
Customizable Physical Interfaces for Interacting with
Conventional Applications

Saul Greenberg and Michael Boyle
Department of Computer Science

University of Calgary
Calgary, Alberta, Canada T2N 1N4

Tel: +1 403 220 6087
saul or boylem@cpsc.ucalgary.ca

ABSTRACT

Most of today’s complex software products rely solely on
graphical controls (GUI widgets) for user interaction.
However, GUI widgets can be difficult to find and use.
Physical controls are often simpler to manipulate and
arrange sensibly about one’s workspace. Thus, we wish to
link a physical interface to existing commercial
applications, e.g., an office productivity suite. To do so, we
must tap in to its functionality in ways that do not require
access to its source code. We present our widget
picker/taps package. It gives developers access to the
functionality of an existing application via the semantics of
its GUI widgets. This approach works well with many
present-day commercial applications, unlike two other
common approaches: hooking into application-specific
APIs, and simulating raw user input. We present examples
that illustrate how this package is used to link existing
application widgets to physical controls. Our
implementation prompts a number of issues relevant to
makers of windowing systems and GUI toolkits.

INTRODUCTION

Almost all desktop computer interaction is done using
keyboards and pointers (e.g., mouse, light pen) to interact
with graphical UI components (e.g., buttons, menus,
sliders). The typical application may present the user with
hundreds of different functions, each behind its own GUI
control. All systems make a tacit assumption that, with the
exception of typing and keyboard shortcuts, these controls
should be on-screen and should be accessed with the
mouse. Also, it is assumed that invoking functionality this
way is an efficient interaction method.

We challenge these assumptions. First, it can be hard to
find the GUI control needed for a given application
function because the controls are hierarchically nested in
dialog boxes and menus. This is done to optimize use of
screen real estate. Second, to minimize the effort
associated with this hierarchical navigation, some GUI

controls are brought to the top-most level by clustering
them into tool palettes. These tool windows remain visible
on the display at all times, and thus compete with the
application itself not only for display space, but also for the
user's attention. Third, while nearly all GUI controls rely
on the mouse and display for input and output, these are not
necessarily the best devices for any given control task.
They provide few cues as to their behaviour beyond mouse
pointer shape and the use of shading and highlighting in the
control’s graphical appearance. Also, although the mouse
offers (virtually) unlimited motion in a 2D plane, many GUI
widgets do not need both degrees of freedom. Consider, for
example, a trackbar (slider) control: it can only be moved
along a straight line. Thus, the unconstrained 2D nature of
mouse movement does not match the constrained 1D nature
of a trackbar.

By contrast, physical interface components—e.g., push
button switches, rheostats (dials), sliders, and light or
pressure sensors for input, and LEDs, servo motors, and DC
power supplies for output—have a number of properties
that complement graphical controls.

• Screen real estate is saved, leaving more room for
applications and diminishing competition for the user’s
attention. Navigation poses fewer demands as all physical
controls are ‘top-level.’

• More efficient input is possible, since a physical control’s
form factor can more closely match the needs of the
interaction. Consider, for example, that a rheostat makes
a better volume control than a using a mouse to control a
GUI trackbar because it constrains the user’s actions
along just one dimension.

• Two-handed input uses are possible when the dominant
hand controls a mouse while the other hand controls the
(better constrained) physical device.

• Can be brought ‘ready to hand’ as needed and pushed to
the periphery when not needed [18].

• Spatial memory is better used. Physical controls do not
move about the workspace of their own accord. By
contrast, GUI controls are often repositioned as an
unexpected consequence of some unrelated user action.

• All of a person’s abilities are used. Consider an electric
fan instead of a GUI progress bar to illustrate the progress

Saul
Greenberg, S. and Boyle, M. (2002) Customizable physical interfaces for interacting with conventional applications. Report 2002-702-05, Department of Computer Science, University of Calgary, Calgary, Alberta, Canada. April.

made on a lengthy operation. The fan blows harder as the
process nears completion. While a GUI progress bar
relies solely on the visual sense, the fan’s output is
perceived by many senses: sight, hearing, and touch.

Given these advantages, why aren’t physical controls more
prevalent in modern interfaces? Besides cost-related
factors, physical interfaces scale poorly. Having hundreds
of devices—one for each application function—is simply
impractical. Also, physical controls are not as malleable as
graphical controls and are quickly rendered useless when
one updates his/her software or switches to a competitor’s
product. Consequently, there is substantial pressure to keep
the number of physical controls small.

