
Enhancing Creativity
with Groupware Toolkits

Saul Greenberg
University of Calgary

#include <stdio.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <netdb.h>

#define PORT 12997 /* The port number of the server */

main()

{

int main_sock, new_sock, count;

struct sockaddr_in server;

/* Create a socket */

if ((main_sock = socket(AF_INET, SOCK_STREAM, 0)) < 0

problem("Socket problem");

/* Name the socket using wildcards */

bzero (&server, sizeof (server));

server.sin_family = AF_INET;

server.sin_addr.s_addr = INADDR_ANY;

server.sin_port = htons(PORT);

/* Set the options of the socket */

count = 1;

if ((setsockopt(main_sock, SOL_SOCKET)
SO_REUSEADDR,

problem ("Bind problem.")

}

/* Bind the socket to the address */

if (bind(main_sock, &server, sizeof server) < 0)

problem ("Bind problem.");

Good morning
•I am delighted to be here at <INSERT HERE>.
•I specialize in Real Time Groupware, where I look at both the
technical and social aspects of groupware design and use
•Today, I will concentrate on the technical side of groupware
design, where I will speak about “Enhancing Creativity with
Groupware Toolkits”.
•However, you will also see that the point goes beyond
groupware, and it should apply to any innovate area within
interaction design.

Saul
This presentation handout approximates the lectures given at several places on Enhancing Creativity with Groupware Toolkits. A paper summarizing this paper is available as:

Greenberg, S. (2003) Enhancing Creativity with Groupware Toolkits. Invited keynote talk. Proceedings of the CRIWG ' 2003 9th International Workshop on Groupware (Sept 28 - Oct 2, Autrans, France), LNCS vol. 2806, 1-9, Springer-Verlag. Copy available at http://www.cpsc.ucalgary.ca/grouplab/papers/

While videos and demonstrations are not included here, many of the videos shown are available at www.cpsc.ucalgary.ca/grouplab/papers/videos/ and www.cpsc.ucalgary.ca/grouplab/phidgets/
gallery/

The Message

Groupware innovation is rare because even
simple ideas are too hard to implement.

If we give everyday programmers good
tools and building blocks
– simple ideas become simple to do
– innovative concepts become possible
– groupware will evolve

The message that I will deliver over the next hour is that
<Read>
…as programmers generate new ideas and refine creative ideas
of others
And that this evolution is instrumental to the ultimate success of
groupware in the everyday world

I will deliver this message by
-first giving some historical motivation of why this is important.
-then going through several case studies of how particular
toolkits, each reflecting research waves within particular
groupware genres, have significantly enhanced the creativity of
students within my laboratory.

1968 - Engelbart’s Breakthrough

For motivation, I’ll begin with Doug Engelbart’s 1968 historic
demonstration of his NLS system.
Engelbart’s vision, implemented 35 years ago, showed computers as a
means to augment human intellect by giving people
-desktop productivity tools for information creation,
-hypertext for knowledge organization and access,
-and groupware for collaborative work.
<START VIDEO>
This clip extracts the groupware features.

What happened since 1968?

Desktop productivity

What happened with Engalbart’s vision since 1968?
We have seen desktop productivity tools take off, with early word
processors such as the Xerox Star and Apple’s Macwrite creating the
new genre of desktop publishing for the masses.

What happened since 1968?

Hypertext

Hypertext, originally popularized by the Apple Hypercard system, has
exploded into the mainstream with the introduction of the WWW.

What happened since 1968?

Real time groupware

Yet when we look at real time groupware, little has happened since
Engelbart.
Our most popular real time conferencing tools are based on text
chatting.
While we are now seeing them include video and other facilities, they
tend to be unreliable, unimaginative, and awkward.

What happened since 1968?

Desktop & Hypertext

mature applications

many products

massive deployment

commercial success

broad audience

society has changed

Real time Groupware

prototypes & early products

few products

poor deployment

risky venture

early adopters / great needs

little effect excepting IM

What went wrong?

mature research discipline

This is a problem. When we compare desktop productivity and
hypertext with Groupware, its clear that groupware has not succeeded.
<READ>
<ANIMATE>

Desktop Productivity

•To understand the problem, lets look at these successes and failures
from the programmer’s point of view.
•Graphical User Interface toolkits, which have been around since the
1970s significantly eased a programmer’s task of creating desktop
applications.
•As a consequence, there are thousands, if not millions of developed
applications – some commercial, some built for fun, some as student
learning exercises.

