
Enhancing Creativity with Groupware Toolkits

Saul Greenberg

Department of Computer Science, University of Calgary, Alberta T2N 1N4 CANADA
saul@cpsc.ucalgary.ca; http://www.cpsc.ucalgary.ca/~saul/

Abstract. Effective groupware toolkits not only make it possible for average
programmers to develop groupware, but also enhance their creativity. By
removing low-level implementation burdens and supplying appropriate building
blocks, toolkits give people a ‘language’ to think about groupware, which in
turn allows them to concentrate on creative designs. This is important, for it
means that programmers can rapidly generate and test new ideas, replicate and
refine ideas presented by others, and create demonstrations for others to try. To
illustrate the link between groupware toolkits and creativity, I describe example
toolkits we have built and how others have leveraged them in their own work.

1 Introduction

The first true vision and implementation of real time groupware happened at the Fall
Joint Computer Conference in 1968, where Douglas Engelbart demonstrated many
important concepts including terminal-sharing, multiple pointers and turn-taking over
shared displays, and audio / video conferencing [5]. This tour-de-force was far ahead
of its time, and it was not until 15 years had passed that a few other researchers began
replicating and extending Engelbart’s ideas, most notably Sarin’s [15] and Foster’s
[6] PhD theses. Shortly afterwards, the field of Computer Supported Cooperative
Work (CSCW) formed (late 1980s). A veritable explosion of research followed, and
CSCW is now considered a relatively mature discipline. In spite of this history and
the many research advances made since 1968, groupware has not made many inroads
into the everyday world, especially when compared to the advanced made in desktop
publishing (which also started with Engelbart). Why is this the case?

I argue that a key technical problem is that average programmers do not have
sufficient tools to design, prototype and iterate real time groupware. Current available
tools are far too low level. For example, most commercial toolkits provide basic
communication facility such as socket programming or remote procedure calls, but
little else. This has several serious implications:
− most programmers eschew groupware development because it is too hard to do
− those who do decide to develop groupware place most of their creative efforts into

low level implementation concerns
− resulting designs are often fairly minimal ones, with little attention paid to

necessary design nuances (even ones well known in the CSCW literature) simply
because they are too hard to implement.

Saul Greenberg
Cite as:
Greenberg, S. (2003) Enhancing Creativity with Groupware Toolkits. Invited keynote talk. Proceedings of the CRIWG ' 2003 9th International Workshop on Groupware (Sept 28 - Oct 2, Autrans, France), LNCS vol. 2806, 1-9, Springer-Verlag.

2 Saul Greenberg

The consequence of inadequate development tools is that—excepting members of a
small specialist community—there has been relatively little evolutionary development
and dissemination of groupware systems. The solution is that we as a community
must develop groupware toolkits appropriate for the everyday programmer. By
appropriate, I mean that a good groupware toolkit should:
− be embedded within a familiar platform and language in common use so that

people can leverage their existing knowledge and skills
− remove low level implementation burdens common to all groupware platforms

(e.g., communications, data sharing, concurrency control, session management)
− minimize housekeeping and other non-essential tasks
− encapsulate successful design concepts known by the research community into

programmable objects so they can be included with little implementation effort
− present itself through a concise API that encourages how people should think about

groupware
− make simple things achievable in a few lines of code, and complex things possible.

I believe that effective groupware toolkits not only make it possible for others to
develop groupware, but also enhance their creativity. If we remove low-level
implementation burdens and supply appropriate building blocks, we provide people a
‘language’ to think about groupware, which in turn allows them to concentrate on
creative designs.

While some may question this premise as over-simplistic, we must recognize that
toolkits in other domains have a proven record of enhancing creativity in the general
programming community. For example, GUI toolkits, such as Visual Basic, supply a
large set of interface components (widgets) and an interface builder for laying them
out on the display. Because GUI toolkits encourage programmers to think in terms of
widgets, programmers have created a plethora of applications that ‘glue’ these
components together in interesting ways [14]. Another example is Macromedia’s
Flash, which encourages both programmers and non-programmers to think in terms of
scripted animations. Because Flash makes it easy to do, we now see a proliferation of
many quite amazing animations on the Web.

