
The meeting notification seen in the middle-bottom of Fig-
ure 2 was constructed in a similar fashion, except in this
case the user opted to assemble a readable notification that
includes the most recent held and scheduled meetings.
Constructing a ski webcam video. The Sunshine village
ski area features a web page (Figure 4) that includes several
webcam images showing activity at the ski hill over the
day. These cameras do not run continuously, e.g., they are
sometimes turned off at night or for unpredictable reasons.
In such circumstances, the web camera image is not up-
dated. It is easy to create a custom notification - similar to
the other notifications - that contains just the webcam im-
age, accompanied by some extra regions to identify the web
site (e.g., the ski hill logo). However, the threshold for
changes between successive webcam images can be set
somewhat higher than that used in the other notifications,
so to avoid sending out notifications if there are no interest-
ing changes in the scene. For example, two successive im-
ages will almost certainly have minor differences between
them due to noise in the camera, and these do not warrant a
notification.
Figure 4 shows the source web page as well as the four
copy regions used to create the notification visible at the
top left of Figure 2. What is especially interesting is how
the user created a picture-in-picture effect in the notifica-
tion by overlaying a scaled down version of one of the
webcam images (region 4) atop another webcam image
(region 2).

Figure 4: Source document used to build the Sun-
shine Live Webcam notification in Figure 2.

On the viewer side, the viewer will not only see these
changes, but can play back a video of all activity captured
by the webcams over the course of the day. If the playback
speed is set to its maximum, the day’s activities (including
changes in weather) will be compressed to a minute or so of
video.

IMPLEMENTATION.
The architecture for this system is reasonably straightfor-
ward, but is described in detail to expose its strengths and
weaknesses and to encourage replication.
The Notification Editor, as seen in Figure 1 and repre-
sented at the top left of Figure 5, provides a graphical inter-
face that allows the user to specify the information neces-
sary to track web pages for changes and to build a custom
notification. This specification, which can be saved as an
XML file and later reloaded, is described in Table 1. As can
be seen, the specification includes the Url of the page to be
monitored, the Monitoring frequency describing how often
that page should be checked for changes, and a list of Moni-
tored regions that specify the rectangular regions on the
page to check for bitmap differences and a Threshold indi-

cating how much a region must change for a notification to
be triggered. It also contains a textual Title of the notifica-
tion to be generated, a History length value that indicates
the length of the history list of notifications to be stored, a
list of Copy regions that indicate what regions on the
Source web page should be copied into the Destination
notification image, as well as the location and (scaled) size
of those copies on the destination.
Aside from its user interface, the only special feature re-
quired by the Notification editor is the ability to render a
web page into a bitmap and perform various image capture
and manipulation functions. To simplify this task, we used

Notification Editor
Specification (see Table 1)

Notification Generator
Grabs web page and analyses it for changes
Assembles and publishes notification

Notification Server
Stores published notifications
Sends notifications to subscribed clients

Notification Viewer Client
Displays and replays notifications

Figure 5: Basic architectural components

<WebPageNotification>
<Url>URL of source page</Url>

<MonitoringFrequency>
 time interval to check page
</MonitoringFrequency>

// a list of Monitored Regions on the web page; only one is shown here
<MonitoredRegions>

<MonitoredRegion>
 <UpperLeft>X,Y corner of monitor region on web page</UpperLeft >

 <Size>Width, height of monitor region </Size>
 <ChangeThreshold>
 Change threshold between bitmaps needed to trigger notification
 </ChangeThreshold >

</MonitoredRegion>
</MonitoredRegions>

<Title>Title of the notification</Title>
<HistoryLength>
 The length of the notification history to be maintained
</HistoryLength >

// a list of CopyRegions; only one is shown below, Each source region
// on the web page has a matching destination region on the notification

<CopyRegions>
<CopyRegion>

<SourceOnWebPage>
 <UpperLeft>X,Y corner of copy region on web page</UpperLeft >

 <Size>Width, height of coopy region </Size>
 </SourceOnWebPage >

<DestinationOnNotification>
 <UpperLeft>X,Y corner of image in notification area</UpperLeft >