Hypercard / HTML

Similarly, in the 1980s Apple’s Hypercard let amateur programmers
rapidly create interesting hypertext documents.
<ANIMATE>
With the introduction of HTML and the many web page editors,
everyday people with minimal computer experience now rapidly create
and modify hypertext web documents to the point that this is now
being taught to elementary school students as part of basic computer
literacy.

Groupware

#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#define PORT 12997 /* The port number of the server */

main()
{

int main_sock, new_sock, count;
char buf[256];
struct sockaddr_in server;

/* Create a socket */
if ((main_sock = socket(AF_INET, SOCK_STREAM, 0)) < 0)

problem("Socket problem");

/* Name the socket using wildcards */
bzero (&server, sizeof (server));
server.sin_family = AF_INET;
server.sin_addr.s_addr = INADDR_ANY;
server.sin_port = htons(PORT);

/* Set the options of the socket */
count = 1;
if ((setsockopt(main_sock, SOL_SOCKET, SO_REUSEADDR,

&count, sizeof count)) < 0)
problem ("Setsockopt problem");

/* Bind the socket to the address */
if (bind(main_sock, &server, sizeof server) < 0)

problem ("Bind problem.");
…

Yet when we look at groupware, tools are back in the dark ages,
where groupware development means writing low-level programs.

A Key Problem

Average programmers lack the tools to prototype
and develop groupware
– groupware programming difficult
– excessive effort in low-level plumbing
– advanced features hard to implement

Result
– most programmers avoid it
– overly simplistic designs
– little attention to social nuances
– buggy and unreliable
– little replication / evolution of research & product ideas

This introduces what I believe to be the key technical problem
behind groupware failure.
<READ>
<ANIMATE>
Most programmers avoid groupware -> advanced topic in
graduate school

Time
Le

ar
n
in

g

Brian Gaines

Breakthrough
Breakthrough
leading to major
creative advances

Replication
Ideas mimiced
and creatively
altered leading to
increasing
experience and
new ideas

Empiricism
Lessons drawn
from experience
and formulated as
useful empirical
design rules

Theory
Hypotheses
formed about
causal systems
underlying
experience and
developed as
theories

Automation
Theories accepted
and used
automatically to
predict experience

Maturity
Theories
assimilated and
used routinely
without question

But is this lack of tools really a bottleneck?
Well, in the 1980s, Computer Scientist Brian Gaines introduced a
model of how science technology develops over time, and how people
learn from this development
It unfolds from <READ>
Breakthrough -> Invention
Replication -> Research
Empiricism -> Product Innovation
Theory -> Product Lines
Automation -> Low cost products
Maturity -> Throw away products

Time
Le

ar
n
in

g

Brian Gaines

Breakthrough
problem-solving
attempts but failure,
leading to creative
advance &
breakthrough

Replication
Breakthrough
mimiced and
creatively altered
leading to
increasing
experience

Empiricism Theory Automation Maturity

But because groupware is hard to build, we have essentially throttled
its replication.
This has minimized product invention and innovation as well as hands-
on experience to all but the CSCW research community and a few
well-resourced developers.
Thus the necessary creativity leading to product evolution was stifled.

Tools as media and language

Language influences our thoughts and behaviors
-Sapir-Whorf Hypothesis (~1920s)

Another way of saying this is that all design disciplines recognize the
importance of creative media and media tools in how the ‘average’
designer thinks.
Echoing the Sapir-Whorf Hypothesis in linguistics, which states that
language influences how we think and behave, the media becomes a
language that influences creative thoughts, that indicates design
directions, and that lets them concentrate on their design.
Groupware has, in general, failed to give people this creative media.

Three Case Studies

Distributed groupware

Single display groupware

Physical groupware interfaces

human factors

1st prototype

user testing

design blocked

toolkit

test + improve

prototype
prototype

prototype
prototype

prototype
prototype

prototype
prototype

What I would like to do now is show how toolkits promoted creativity within our laboratory.
I will use three case studies reflecting three genres of groupware:
-Real time distributed groupware,
-Single display groupware, and
-Tangible groupware.
Each case study will follow a similar pattern, where we will see how students interested in
the human factors of groupware faced serious problems developing and testing early
prototypes, and how the introduction of a toolkit profoundly changed the ability of students
to rapidly prototype and evolve groupware design after they observed how its used.

