
SDGToolkit: A Toolkit for Rapidly Prototyping Single
Display Groupware
Edward Tse and Saul Greenberg
Department of Computer Science

University of Calgary
Calgary, Alberta, Canada T2N 1N4

[tsee, saul]@cpsc.ucalgary.ca

ABSTRACT
Single Display Groupware (SDG) is a field of study that
explores how multiple users share a common display. The
problem is that it is hard to develop SDG software, for
operating systems offer little support (and considerable
hurdles) for developing software that manages
simultaneous use of multiple input devices, such as
multiple mice and keyboards. Yet serious research in SDG
demands that we have the ability to rapidly prototype our
ideas. In this poster, we present SDGToolkit, a toolkit for
rapidly prototyping single display groupware. We describe
its features, and illustrate by code how it works.

Keywords
Single display groupware, interface toolkits, CSCW.

INTRODUCTION
While there is much interest in single display groupware
(SDG) [1,2,3], these kinds of systems are still notoriously
hard to build. Typically, most researchers develop their
own specialized applications from the ground up, resulting
in SDG that is tedious to build, difficult to modify, and
hard to replicate. This problem is exacerbated by our
current generation of operating systems that make it
difficult to do even the most basic SDG activities. For
example, if multiple mice and keyboards are plugged into a
computer, a programmer has to do low-level device
manipulation to retrieve and process the various inputs as
separate streams. Even when this is done, the programmer
has to draw multiple cursors (one for each mouse),
interpret delta coordinates into window system coordinates,
attach a keyboard stream to a window, and so on.
Because we wanted to pursue research in SDG, we decided
to build a toolkit that would help us and others rapidly
develop SDG interface components and applications. This
paper reports our progress on our toolkit, which we call
SDGToolkit. In particular, we focus on how we manage
input from multiple mice and keyboards. We describe how
SDGToolkit appears to the SDG application developer, and
then how it works under the covers.

Related Work
SDGToolkit is heavily influenced by other systems. MMM
(Multi-Device, Multi-User, Multi-Editor) was an early
SDG environment that supported input for up to three serial
mice [2]; however, this system was only available to the
developers. Pebbles explores how personal digital
assistants can be used as input devices for SDG [3]. Of
course, video game consoles such as Nintendo, Xbox and
Sony Playstation manage multiple input devices, but these
are not easy to program and are not suitable for
productivity software. The closest to our work is MID [1]
(Multiple Input Devices), a Java extension that works with
Windows 98 to provide support for multiple mice.
Unfortunately, MID does not work with later versions of
Windows.

SDGToolkit
SDGToolkit provides the basic primitives required to
obtain mouse and keyboard input from all standard device
types, including both serial and USB. One programs SDG
applications in any language compatible with Microsoft
.NET e.g., Visual C++, C# and Visual Basic.
To illustrate what a programmer would see, Figure 1 lists
the code for a simple SDG application. First, the
programmer creates an SDGcontrol instance; this handles
all attached mice and keyboards. Second, properties of the
SDGcontrol are set: for example, the SetRelativeTo
property instructs the control to return all mice coordinates
relative to a given window’s upper left corner. The
programmer then discovers how many mice and keyboards
are attached to the computer (e.g., the TotalMice
property), and changes the way individual mice cursors
appear by indexing each mouse’s picture and text
properties. Third, for a tabletop display where people are
seated on different sides of the table, the programmer
rotates the pointer’s text and how the pointer responds to
mouse movements through the TextRotation and
DegreeRotation property. Fourth, the programmer takes
action on events returned by the various mice and
keyboards. As the example shows, the instance returns
events whenever any mouse is moved and its buttons
pushed, or whenever a key is pressed on any keyboard.
Other events also exist, such as MouseDown and MouseUp.
Of particular importance is the first argument MouseID or
KeyboardID which identifies which mouse or keyboard

Saul Greenberg
Cite as:
Tse, E. and Greenberg, S. (2002) SDGToolkit: A Toolkit for Rapidly Prototyping Single Display Groupware. Poster in ACM CSCW '2002 Conference on Computer Supported Cooperative Work, November.
Copyright held by ACM. Includes poster presented at the conference.

generated the event. Finally, each mouse can interact with
normal widgets, albeit in a limited way. This is illustrated
by the StandardButton_Click in Figure 1, a callback to
a standard GUI button. Clicking on the button with an SDG
mouse also invokes this callback. Because this callback
cannot identify what mouse was pressed, the programmer
uses the sdgControl’s LastMouseClick property to find
out which mouse it was.
Figure 2 illustrates a basic SDG sketchpad, written in
SDGToolkit, designed for a tabletop display. Its program
code (not shown, but similar in style to Figure 1) is short
and easy to write. We see multiple pointers, one for each
mouse. Each pointer comprises customized text and cursor,
and is rotated to orient itself correctly relative to the mouse
owner. People work simultaneously, and each mouse move
generates different actions e.g., drawing differing lines of
different colors. A person changes one’s drawing color by
scrolling the mouse wheel up and down. Each person can
also type text on one’s own keyboard, where it is drawn
near their pointer in the correct orientation.
Internally, we capture mouse events through Microsoft’s
Raw Input Model (new in XP). Unlike MID [1] which only
manages USB mice, we can potentially access all system
input devices. For example, we added multiple keyboards
to an early version of our system with relatively little
effort. Raw Input is quite low level: one registers the
device it wants to get data from, and then one monitor input
activity on the system. SdgToolkit leverages this in several
ways. First, it discovers and registers the appropriate
devices (mice and keyboards). Second, for mice it takes the
delta values and translates these into absolute window or
screen coordinates. Third, it implements the multiple
cursors corresponding to the various mice by drawing them
as low level windows, which are efficient to move and