To illustrate the link between groupware toolkits and creativity, I will provide in
this paper several examples of groupware toolkits we have built and how students—
both graduates and undergraduates—have leveraged these tools in their own work.
Before doing so, I want to explain a recurring pattern that emerged over the years in
our group’s investigation of the human and technical factors of groupware, and how
recognizing this pattern has led to our appreciating the value of good tools.

1. Human factors perspective. Our initial goals in our groupware projects are
typically oriented towards human factors. Essentially, we wanted to understand
how people interact together when using a particular style of yet-to-be developed
groupware application. We would then generalize this understanding to inform
other groupware designs.

2. Initial prototype. Next, we would set about building the first version of the
groupware application. This typically involved huge effort as measured by lines of
code, time, learning, failed attempts, debugging, and so on. In spite of this effort,
the result was often a fragile and rudimentary system.

Enhancing Creativity with Groupware Toolkits 3

3. Prototype testing. We would then have people try out this prototype. Because are
first design attempts, we often saw major usability problems that required fixing.

4. Iterative prototypes. To fix these usability problems, we would then iteratively
redesign the prototype. Yet this often proved impractical to do. The prototype code
was often too complex to change, or the system itself was too fragile. Redesigning
from scratch, while possible, was onerous due to the time involved.

5. Retrenchment: building a groupware toolkit. We would then realize that—in the
long run—iterative prototyping would be far easier if we took the time to build a
robust toolkit. Thus we would set ourselves a new technically-oriented goal, where
we would delve into the challenges of understanding and building this toolkit and
its accompanying run-time architecture. This often meant that we had to defer
work on our main human factors goal.

6. The payoff: rapid prototyping. After building the toolkit, we would release it to
our internally community. There would then be an explosion of activity. Those
with core interests in the human factors challenges would rapidly develop and test
a variety of groupware interaction techniques and applications. Those with
interests lying elsewhere would often create innovative groupware applications as a
side project just to satisfy their own curiousity.

7. Improvement and dissemination. Because we would develop the toolkit and
applications side by side, we would bring good application ideas back into the
toolkit as building blocks that could be trivially included in other applications.
Examples included common architectural features, widgets, interface components,
and interaction techniques.

In the remainder of this paper, we will briefly summarize our experiences with
several toolkits that we developed for three groupware domains: real time distributed
groupware, single display groupware (SDG), and physical user interfaces.

Toolkits for Real Time Distributed Groupware

My first foray into groupware echoed the above pattern. In 1989, I and my students
decided to build a simple drawing application for distributed participants designed
around John Tang’s human factors observations of how small design teams draw
together [17]. The result was GroupSketch [11], a program written over several
months by student Ralph Bohnet. While simple in functionality, the actual program
was quite complex. Its more than 5000 lines of code had to deal with many things:
setting up the basic communication architecture and protocol for data exchange,
creating a session manager that would let people join an existing conference,
managing an event stream that handled simultaneous local and remote user actions,
creating labeled telepointers for each participant, and creating the actual drawing
surface and actions. All this had to work efficiently so that the participants would see
no noticeable lag, and this required quite a bit of time and experimentation to get
right. Shortly after, student Roseman built GroupDraw [11], an object-based drawing
system. As with GroupSketch, the majority of the GroupDraw programming effort
went into developing the underlying architecture and worrying about performance
issues vs designing the actual group-drawing interface.

4 Saul Greenberg

Both systems worked well enough to give us insights into what we wanted to do
next, but were just too large and too finicky to extend. Consequently, we turned our
efforts into developing GroupKit, a toolkit for building distributed real time
groupware applications [10]. Our experiences with GroupSketch and GroupDraw
helped us identify elements common to real time distributed groupware applications,
and our GroupKit design would provide these elements to the programmers.
− A run-time architecture automatically managed processes, their interconnections,

and communications; thus programmers did not have to do any process or
communications management. This came for free.

− Session managers let end-users create, join, leave and manage meetings. A
selection of session managers came as pre-packaged interfaces (one is visible on
the top right of Fig 1b), and the programmer could use these ‘out of the box’.
However, the programmer could craft their own session manager if they wished.

− A small set of groupware programming abstractions let a programmer manage all
distributed interactions. Through an RPC-like mechanism, the programmer could
broadcast interaction events to selected participants. Alternatively, the programmer
could manage interaction via a shared data model: programmers would then think
about groupware as a distributed model-view-controller system. Local user actions
would change data in the shared model, and remote processes would detect these
and use the altered data to generate the view.