Case study

Real Time Distributed Groupware

Distributed shared workspaces
– understand group interaction
– develop effective interaction techniques
– generalize as design requirements

I will begin with a case study of real time distributed groupware, and will
continue later on to other groupware topics.
In 1989, when I first became interested in CSCW, I decided to focus on how
technology can support the how distributed groups could use a shared visual
workspace.
I wanted to
<READ>

Case study – Real time distributed groupware

Initial prototype

GroupSketch -1989 Ralph Bohnet

To help us understand these distributed workspaces, we decided to develop a
groupware sketchpad.
Student Ralph Bohnet took on this task, and 4 months plus many thousands of
lines of code later, he produced GroupSketch.
This video will give you a flavor of its use by a distributed group, although I am
sure many of you have seen similar systems today.
<SHOW VIDEO>

Case study – Real time distributed groupware

Hard problems

– low level plumbing
– distributed systems
– networking issues
– session management
– latecomers
– graphics problems…

From our evaluations of these systems, we had ideas for new design
directions.
But we were discouraged from doing so.
This is because we ran into hard technical problems, which severely limited our
ability to efficiently replicate and evolve the system designs.
<READ>

Case study – Real time distributed groupware

GroupKit

– network connectivity trivialized
– session management included
– data sharing easy
– groupware widgets included

Mark Roseman

Instead, my student Mark Roseman decided to build a toolkit that would ease
the job of creating real time distributed groupware applications.
The result was GroupKit, built around 1992.
Groupkit ‘s design tried to make simple groupware designs very simple to do in
practice.
For example,
<Read>

Case study – Real time distributed groupware

GroupSketch in GroupKit

gk::menus addstandard
.menubar.file insert 0 command -label "Clear Canvas" -command "gk::to all clearCanvas"
.menubar.file insert 1 separator
grid [canvas .c] -column 0 -row 0 -sticky nwes
grid columnconfigure . 0 -weight 1
grid rowconfigure . 0 -weight 1
bind .c <1> "global lastX lastY; set lastX %x; set lastY %y"
bind .c <B1-Motion> {draw %x %y}
proc draw {thisX thisY} {

global lastX lastY
set x1 $lastX
set y1 $lastY
set lastX $thisX
set lastY $thisY
gk::to all doDraw $x1 $y1 $thisX $thisY

}
proc doDraw {lastX lastY thisX thisY} {

.c create line $lastX $lastY $thisX $thisY -width 2 -tag line
gk::schedule update "update idletasks"

}
proc clearCanvas {} {

.c delete line
}
gk::event bind updateEntrant "sendDrawing .c %U"
proc sendDrawing {canvas usernum} {

foreach line [$canvas find all] {
set x1 [lindex [$canvas coords $line] 0]
set y1 [lindex [$canvas coords $line] 1]
set x2 [lindex [$canvas coords $line] 2]
set y2 [lindex [$canvas coords $line] 3]
gk::to $usernum doDraw $x1 $y1 $x2 $y2

}}
gk::telepointers attach .c

To illustrate, here is the complete Groupkit code that replicates GroupSketch.
It is 33 lines long, and took about 20 minutes to write. This contrasts to the 4
months and > 5000 lines of the original Groupsketch system!

Case study – Real time distributed groupware

Rapid prototyping – Simple groupware

File sharing-51

Brainstormer-74

Text chat-80

Concept map-213GroupSketch-33

Our lab members then replicated many simple systems, where they found it
only slightly harder and longer to build groupware than single-user
counterparts.
For example,….

Case study – Real time distributed groupware

Rapid prototyping – Workspace overviews

-basic overview
-telepointers
-radar view
-portrait radar
-active radar

Carl Gutwin

More importantly, we now how the means to create and evolve new ideas.

As one example, student Carl Gutwin wanted to create and refine the notion of
workspace overviews, a (now well accepted) mechanism that lets people stay
aware of other’s activities as they work in different parts of a shared visual
space.
What I would like to do now is show you an early videos (mid-90s) that shows
various evolutions of this concept, beginning with a very basic visual overview
and ending with a fully featured radar view that lets people not only view the
entire workspace, but interact through it.