which handle transparency effects. Fourth, it raises events
for all keyboard and mice actions, such as those illustrated
in Figure 1. Finally, the SDG toolkit invisibly moves the
real mouse cursor to the location of the currently active
SDG mouse, and raises standard mouse events
corresponding to the SDG mouse events. This allows any
of the users to interact (albeit in a limited way) with non
SDG-aware widgets and standard window controls.

FUTURE WORK
SDGToolkit currently provides only the primitives needed
to manage multiple mice, keyboards and pointers. While
one can now create SDG applications such as the one in
Figure 2, the problem is how widgets (buttons, menus etc)
are handled. SDGToolkit does support limited interaction
with standard widgets, but it lacks SDG-aware widgets i.e.,
widgets that respond correctly to different people and/or to
simultaneous actions over it. We are currently
implementing an extension that lets us and others create
true SDG widgets. We will test these widgets, and
successful ones will be included in SDGToolkit.

ACKNOWLEDGMENTS. This research was partially
funded by NSERC, ASERC, and Microsoft Research. Mike
Boyle helped with Windows. Russell Kruger shared his
thoughts on tabletop displays.
Software availability: see www.cpsc.ucalgary.ca/grouplab/
1. Bederson, B., and Hourcade, J. (1999) Architecture and

implementation of a Java package for Multiple Input
Devices (MID). HCIL Technical Report No. 99-08,
May. http://www.cs.umd.edu/hcil

2. Bier, E., and Freeman, S. (1991) MMM: A user
interface architecture for shared editors on a single
screen. Proc ACM UIST’91, p79-86.

3. Myers, B., Stiel, H. and Gargiulo, R. (1998)
Collaboration using multiple PDAs connected to a PC.
Proc ACM CSCW, p285-294.

Figure 2: SDG Sketch. Users change colours by moving
the mouse wheel up and down

Dim WithEvents g As sdgControl

‘Create the control & make returned coordinates relative to the main window.
’Also change the way each mouse’s cursor will look
Sub Form_Load()
 Set g = New sdgControl
 g.SetRelativeTo Form1.hWnd End Sub
 For I = 0 To g.TotalMice - 1
 g(I).Picture = "cursor" & I * ".ico"
 g(I).Text = "user-" & I
 g(I).TextRotation = I*90
 g(I).DegreeRotation = I*90
 Next I
Exit Sub
‘A mouse moved. Show which one moved and its coordinates
Sub g_MouseMove(MouseID As Long, Button As Long,
 X As Long, Y As Long)
 Msgbox "Moved: " & MouseID & "-" & X & "," & Y
End Sub

‘A mouse wheel was scrolled. Show which one scrolled and by how much
Sub g_MouseWheel(MouseID As Long, WheelDelta As Long)
 Msgbox "Wheel: " & MouseID & "-" & WheelDelta
End Sub

‘A key was pressed. Show which keyboard and what key
Sub g_KeyDown(KeyboardID As Long, KeyCode As Long, _
 Shift As Long)
 Msgbox "Key: " & KeyboardID & "-" & KeyCode
End Sub

Sub StandardButton_Click ()
 MsgBox "Mouse " & g.LastMouseClick & " Clicked"
End Sub

Figure 1. A simple SDG program written in Visual Basic.

S
D

G
 T

o
o

lk
it

To
ol

ki
t

fo
r

ra
pi

dl
y

pr
ot

ot
yp

in
g

si
n

g
le

 d
is

p
la

y
g

ro
u

p
w

a
re

A
rc

h
it

e
ct

u
re

i
h

i
l

O
ri

e
n

ta
ti

o
n

S
in

g
le

 d
is

p
la

y
g

ro
u

p
w

a
re

(S
D

G
):