 <Size>Width, height of image in notification area</Size>
 </ DestinationOnNotification>
 </CopyRegion>
 </CopyRegions>

 <PngImageData>
Compressed bitmap of the source webpage

</PngImageData>
<WebPageNotification>

Table 1: XML of specification produced by the editor

the Collabrary Toolkit [1], which provides an easy-to-use
API for capturing, processing and distributing multimedia
data. The Collabrary includes the ability to do efficient off-
screen rendering of web pages, basic image manipulation
such as cropping, scaling, and the visual differencing used
to compare image regions.
The Notification Generator can be invoked from the noti-
fication editor, or can run as a stand-alone application. As
seen in Figure 5, it uses the specification produced by the
Notification editor. The Notification generator renders the
web page off-screen into a bitmap at the specified monitor-
ing frequency. After grabbing the web page, it compares
the monitored regions of the current page with the last one
it has seen (if it is the first image grab, it will compare it to
the original web page image stored in the specification’s
PNG-compressed image data field).
If a change is detected in a monitor region that surpasses
the region’s Change threshold, the Notification generator
builds a notification comprising the notification title, the
URL, and a timestamp. It then creates the composite notifi-
cation image by capturing, locating and scaling the copy
regions on the source page into the destination notification.
Finally, the generator publishes this information to a notifi-
cation server (Figure 5). The published data is very simple.
A unique ID identifies the notification. The URL, title,
timestamp and composite image are the notification con-
tents. If the History length is 1, then the new timestamp and
image data over-writes the previously published contents. If
it is greater than 1 then each notification is added to a his-
tory list maintained by the notification server. If the number
of notifications exceeds the history length, then the oldest
notification is removed before a new one is inserted.
The Notification Server. We use our own GroupLab
.Networking notification server system, which is a redes-
igned version of the notification capabilities found in the
Collabrary [1]. It has many features well suited to the task
of marshalling, storing and efficiently distributing multi-
media information to subscribed clients. In particular, it:
allows notification contents to be organized in a hierarchy
of key/value pairs; automatically marshals both primitive
data types and complex types like compressed images; and,
can maintain lists of notification values as easily as storing
a single value. While other notification server systems
could have been used instead, they may lack the Grou-
pLab.Networking features that make it very easy to imple-
ment the Notification generator. However, because of the
simplicity of the data produced by the Notification genera-
tor, the required capabilities could be simulated atop an-
other notification server system, or the generator re-
architected as a workaround.
The Notification Viewer Client. The final component in
our architecture is the presentation client. As seen in Figure
5, the client consumes and displays notifications generated
by the server. To do this, the client connects to the notifica-
tion server, subscribes to the key/value pairs that hold the
relevant notification data, and displays the information
therein in the interface as each new notification arrives. The
client handles all notifications in the same way, regardless

of where they were produced. It only needs to know how to
display a textual title, timestamp, URL, and a single image.
The only special capability in our notification client is the
ability to play back the notification history frame by frame
or as a ‘video’. To do this, our client simply navigates the
notification history held by the notification server, where it
retrieves and displays that frame’s timestamp and image.
Similar to the Notification Collage and MessyBoard, our
viewer client interface presents individual notifications as a
collage of possibly overlapping items positioned in a large
window (Figure 2). However, there is nothing in our
method that insists on this arrangement, and other quite
different interfaces could have been constructed instead.