Case study – Real time distributed groupware

Rapid prototyping – other creative ideas

Magnification Fisheye lensTransparent
multi-views

What the video did not show was the explosion of other ideas that Carl and
other lab members had of how to support workspace awareness.
I don’t have the time to go through these, but one set of projects experimented
with a variety of information visualization techniques as a possible solution to
the problem. Left to right, these ranged from transparent multi-level views of the
workspace, to magnification lenses, to fisheye lenses, one for each participant.

Case study – Real time distributed groupware

Rapid prototyping – major applications

TeamroomsGroupweb PReSS

As well, many major groupware applications were built. These include:
Groupweb, likely the first groupware browser ever made.
The PreSS tool that allows distributed usability engineers to transform heuristic
evaluation results into problem reports
and TeamRooms, a very sophisticated system that let people create and enter
rooms full of persistent groupware artifacts. As one person entered a room,
they were immediately connected to all others in the same room. Teamrooms
was eventually commercialized…

Case study – Real time distributed groupware

Grouplab Collabrary

Modern collaborations include multimedia
–capture and display
–analysis and manipulation
–multimedia data sharing

Michael Boyle

While all the above helped us understand the human factors of groupware, our
toolkits evolved as well.
For example, we recognized that modern groupware collaboration require
multimedia such as video, yet Groupkit did not support this.
Consequently, student Michael Boyle implemented a Groupkit replacement
called the Collabrary, a toolkit that
-makes it easy to capture and display multimedia.
-provides rich functionality for analysing and manipulating video frames,
-and improves on Groupkit’s ability to share data by including a means to
marshall and distribute multimedia.

Case study – Real time distributed groupware

Video Mirror

…
this.camera = new CameraClass();
this.camera.Captured += new CameraEvents CapturedEventHandler(Captured);
this.camera.FrameRate = 30;

private void Captured(IPhoto Frame) {
Frame.Distort(1 - trackBar1.Value, Collabrary.PhotoDistortStyle.Blur);
this.pictureBox1.Image = Image.FromHbitmap(Frame.Hbitmap);

}

To show the simplicity of capturing and displaying multimedia, here is an
example of a video mirror.
<SHOW DEMO>
where a video stream is captured from any camera attached to a PC and
displayed in real time.
A programmer only has to write 5 conceptually simple lines of code to
completely implement this example.
The top 3 lines creates a camera and sets its capture frame rate, while the
bottom 2 lines blurs and displays each frame of the image.

Lets take a look at several simple media space applications, where each was
developed in a very short amount of time.

Case study – Real time distributed groupware

Notification Collage

Mike
Rounding

The collabrary became a language for students to think about multimedia within
their distributed groupware designs.
One example, built by student Mike Rounding, is the Notification Collage,
which used a bulletin board metaphor to support casual interaction between
distant collaborators.
Its main idea was to provide a group with awareness of one another through
media items displaying a variety of information.
Lets look at a video for an example interaction.
<STOP AFTER VIDEO LINK GOES LIVE>

Human factors
distributed groupware

1st prototype
Groupsketch

User testing

Design blocked

Toolkit development
Groupkit + Collabrary

test + improve

prototype
prototype

prototype
prototype

prototype
prototype

prototype
prototype

This case study just illustrated an important development cycle that we will see
repeated over and over again.
First, we were motivated by the human factors of design within a groupware
genre, in this case distributed groupware.
To help us understand the critical factors, we developed a 1st prototype, in this
case GroupSketch, and then observed how people use it through user testing.
While this led to new design ideas, design was blocked because it was just too
hard or too time-consuming to modify the prototype.
Instead, we stepped back and developed a toolkit, in this case Groupkit, that
would let us rapidly build distributed groupware.
The toolkit then leads to an explosion of prototype development.
As each prototype was tested and improved, it feed both into our understanding
of the critical human factors of groupware and to our understanding of what the
toolkit should offer.
In the end, these various toolkits proved critical to our group’s creativity, for it
let us concentrate on ideas and to rapidly design and test prototypes.