so

ft
w

ar
e

fo
r

pe
op

le
 w

ho
 s

im
ul

ta
ne

ou
sl

y
us

e
m

ul
ti
pl

e
in

pu
t

de
vi

ce
s

ar
ou

nd
 a

 c
om

m
on

 d
is

pl
ay

G
o

a
ls

D
im

 W
it
hE

ve
nt

s
g

A
s

sd
g

C
o

n
tr

o
l

‘C
re

at
e

th
e

co
nt

ro
l &

 m
ak

e
re

tu
rn

ed
 c

oo
rd

in
at

es
 r

el
at

iv
e

‘m
ak

e
re

tu
rn

ed
 c

oo
rd

in
at

es
 r

el
at

iv
e

to
 t

he
 m

ai
n

w
in

do
w

.
S
ub

 F
o

rm
_

Lo
a
d

()
S
et

 g
=

 N
ew

 s
dg

C
on

tr
ol

g

.S
et

R
el

at
iv

eT
o

Fo
rm

1.
hW

nd

Ex
it
 S

ub

‘O
ne

 o
f

th
e

m
ic

e
ha

s
m

ov
ed

.
If

 t
he

 le
ft

 b
ut

to
n

is
 p

re
ss

ed
,

‘d
ra

w
 a

 c
ol

ou
re

d
po

in
t

ar
ou

nd
 it

s
po

si
ti
on

S
ub

 g
_

M
o

u
se

M
o

ve
(M

o
u

se
ID

A
s

Lo
ng

,
B

u
tt

o
n

A
s

Lo
ng

,
X

A
s

Lo
ng

,
Y

A
s

Lo
ng

)

P
ro

g
ra

m
m

in
g

 a

si
m

p
le

 d
ra

w
in

g

a
p

p
li

ca
ti

o
n

U
p

ri
g

h
t

D
is

p
la

ys

C
re

a
te

 s
in

g
le

 d
is

p
la

y
g

ro
u

p
w

a
re

 t
o

o
ls

 s
o

•
d

e
ve

lo
p

e
rs

 f
o

cu
s

o
n

 a
p

p
li
ca

ti
o

n
 d

e
si

g
n

A
p

p
ro

p
ri

a
te

 f
o

r
th

e
 a

ve
ra

g
e
 p

ro
g

ra
m

m
e
r

•
e
a
sy

 t
o

 p
ro

g
ra

m
 a

n
d

 e
x
te

n
d

sd
g

W
id

g
e
ts

 (
in

 p
ro

g
re

ss
)

If
B
ut

to
n

=
 v

bM
ou

se
Le

ft
 T

he
n

If
(M

ou
se

ID
 >

=
 1

)
Th

en
Fo

rm
1.

Fo
re

C
ol

or
 =

 v
bR

ed
El

se
Fo

rm
1.

Fo
re

C
ol

or
 =

 v
bB

lu
e

En
d

If
Fo

rm
1.

Li
ne

(X
,

Y)
-(

X
 +

 2
,

Y
+

 2
)

En
d

If
En

d
S
ub

T
a
b

le
 T

o
p

s
R

e
q

u
ir

e
m

e
n

ts
M

u
lt

ip
le

 in
p

u
t

d
e
vi

ce
s

•
m

u
lt

ip
le

 k
e
yb

o
a
rd

s
•

m
u

lt
ip

le
 m

ic
e

•
m

u
lt

ip
le

 c
u

rs
o

rs

sd
g

W
id

g
e
ts

 (
in

 p
ro

g
re

ss
)

sd
g

M
o

u
se

C
o

n
tr

o
ls

 t
h

e
 c

u
st

o
m

iz
a
ti

o
n

 o
f

e
a
ch

 i
n

d
iv

id
u

a
l

m
o

u
se

cu

rs
o

r
u

si
n

g
 a

n
im

a
te

d
 c

u
rs

o
rs

 a
n

d
 w

in
d

o
w

s
fo

rm
s.

S
D

G
 a

w
a
re

 w
id

g
e
ts

 t
h

a
t

k
n

o
w

s
a
b

o
u

t
m

u
lt

ip
le

u

se
rs

 i
n

h
e
ri

t
fr

o
m

 s
ta

n
d

a
rd

 w
in

d
o

w
s

w
id

g
e
ts

T
a
b

le
 T

o
p

s

Id
e
n

ti
fi

ca
ti

o
n

•
id

e
n

ti
fy

 i
n

p
u

t
fr

o
m

 i
n

d
iv

id
u

a
l

d
e
vi

ce
s

W
id

g
e
ts

•
co

n
tr

o
ls

 t
h

a
t

re
sp

o
n

d
s

a
p

p
ro

p
ri

a
te

ly
 t

o
 m

u
lt

ip
le

 u
se

rs
R

a
w

 i
n

p
u

t
la

ye
r

sd
g

C
o

n
tr

o
l

C
o

n
tr

o
ls

 a
ll

 m
o

u
se

 m
o

ve
m

e
n

t
e
ve

n
ts

 a
n

d
 h

a
n

d
le

s
cu

rs
o

r
m

o
ve

m
e
n

t.

P
ro

je
ct

s
S

D
G

 G
a
m

e
s

–
R

u
sh

 H
o

u
r

S
D

G
 R

e
se

a
rc

h
 E

x
p

e
ri

m
e
n

t
E
la

st
ic

 P
re

se
n

ta
ti

o
n

 S
p

a
ce

s
E
x
p

lo
ri

n
g

 S
D

G
 B

u
tt

o
n

s

E
d

w
a
rd

 T
se

S
a
u

l
G

re
e
n

b
e
rg