− Finally, groupware widgets were included that let programmers add generic
groupware constructs of value to conference participants. Our first widgets were
telepointers, which a programmer could add with a single line of code. Later
widgets included awareness widgets such multi-user scrollbars and radar views.

GroupKit considerably simplified groupware development e.g., using GroupKit we
reimplemented GroupSketch in a few hours in less than a page of code. What was
more important is that we could now explore various design ideas through rapid
prototyping. For example, our group created a flurry of systems illustrating different
methods for supporting awareness within a visual workspace, sometimes turning
around several different design ideas in a single day. Figure 1 shows two example

Fig. 1. a) the portrait radar view, b) a fisheye editor; both show where others are working

Enhancing Creativity with Groupware Toolkits 5

systems illustrating how people within a group
could maintain awareness of others’ actions [13,9].
Because we could now try out our ideas, we could
quickly determine which ones were worth pursuing
and which were not.

While GroupKit was very useful for prototyping
real-time distributed graphical user interfaces, it did
not handle multimedia. Consequently, we built a
new toolkit called the Collabrary [3] that would let
us rapidly prototype multimedia groupware. It
provides extremely easy access and manipulation
of multimedia information. For example,
discovering a video camera and acquiring an image takes two line of Collabrary code.
It also provides a straightforward API that lets people distribute this information
between groupware program instances through a shared data model. Similar to
GroupKit, students began creating multimedia groupware because it was easy to do.
One example is the Presence History system included in Figure 2, built by Michael
Boyle. The remote video is displayed, and a graph at its bottom shows a history of
other people’s presence and activity in the scene, determined by image analysis. The
entire program is 38 lines of code. Another much more complex example is Michael
Rounding’s Notification Collage [12], where colleagues post multimedia elements
onto a real-time collaborative surface that all members can see.

Toolkits for Single Display Groupware

Researchers in Computer Supported Cooperative Work (CSCW) are now paying
considerable attention to the design of single display groupware (SDG) i.e.,
applications that support the work of co-located groups over a physically shared
display [16]. Our own work in SDG began with an investigation of transparent menus
as an interaction technique that would minimize how people working close together
would interfere with each other [19]. Fortunately, Bederson and Hourcade [1] had
developed the MID toolkit that let one access multiple mice from Microsoft
Windows‘98. While it was still difficult to develop SDG, their toolkit made our own
development a reasonable prospect.

 The problem was that MID did not work with later versions of Windows.
Consequently, we decided to re-implement and significantly extend some of the ideas
in MID in our own SDGToolkit [18]. SDGToolkit automatically captures and
manages multiple mice and keyboards (as does MID), and it also presents them to the
programmer as uniquely identified input events relative to either the whole screen or a
particular window. Unlike MID, it transparently provides multiple cursors, one for
each mouse. To handle orientation issues for tabletop displays (e.g., people seated
across from one another), programmers can specify a participant’s seating angle,
which automatically rotates the cursor and translates input coordinates so the mouse
behaves correctly. Finally, SDGToolkit provides an SDG-aware widget class layer

Fig. 2. Presence History (M. Boyle)

6 Saul Greenberg

that significantly eases how programmers create novel graphical components that
recognize and respond to multiple inputs.

With SDGToolkit, simple things are simple. For example, Figure 3a illustrates a
simple drawing application designed for a square tabletop with four seated people,
one per side. Cursors and text labels are oriented appropriately, and the person’s
mouse behaves correctly given their orientation. It is written in 20 lines of code.

Another example illustrates how students Nicole Stavness and Edward Tse
reimplemented Xerox PARC’s ToolGlass interaction technique as an SDG widget.
Each user has two mice. Using the first mouse in with their non-dominant hand, each
moves his/her toolglass around. With their other hand and mouse, they click through
the lens to choose a color. Their programming effort to manage and identify multiple
input devices and to package it up as an SDG widget was relatively small; instead
most efforts went into the creative aspects of the ToolGlass graphics.

More recently, we received a DiamondTouch surface from MERL, which detects
multiple simultaneous touches by multiple people and that reports them to a
programmer through a basic SDK. We created the DiamondTouch toolkit that wraps
this SDK and adds extra capabilities to it, considerably simplifying how people
program multi-user / multi-touch applications [4]. Similar to our SDGToolkit, the
toolkit identifies multiple inputs on a per-user basis. It generates events that reports
when people tap or double-tap the surface, the bounding box surrounding one
person’s multiple touches, and a set of vectors reporting the signal strength of a
person’s touches.