Case study

Single Display Groupware

Co-located people work together over
– a table, a wall display, or a monitor through
– multiple mice, keyboards, multi-touch surfaces

I would now like to move to another case study – Single Display
Groupware
In this groupware genre, <read>

Case study – Single display groupware

The Problem

GUI toolkits ignore multiple inputs,
multiple users

Within the gaming world, SDG is in standard use, albeit in limited ways.
Within productivity applications, the problem is that our
<READ>
In practice, this meant that only a few research laboratories have
developed SDG, and that the wheel is reinvented over and over again.

Case study - Single display groupware

SDGToolkit + Grouplab DiamondTouch

multiple mice and keyboards

multitouch surfaces

multiple cursors

tabletop orientations

SDG widget layer

SDG widgets

Edward Tse Rob Diaz-Marino

To make SDG development easier, students Edward Tse and Rob Diaz
developed the SDG Toolkit, and the Grouplab DiamondTouch Toolkit. Both are
serious efforts at providing programmers with basic and advanced SDG
building blocks, including

<READ>

Case study - Single display groupware

SimpleSketch for a tabletop

//1. Add SdgManager

//2. Set relativeTo property to Form 1

//3. Add sdgMouseMove event

//4. Add after InitializeComponent – Cursors and Orientation
Cursor[] sdgCursors = {Cursors.Arrow, Cursors.Hand, Cursors.Cross};
String[] sdgText = {"Edward", "Saul", "Mike"};
int[] sdgDegreeRotations = {0, 180, 145};
for (int i=0; i < sdgManager1.Mice.Count && i < 3; ++i) {
sdgManager1.Mice[i].Cursor = sdgCursors[i];
sdgManager1.Mice[i].Text = sdgText[i];
sdgManager1.Mice[i].DegreeRotation = sdgDegreeRotations[i];

}

//5. Add to SDGMouseMove – Drawing lines
if (e.ID > 2) return;
Graphics g = this.CreateGraphics();
Brush[] colour = {Brushes.Black, Brushes.Red, Brushes.Gold};
if ((e.Button & MouseButtons.Left) > 0)

g.FillEllipse(colour[e.ID], e.X, e.Y, 5, 5);

Lets take a look at a table-aware program equivalent to GroupSketch.
<RUN PROGRAM>
What you see here on the right is a complete tutorial that illustrates how one
can completely implement this program using SDGToolkit.
What makes this unusual from a normal program is that multiple input streams
and cursors are recognized as first class programming concepts.
In fact, the top bit of code specifies each cursors’ appearance and tabletop
orientation, while the bottom reacts to each person’s mouse actions by drawing
appropriately.

Case study - Single display groupware

Multi-user widgets

Rob Diaz

radio buttons
checkbox

slider

This summer, undergraduate student Rob Diaz came on board to develop
some sample SDG widgets atop Edward’s widget layer.
After a few weeks, he designed and experimented with several ideas, and I’ll
show you just a few of them here.
<Run DEMO>

Case study – Single display groupware

Demonstration

Lets watch a video of how the toolkit works, several of these widgets, and
several other examples of SDG.
As before, what I want to stress is that there was an explosion of creativity by
many students.

Case study – Single display groupware

Demonstration

In this next example, built by myself, we see how the power of SDG toolkit is
leveraged by combining it with other toolkits.
I was teaching myself Sheelagh Carpendale’s EPS toolkit that makes it easy to
add fisheye and other lenses into an information space.
I finished a toy application, and then went to bed. …
<TELL STORY>

Case study – Single display groupware

MultiTouch Surfaces

The next video shows examples of how both simple and complex multitouch
SDG applications can be created with the Grouplab DiamondTouch Toolkit.

Case study – Single display groupware

MultiTouch Surfaces

This next example, also by Rob Diaz, is hot off the press. Because I knew he
was intererested in music compostition, my only instructions to him was
“Create an SDG system that exploits sound”. This is what he produced after a
few weeks, where most of the programming complexity was in the sound rather
than the multitouch SDG capabilities..

Listen carefully to the sound, how the volume changes, and how it pans
between speakers.