Although it has been repeatedly shown that people use only
a small subset of the large number of functions available in
most productivity applications [2], this subset differs
considerably from user to user [13] (beyond a few universal
functions like cut and paste). Thus, it is not possible to
determine beforehand which functions should be mapped
onto physical devices.

Despite these problems, the advantages of physical controls
motivate our desire to re-introduce them into the interface.
We believe this can be accomplished through customizable
physical user interfaces, the main idea of which is:

…to allow a person to easily bind a function from an
application to a physical device, and invoke the function
through that device or see its state displayed on it.

We also believe that customizable physical user interfaces
will be realistic only if they work with existing unaltered
applications. These could include not only well known
applications (e.g., Microsoft Office) but also niche
products. In either case, source code modifications should
not be needed to customize them with physical devices.

In this paper, we describe a software package for
customizing existing applications with physical interfaces.
Our approach is to ‘tap in’ to functions exposed by
graphical controls, and to bind the widget semantics to
physical controls with similar properties.

To explain, we first describe what we have built, as seen
from an end-user’s perspective, using various example
physical interface customizations. We then transpose the
examples to show them from an end-programmer’s
perspective. We follow this with a description of our
package’s internals, which raises issues relevant to makers
of windowing systems and GUI toolkits. We conclude by
describing a small representative sample of the interface
design possibilities afforded by our architecture and
providing an historical overview of related work.

WHAT WE BUILT: AN END-USER’S PERSPECTIVE
Our architecture allows one to craft many kinds of physical
interface customizations. In this section, we show by
examples what an end-user may see and what they must do
to customize a particular set of controls.

Example 1. The button
Our first simple example illustrates a single customizable
push button. Figure 1a shows the physical button.
Figure 1b displays the on-screen controls that a person
would use to customize the button: the annotated control on
the left is called a widget picker, while the button on its
right is a standard GUI button. We consider a scenario
where the end-user wants to customize both the physical
and GUI buttons to open a new Microsoft Outlook e-mail
message.
1. The end-user drags the widget picker over the Outlook

menu bar (see Figure 1b annotation). This particular
picker recognizes ‘command’ widgets that invoke a
single function, such as buttons, menus and toolbars. As
the picker passes over a widget of this type it indicates
the widget is selectable by highlighting it in blue and
changing the cursor shape.

2. Because menu bars contain many items (commands), the
drop action raises a dialog box listing all items
(Figure 1c). The person selects the ‘File / New / Mail
Message’ menu item. The dialog box disappears, and
the on-screen button is automatically relabeled with the
name of the menu item, i.e., ‘Mail Message’ (Figure 1d).

3. When the person presses either the physical button or
GUI button (Figure 1d, top), a new Outlook mail
message window appears (Figure 1d, bottom). Pressing

a) a physical button

b) its on-screen counter-part

c) dialog to select a menu
item

d) modified on-screen button
and the invoked application

Figure 1: Storyboard interaction showing how one
customizes and uses a physical button.

either button is equivalent to selecting the ‘File / New /
Mail Message’ menu command.

Example 2. RFID tags to invoke functions
Although we could extend our previous example to include
many buttons, this example instead shows how one can
quickly assign RFID tags to different functions.
Figure 2 (top) shows an RFID reader and several RFID tags
taped onto the backs of small pieces of stiff paper (one is
shown turned around, with the round tag visible). At the
bottom of Figure 2 is the on-screen interface. While in the
‘customize’ mode (Figure 2, bottom-left), a user assigns a
function to a tag by first bringing it near the reader, and by
then dragging and dropping the widget picker as in
Example 1. To differentiate among the many tags, the user
simply writes the action (in his or her own words) on the
stiff paper, as shown in the figure. While in the ‘recognize’
mode, user invokes the function assigned to the tag by

moving the tag near the reader. This displays the assigned
function’s name and then executes it (Figure 2, bottom-
right). We see in Figure 2 the end-user has assigned RFID
tags to invoke several e-mail and media player functions
and has organized them on wooden trays.

Example 3. A physical gauge as a progress bar
One can also display output on a physical device. Figure 3
shows one example, where a gauge was constructed using a
servo motor. The end-user has dropped a widget picker
onto the progress bar that displays the charge state of
his/her laptop battery (Figure 3, bottom). As a result, the
motor automatically tracks the progress bar’s value and
rotates to a position relative to it.