To illustrate, Figure 4 shows SquiggleDraw, a paint program written in
approximately 10 minutes in about 15 lines of code. SquiggleDraw has two
interesting properties.
• A person adjusts line thickness on the fly. One draws by changing the bounding

region of the drawing with two fingers. One draws thin lines by holding their
thumb and forefinger close together, and progressively thicker lines by spreading
their fingers apart.

• Up to four people can draw simultaneously, with each person’s lines appearing in a
different color.

Because of the availability of both the SDGToolkit and the DiamondTouch Toolkit,
many other students in our laboratory are now working on single display groupware.
Some are concentrating on quite serious research projects, and are rapidly

Fig. 3. a) SDG TableTop Drawing; b) SDG MagicLenses

Enhancing Creativity with Groupware Toolkits 7

implementing ideas just to test them out. Others are ‘dabbling’ for their own curiosity,
but are producing fairly interesting systems. For example, student Tony Tang
combined both the SDGToolkit and the Collabrary to create a tabletop application
that handles both co-located and distance-separated participants.

Toolkits for Physical User Interfaces

In the last few years, researchers have developed groupware designs that include
physical user interfaces augmented by computing power. These typically involve
ambient displays for showing awareness information, or collaborative physical
devices that are controlled by multiple (perhaps distributed) people. While this is an
exciting new area, everyday programmers face considerable hurdles if they wish to
create even simple physical user interfaces. Most lack the necessary hardware
training. Those willing to learn find themselves spending most of their time building
and debugging circuit boards, firmware and low-level wire protocols rather than on
their physical user interface designs. The problem is that we have not provided
programmers with adequate building blocks for rapidly prototyping physical user
interfaces. This leaves them in a position similar to early GUI researchers who had to
build their widgets from scratch, or to early graphics researchers who had to build
their 3D environments by brute force. Given this onerous situation, it is no wonder
that most research on physical user interfaces come from top researchers at major
university and industrial research laboratories.

As with our other areas, our solution was to develop a toolkit for rapid
development of physical widgets, or phidgets [8]. Our approach was to provide
programmers with pre-packaged hardware devices that can be ‘dropped into’ software
applications. This familiar programming paradigm is directly analogous to how
graphical user interface (GUI) widgets are programmed.

I gave phidgets to undergraduate students with no hardware expertise to see what
they could do with them. These typically took the form of a short two week
assignment. The results were remarkable. While some students replicated examples of
physical user interfaces reported by other researchers, most produced their own
innovative designs [8].

Fig. 4. Two people using SquiggleDraw.

8 Saul Greenberg

A few example of groupware systems they built are illustrated in Figure 4. The
first two are physical notification devices attached to MSN Instant Messenger. In
Messenger Frame by Mike Hornby-Smith (4a), a contact’s photo is lit up and a sound
cue generated as that contact appears online or changes their activity status. One
sends a message directly to that contact by touching his photo. In MC Status by
Christian Leith (4b), contacts are represented by figurines. Offline figurines face the
wall, and online figurines face forward. Touching the area in front of the figurine
initiates a message. Appointment Assistant by Zaid Alibhai (4c) is an ambient
appointment reminder display that interacts with a user’s on-line calendar to remind
them of upcoming appointments. As an appointment approaches, the figure on the top
of the display moves along the scale and LEDs light up to further indicate the time
remaining before the next appointment. FoosWars by Mike Larke and Mike Clark
(4d) is a soccer table for distributed participants. One person plays on the physical
table while the other plays over the web. The remote player has a live aerial view of
the table captured via a web camera located above the table, and directly manipulates
his or her players through use of physical sliders. Other example phidget projects are
found at www.cpsc.ucalgary.ca/grouplab/phidgets/gallery.

Closing thoughts.

Groupware development parallels Gaines’ BRETAM phenomenological model of
developments in science technology [7]. The model states that technology-oriented
research usually begins with an insightful and creative breakthrough, followed by
many (often painful) replications and variations of the idea. Empiricism then occurs
when people draw lessons from their experiences and formalize them as useful
generalizations. This continues to theory, automation and maturity.