DISCUSSION
Power. The power of our image-based visual differencing
method is its simplicity. First, it leverages the surface rep-
resentation strategy of Olsen et al., [12,13] who argue that
the major strength of surface representations (i.e., the visual
images people see) is that they are human consumable. That
is, in contrast to the abstract data that produces the visual
(such as HTML markup), surface representations are de-
signed to be understood by the user. Consequently, we base
our notification creation strategy on image region selection,
copying and differencing, as these are notions that users
will easily grasp. For change regions, users intuitively
know what parts of a web page will change over time. For
creating a notification, people simply harvest the visual
information that is most interesting to them, exploiting im-
age copying, pasting and resizing skills already learned
through the many image and photo editors they have used.
Second, our strategy works with a very broad set of arbi-
trary data sources because it leverages bitmap-based ren-
derings of the information source as a lowest common de-
nominator for information representation and extraction.
Regardless of how a web page is produced or what HTML
standard the browser follows, the page is ultimately ren-
dered on-screen as an image. Our approach needs no a pri-
ori knowledge of how the image is rendered: as long as
there is some mechanism to capture the images in the first
place (i.e., render the information source as a bitmap) the
system will work, taking care of manipulation, extraction,
and comparing visual differences. As a lowest common
denominator, our image-based approach is not limited to
web pages and could easily be used with screen-grabs of
running GUI application windows as in the WinCuts sys-
tem [17]. Of course changes to the Notification editor will
be needed: e.g., the editor will need to grab screenshots of
GUI application windows instead of web pages, and the
user interface must provide a mechanism for the user to
select a window on the screen to capture.
Third, because the data generated is comprised of only a
few text fields and a list of images, it is easy to collect and
distribute. We expect that our system could be implemented
atop any notification service, including an SQL database.
Of course, the particulars of how connections are made to
the service and how the text and image data generated are
translated into the data standard required by it (e.g., as an
XML document vs. a variable length blob of binary data)

will require (straightforward) changes to the Notification
generator and viewer.
Fourth, since our strategy generates and presents the same
kinds of data for any arbitrary information source, the pres-
entation of a notification becomes decoupled from the type
of information source. The Notification viewer only needs
to know how to display some simple textual attributes –
title, time, url – and an image. Because bitmaps are used as
the representation for all information sources and all notifi-
cations, this strategy blindly incorporates any notification
the user may want to create.
Fifth, images as the medium for representing and present-
ing a notification affords special power. It is easy to keep
and exploit visual history lists of notifications. Because
each notification in the history is just a visual, this medium
lends itself to frame by frame browsing of notification his-
tories as well as high-speed playback as a video stream.
Sixth, the cut-and-paste approach to composing notifica-
tions as a visual collage means that users can exclude re-
gions which contain information of little interest, especially
advertisements, blinking icons, scrolling marquees, etc.
Resulting notifications are very compact.
Finally, the user experience – while difficult to describe in
an academic paper – is lightweight and fun. Creating notifi-
cations in the Notification editor is easy to do because it
relies only on what the user sees and understands visually.
The automatic page revisitation and use of visual differ-
ences to filter out personally irrelevant or uninteresting
changes eliminate the tedium of having to manually poll for
changes to information. Information sources come alive in
the Notification viewer as changes are tracked and notifica-
tions are generated. The user can see changes as they un-
fold over the course of a day. The ability to play back the
history of a web site as a video stream adds information not
normally discernable in a web page’s static images.
For example, we ran the Sunshine Ski Hill notification seen
in Figure 2 over 24 hours, capturing changes every two
minutes. When the history of notifications generated over
this period was played back at an accelerated rate, some
spectacular glimpses into life at the ski hill were revealed: a
buzz of activity during the night as the workers groomed
the slopes; dawn breaking over the Canadian Rockies, with
clouds rapidly moving across a golden sky; the sky darken-
ing as a storm came in; crowds trickling in when the hill
first opens in the morning, gradually surging into a rush at
10:00am; people congregating by the main lodge around
noon and leaving near the end of the day. As dusk arrived,
the cycle repeated. The source web page, created to provide
a snapshot of hill weather and activity at an instant in time,
is transformed by our system into a documentary of the
patterns of life that emerge over the course of an entire day.