Example 4. A console containing many devices
The previous examples illustrate a few types of single-
device customizations. Of course, many other devices are
available and we can combine them to create consoles.
Figure 4 annotates an unassembled console. It includes:
• three slider potentiometers that one can attach to any on-

screen trackbar (slider) or scrollbar;
• eight LEDs that one can attach to a boolean control

(such as a checkbox) to monitor its state;
• six push buttons and one toggle that one can attach to

any button, menu item or checkbox;
• force, light and capacitive sensors that can be attached

to any widget that recognizes a continuous range of
values, for example, a trackbar or scrollbar

For example, we can use this console to create a physical
interface to the volume control pictured on the right. We
attach the first physical slider to the volume slider, the
second to the balance, and a button (or toggle) to the mute.
We can also attach an LED to the mute checkbox so its
light is on when the volume has been muted.

WHAT WE BUILT: A PROGRAMMER’S PERSPECTIVE
Our customizable physical interfaces architecture contains
three main parts. First, phidgets™ are physical widgets
used to construct a myriad of physical controls (buttons,
dials, sliders, switches) and displays (gauges, lights) [3].

Figure 2. The RFID example.

Figure 3. A gauge made with a servo motor connected to a
laptop’s power meter.

Figure 4. A console made up of many inputs and outputs
used to adjust a software volume control.

Second, the widget picker (seen by both user and
programmer) and taps (object visible only to programmers)
expose an application’s functionality as controlled by its
GUI widgets so that one can send directives to the function
and/or get the state of the function. That is, a widget tap
‘taps in’ to the functionality exposed by a widget. Finally,
connector software lets a user rapidly connect a physical
device to a function exposed by the widget tap.

Physical widgets
Our physical interfaces are made with phidgets™ [3]. A
phidget comprises a device, a software architecture for
communication and connection management, a well-defined
API for device programming, a simulation capability, and
an optional on-screen component for interacting with the
device. Phidgets are ideally suited for this project, for it
means one can quickly prototype various customizations
without spending effort developing special hardware,
firmware, or software. Several phidgets in our toolkit are
particularly well suited to this project.
• PhidgetInterfaceKit lets one plug in a combination of off-

the-shelf controls such as those used in Figures 1 and 4.
Specifically, a programmer can control through software
up to eight digital output devices (e.g., LEDs and
solenoids); retrieve the state of up to eight digital input
devices (e.g., various types of push buttons and throw
switches); and, inspect the state of various analog sensors
connected to it (e.g., potentiometers, heat, force,
capacitive plates and light sensors, as shown in Figure 4).

• PhidgetRFID is an RFID tag reader (Figure 2), where a
program is notified whenever an RFID tag passes over an
antenna. The notification includes the unique ID of that
tag.

• PhidgetServo comprises one or more servo motors (one is
illustrated in Figure 3) where a motor’s position is easily
set through software.

• PhidgetPower varies the amount of power sent to an
attached DC device such as a motor or light.

From a coding perspective, detecting a change in phidget
status is easy. We illustrate this with the physical button in
Figure 1. It is connected to a PhidgetInterfaceKit
represented by the phidgetIK programmer object. When
the button is pressed, an OnInputChange software event is
raised. We check which digital input signaled the change
and its new state (True for pushed) and then take the
desired action.
Sub phidgetIK_OnInputChange (Index, State)
 If Index = 1 and State = True Then

 ‘do something
End If

End Sub
Similarly, PhidgetRFID raises an OnTag event when an
RFID tag is detected near its antenna. From this the
programmer can easily identify which tag was read.
Example 2 from above would dynamically track these tag
identifiers in an array and search the array whenever it sees
a tag.

Sub phidgetRFID_OnTag(TagNumber)
 Select Case TagNumber
 Case TagNumber = "00041135a0" ‘one tag
 ‘do something
 Case TagNumber = "00053343a5" ‘another tag
 ‘do something else
 End Select
End Sub

Similarly, a programmer can change the state of any
physical output device. The source code below illustrates
how to turn on the 2nd LED in a bank of LEDs attached to
the PhidgetInterfaceKit, and rotate the first servo motor
controlled by a PhidgetServo to the 90° position.
 phidgetIK.Output(2) = True
 phidgetServo.MotorPosition(1) = 90

Using these phidgets, we can quickly create quite different
control consoles. For example, we constructed the push
button in Figure 1 in minutes: we cut off the top of a plastic
bottle, drilled a hole in the cap, and embedded a switch in
it. We gained access to the switch’s state by plugging it
into the PhidgetInterfaceKit. The more complex console in
Figure 4 uses sliders, buttons and rocker switches all
connected to a PhidgetInterfaceKit. The RFID tags
(Figure 3) are read with a PhidgetRFID, and the mechanical
gauge in Figure 2 is actually a PhidgetServo.