Case study

Physical User Interfaces

People interact with physical devices located in
their real world

– ubiquitous computing
– context-aware computing
– pervasive computing
– tangible user interfaces
– ambient displays
– …

X

Our third and final case study moves to quite a different area, that of
physical user interfaces.
In these systems,
<READ>

Case study – Physical user interfaces

Physical but Digital Surrogates

Greenberg & Kuzuoka

While one would think that this has little to do with CSCW, in actual fact
we can create many devices that enhance presence and communication
between people.
For example, Our own first efforts in Physical interfaces began in 1999,
when Japanese visitor Hideaki Kuzuoka and I built an always-on video-
based media space augmented by physical devices.
The system was built from scratch, and took several months to do.
I’ll show you an excerpt.
The first part shows how physical devices can provide awareness of
others,
The second part shows how physical sensors can mediate privacy
concerns.
<Show Video>
The problem is that when Hideaki left, we lost his engineering expertise
and the system became impossible to maintain, let alone extend.
The result was…

Case study – Physical user interfaces

Physical but Digital Surrogates

Greenberg & Kuzuoka

… a big mess.

Case study – Physical user interfaces

The Problem

Physical interfaces very hard to build
• circuit and component design
• firmware
• low level network protocols
• electrical engineering

As interface designers, we found physical interfaces hard to build.
We had neither the expertise or the interest to concern ourselves with
<READ>
Rather, we wanted to rapidly prototype systems.

Case study – Physical user interfaces

Phidgets

Servo
servo motors

InterfaceKit
sensors, inputs, outputs

RFID Tag Reader

Power
DC devices

Text LCD Chester Fitchett

Again, we retrenched and decided to build a toolkit to make building
physical user interfaces easier.
I hired Chester Fitchett, one of the few undergraduate computer science
students keenly interested in hardware.
His job was to build a phidget infrastructure, as well as several phidget
components.
So far, we have built several phidgets. These include
<READ>…

Let me show you what its like to program these.
As with our other systems, the idea is that simple things should be simple
and hard things possible.
<SHOW VB EXAMPLE OF SERVO, IF TIME OF INTERFACE KIT>

Case study – Physical user interfaces

Design exercise

Design an imaginative
physical interface that I
can show at a conference…

I then gave these phidgets to a group of undergradaute students who were
taking an HCI course.
They had 3 weeks in total to learn how phidgets worked, to design an interface,
to build it, to demonstrate it, and to produce a video.

project demonstrations

I have over 45 videos of student work, all of them inspiring examples of
creativity.
I selected a few that could be used in a groupware application.
For example, the flower in bloom can be used to signal the presence of a remote
person.

project demonstrations

Our next example is Phidget Eyes, which can also be used to signal presence
and interests of others, albeit in a far different way

project demonstrations

Kari’s magnetic dessert could signal the presence of others in a public room,
such as a coffee room.

Many students looked at physical interfaces to Instant Messenger.
Here is one that not only shows presence but lets people move into contextually
relevant interaction with others.

applications

Our final example, just presented at UBICOM 2003, illustrates how Graduate
student Carmen Neustaedter experimented with a context-aware privacy
preserving media space that connects telecommuters and home workers. You
will see how he combined the Collabrary and Phidgets toolkit into a
sophisticated environment, which he has up and running in his home.
<SHOW VIDEO>
While the appearance of his space is crude, what is important is that the various
toolkits let him evolve his design as he detected problems within it under
everyday use.
Again, toolkits led to creativity and idea evolution.

Summary – the Problem

Groupware innovation is rare because even
simple ideas are too hard to implement.
– programmers lack tools to prototype / develop groupware

Breakthrough Replication Empiricism Theory Automation Maturity

Poor evolution of research & creative product ideas

To summarize,
I started this presentation by stating what I believe is the key
technical problem
<READ>
<Animate>
This has resulted in …

Summary – the Solution

If we give everyday programmers good
tools and building blocks
– simple ideas become simple to do
– innovative concepts become possible
– groupware will evolve

human factors

1st prototype

user testing

design blocked

toolkit

test + improve

prototype
prototype

prototype
prototype

prototype
prototype

prototype
prototype

The solution is, I believe, straightforward.

What we have to do

Create toolkits that
– encapsulate good ideas
– make simple things simple
– make hard things possible

Disseminate them within our community

Encourage inclusion in mainstream
development tools

To realize this solution, there are several things we have to do.
<READ>
Thank you very much for your attention, and I would be happy to
answer any questions.
I would also be happy to demonstrate any of our tools/applications or
show more example student projects after the seminar.