Limitations. While powerful, there are several limitations
to our method. The image-based approach to creating a
notification relies on a web page retaining its formatting
and layout between visits. Fortunately, this is often true.
The top of a page normally comprises standard information
repeated across all visits, e.g., page titles, logos, banner

advertisements: these are typically of fixed heights. Content
and navigation side bars are also typically fixed in width.
Designers know that only 10% of users scroll beyond the
information visible on the screen when the page comes up
[11]; thus they will typically place critical changing infor-
mation – the kind that a user would likely find valuable as a
notification – in a relatively fixed location immediately
beneath page headers so that it appears ‘above the fold’3.
However, users will not be able to create a notification that
captures a region of changing information whose position
floats on the page. For example, consider a page with two
variable length segments of text, one above the other, that
may change between visits. If the user is only interested in
the second text segment, he has no easy way of determining
where that text will appear. In this case the only strategy
would be to capture the whole page as a thumbnail, or to
mark out a region large enough so that it anticipates where
that text may appear.
Our system works with rendered bitmaps of web pages and,
as a result, hyperlink visuals on the page are not navigable.
While we could have used a WinCuts / Clip, Connect,
Clone approach to link user input actions on the image to
the source web page [6,17], we felt this unnecessary; it in-
troduces the potential for errors as the page contents can
change when the user clicks a hyperlink. Instead, we rely
on an external web browser to support navigation, which
can be easily raised by clicking the web link in the Notifi-
cation viewer (Figure 2).
Users can scale copy regions in the Notification editor
however they like, but they could produce images that are
scaled too small to read legibly. Making the display win-
dow in the Notification viewer larger will not help if the
original notification has insufficient resolution. To mitigate
this, the Content editor always copies the full sized image
into the Notification editor (Figure 1), which encourages
the user to create legible notifications. While the notifica-
tion viewer may later scale the generated notification to fit
a small window, it can be expanded to its full resolution
when (say) the user resizes the window to be larger. An
alternatively approach may be to use a sidebar metaphor [2]
in which the bar displays the assembled collage reduced to
fit the display space allocated for it but then support ‘drill-
down’ by showing each individual copy region at its origi-
nal large size and aspect ratio in a ‘tooltip grande’.
One must also take care with the history list size. In our
implementation, it is possible to create a notification that
takes snapshots of a frequently updated web page (such as
the Sunshine ski hill page) every 15 seconds. The storage
requirements for maintaining a history of such notifications
could rapidly swell to unmanageable proportions. Conse-
quently, in our system, we limited the maximum size of a
single history list to 200 notifications, where old notifica-
tions are discarded as new ones arrive. Given the a size of
our images and that they are compressed, we anticipate
minimal resource usage.

3 Our system performs off-screen rendering of a web page into a con-
tainer of a specified (fixed) width. Thus the reformatting that normally
results from changing a browser window size is not a problem.

Next, web pages can be idiosyncratic. Many embed pro-
grams (e.g., Java applets and Flash animations) or use cli-
ent-side scripting to finalize document construction after
the page is loaded. On these types of pages, grabbing an
image after a ‘document complete’ event appears can result
in a web page with missing elements. Adding a time delay
of several seconds to let these elements load is a prudent
workaround, but may still be unreliable. Other practical
problems will make rendering bitmaps of web pages trou-
blesome: password protected web sites, server redirection,
popup browser windows, CAPTCHAs, client-side script
errors, server-side web application errors, network connec-
tivity issues, and so forth. In spite of these issues, a large
number of web pages are suitable for our method.
Finally, there are the legal and ethical issues involved when
information is clipped from a web site without permission.
Some content providers believe that its information should
only be shown in the context of the original web page; after
all, many make their money through associated advertise-
ments. The actual law varies from country to country and is
currently hotly contested. While many consumer advocates
believe that this use of material falls under ‘fair use’, there
is a large lobby effort by corporations to make remixing of
web material illegal [9]. Other ethical concerns arise from
the capture of static information (such as webcam snap-
shots) as a replayable video, for the information revealed by
the video may not be what the author intended. An example
could be continuous webcam capture of a person’s home
(which some people post to the web) every 15 seconds.