Within this context, we can now see how groupware toolkits affords creative
research. Toolkits make it easier for researchers to create new breakthroughs through

Fig. 4. a) Messenger Frame, b) MC Status, c) Appointment Assistant, and d) FoosWars

Enhancing Creativity with Groupware Toolkits 9

rapid prototyping of many new ideas. They let others replicate and evolve ideas
reported in the literature. They also let researchers more easily move into empiricism
by making it easy to create different versions of testable systems.

References

1. Bederson, B. & Hourcade, J.: Architecture and implementation of a Java package for
Multiple Input Devices (MID). HCIL Technical Report No. 9908. (1999)

2. Bier, B. & Freeman, S.: MMM: A user interface architecture for shared editors on a single
screen. Proc ACM UIST (1991) 79-86.

3. Boyle, M. and Greenberg, S.: GroupLab Collabrary: A Toolkit for Multimedia Groupware.
In J. Patterson (Ed.) ACM CSCW 2002 Workshop on Network Services for Groupware,
November (2002)

4. Diaz-Marino, R.A., Tse, E, and Greenberg, S.: Programming for Multiple Touches and
Multiple Users: A Toolkit for the DiamondTouch Hardware. Department of Computer
Science, University of Calgary, Calgary, Alberta CANADA. June. Includes video (2003)

5. Engelbart, D. and English, W. Research Center for Augmenting Human Intellect, Proc. Fall
Joint Computing Conference, AFIPS Press (1968) 395-410

6. Foster, G.: Collaborative Systems and Multi-user Interfaces. PhD Thesis (UCB/CSD
87/326), Computer Science Division (EECS), Univ of California at Berkeley USA (1986)

7. Gaines, B.: Modeling and forecasting the information sciences. Information Sciences 57/58,
(1999) 13-22

8. Greenberg, S. and Fitchett, C.: Phidgets: Easy Development of Physical Interfaces through
Physical Widgets. Proc ACM UIST (2001) 209-218

9. Greenberg, S., Gutwin, C. and Cockburn, A.: Using Distortion-Oriented Displays to
Support Workspace Awareness. In A. Sasse, R. Cunningham, R. Winder (Eds), People and
Computers XI (Proc HCI'96) Springer-Verlag (1996) 299-314

10. Greenberg, S. and Roseman, M.: Groupware Toolkits for Synchronous Work. In M.
Beaudouin-Lafon, editor, Computer-Supported Cooperative Work (Trends in Software 7),
John Wiley & Sons Ltd (1999) 135-168

11. Greenberg, S., Roseman, M., Webster, D. and Bohnet, R.: Human and technical factors of
distributed group drawing tools. Interacting with Computers, 4(1) (1992) 364-392

12. Greenberg, S. and Rounding, M.: The Notification Collage: Posting Information to Public
and Personal Displays. Proc ACM CHI (2001) 515-521

13. Gutwin, C., Greenberg, S. and Roseman, M.: Workspace Awareness in Real-Time
Distributed Groupware: Framework, Widgets and Evaluation. In A. Sasse, R. Cunningham,
R. Winder (Eds), People and Computers XI (Proc HCI'96) Springer-Verlag (1996) 281-298

14. Myers, B.: State of the Art in User Interface Software Tools. In R. Baecker, J. Grudin, W.
Buxton and S. Greenberg (Eds) Readings in Human Computer Interaction: Towards the
Year 2000. Morgan Kaufmann (1995) 323-343

15. Sarin, S. Interactive On-Line Conferences, PhD thesis, MIT/LCS/TR330, MIT USA (1984)
16. Stewart, J., Bederson, B. and Druin, A.: Single display groupware: a Model for Co-present

Collaboration, Proc ACM CHI (1999) 286-293
17. Tang, J.C.: Findings from observational studies of collaborative work. International Journal

of Man Machine Studies, 34(2), Academic Press (1991) 143-160.
18. Tse, E. and Greenberg, S.: Rapidly Prototyping Single Display Groupware through the

SDGToolkit. Report 2003-721-24 Computer Science, University of Calgary, Canada (2003)
19. Zanella, A. and Greenberg, S.: (2001) Reducing Interference in Single Display Groupware

through Transparency. Proc ECSCW, Kluwer (2001).