CONCLUSION
This research makes several significant contributions. At
the high level, we advance a novel method that uses visual
differences in user-selected regions of a web page’s surface
representation – its bitmap image – to serve as the basis for
a notification system: custom notifications are themselves
harvested and assembled from user-specified regions on
that page. While aspects of this resemble the clipping ap-
proach for custom interface design advocated by Tan et. al.
[17] and Fujima et. al. [6], its application to notification
generation gives a very novel and completely different ef-
fect. At a finer granularity, we also contribute:
• how custom presentations of notifications can be assem-

bled from changes to these images (leveraging ideas
found in [6,7]);

• how the underlying algorithms as well as the notification
server only needs to handle very rudimentary data types
(e.g., images and meta-information such as the source
URL for that image): this implies that this method is very
generalizable, and can be used across many different no-
tification engines;

• how the presentation of image notifications also needs
only rudimentary knowledge of the data source, i.e., how
the notification viewer renders and/or scales images; and,

• how notifications can be collected as an image history,
which supports rich playback mechanisms that can be
used to present not only the current state of that informa-
tion, but how it has changed over time.

Trying out this system is more fun than reading about it!
Download and install it from http://www.url.to.be.supplied.

REFERENCES
1. Boyle, M., Greenberg, S. GroupLab Collabrary: A tool-

kit for multimedia groupware. J. Patterson (Ed.) Work-
shop Network Services for Groupware ACM CSCW’02.

2. Cadiz, J., Venolia, G., Jancke, G., Gupta, A. Designing
and deploying an information awareness interface. Proc
ACM CSCW 2002, pp. 314-323.

3. Fass, A., Forlizzi, J., Pausch, R. (2002). MessyDesk and
MessyBoard: Two designs inspired by the goal of im-
proving human memory. ACM DIS 2002, 303-311.

4. Fass, A., Pausch, R. (2002). Adding scripting to a public
bulletin board. Poster at ACM UIST 2002.

5. Fitzpatrick, G., Kaplan, S., Mansfield, T., Arnold, D.,
Segall, B. Supporting public availability and accessibil-
ity with Elvin: Experiences and reflections. J Com-
puter Supported Cooperative Work 11(3), 2002.

6. Fujima, J., Lunzer, A., Hornboek, K., Tanaka, Y. Clip,
connect, clone: Combining application elements to build
custom interfaces for information access. Proc. ACM
UIST 2004, pp. 175-184.

7. Greenberg, S., Rounding, M. The Notification Collage:
Posting information to public and personal displays.
Proc ACM CHI 2001, pp. 515-521.

8. Greenberg, S. and Fitchett, C. (2001) Phidgets: Easy
development of physical interfaces through physical
widgets. Proc ACM UIST 2001, p209-218.

9. Lessig, L. Free culture: How big media uses technology
and the law to lock down culture and control creativity.
The Penguin Press, 25 Mar 2004 |

10. Microsoft, Inc. Microsoft Alerts content providers: Sign
up for Microsoft Alerts now! March 28, 2005.
www.microsoft.com/net/services/alerts/.

11. Nielsen, J. Original top ten mistakes in web design. Ja-
kob Nielsen’s Alertbox 1996. //www.useit.com/alertbox/.

12. Olsen, D., Hudson, S., Verratti, T., Heiner, J., Phelps,
M. Implementing interface attachments based on surface
representations. Proc ACM CHI 1999, pp. 191-198.

13. Olsen, D., Hudson, S., Phelps, M., Heiner, J., Verratti,
T. Ubiquitous collaboration via surface representations.
Proc ACM CSCW 1998, pp. 129-138.

14. Rounding, M. (2004) Informal Awareness and Casual
Interaction with the Notification Collage. MSc Thesis,
Department of Computer Science, University of Cal-
gary, Calgary, Alberta, Canada, April.

15. RSS-DEV Working Group. RDF Site Summary (RSS)
1.0. http://web.resource.org/rss/1.0/spec. 2000

16. schraefel, m.c., Zhu, Y., Modjeska, D., Wigdor, D.,
Zhao, S. Hunter Gatherer: Interaction support for the
creation and management of within-web-page collecc-
tions. Proc ACM WWW 2002, pp. 172-181.

17. Tan, D., Meyers, B., Czerwinski, M. WinCuts: Manipu-
lating arbitrary window regions for more effective use
of screen space. Extended Abstracts ACM CHI 2004.

18. Zhao, Q., Stasko, J. What’s happening? Promoting
community awareness through opportunistic, peripheral
interfaces. Proc Advanced Visual Interfaces, 2002.