Widget picker and tap
Accessing existing system and application functions is
difficult. From a technical perspective, neither operating
systems nor applications offer a convenient and
standardized way to access their functionality without a
large amount of programming effort. Thus, our solution
must abstract away from individual application or GUI
toolkit differences and shield the programmer from the
details of the lower-level window manager/operating system
interfaces. Furthermore, it is not even clear what we mean
by ‘functionality’ as it can be defined a number of different
ways: we discuss this aspect later in this paper.

Our widget picker and taps package makes it easy for an
end-user to select a particular GUI widget and for a
programmer to access the semantic functions of that widget.
Specifically, our widget picker is an interactive ActiveX
control that lets an end-user select a graphical widget
already on the display (e.g., as illustrated by the left control
in Figure 1b). When a widget is picked, the programmer is
provided with a widget tap object that exposes the interface
of that particular widget. The widget tap can invoke the
function controlled by the selected widget and retrieve
information about the widget’s state.

Currently, we have implemented three classes of widget
taps. Each widget tap may be used with a number of
different types of widgets, each with distinct visual
appearances and interaction paradigms yet all sharing the
same logical operation.
CommandWidgetTap for GUI widgets that invoke a single

application function, e.g., push buttons, menu items, and
toolbar buttons.

RangeWidgetTap for GUI widgets that are used to select a
discrete value between a minimum/maximum range:
track bars (sliders), scroll bars, and progress bars.

ToggleWidgetTap for GUI widgets such as checkboxes
that toggle between yes/no values.

We show how this works by walking through the complete
code in Figure 5 that sits behind the example customizable
button illustrated in Figure 1. For now, we will only show
how we connect the on-screen button at the right of
Figure 1b to any command widget picked by the end-user.

1. The programmer constructs the window in Figure 1b by
dropping in: a widget picker named wPicker and a
button named Button with its caption set to the string
“Select a button or a menu”.

2. In code, the programmer declares a widget tap called
wTap. Both the wTap and wPicker are initialized to
understand the semantics of a ‘command’ widget. The
user can now drag and drop the wPicker over any
supported widget (e.g., buttons, menus, and tool bars).

3. When the end-user selects a widget (such as the “New
Mail Message” menu item), the wPicker_Pick
callback is automatically invoked, providing a handle to
a widget tap object (Tap) that is now connected to the
selected widget. To use it, the programmer assigns this
handle to the declared wTap variable, thereby exposing
properties and methods specific to command widget
taps. For example, in Figure 5 we see that the
programmer has retrieved the name of the command
widget (i.e., the text label of the menu item) via the
wTap.Name property and has assigned it to the button’s
caption property.

4. When the end-user presses the GUI button, the standard
Button_Click event is raised and the programmer
calls the wTap.Click method. This invokes the
equivalent semantic operation on the corresponding
widget, i.e., it invokes the application function that
would arise out of clicking the widget. In this case, a
new mail message will appear.

Of course, this is just a simple example, and far more
interesting ones can be constructed. Other (quite different)
widget classes, such as sliders and checkboxes, can be
accessed and controlled in a very similar manner. What is
important is that our picker control and tap objects give the
programmer access to the semantics of any recognized
widget in any application. The programmer needs no
access to the application source, nor does he or she need
any prior knowledge of that application.

Connector software
The final step is to connect the widget(s) exposed by the
widget tap to the phidget(s). This connector software is
implemented by programmers using our picker/tap package
and the phidget library. Programmers build the physical
interfaces, deciding which and how many devices to use,
how they are packaged, and how they may be represented
on the screen (e.g., as a mimic diagram).

To completely implement the push button example in
Figure 1, one adds the following code (as well as some
phidget initialization code) to Figure 5:
Sub phidgetIK_OnInputChange (Index, State)
 If Index = 1 and State = True Then
 wTap.Click
 End If
End Sub

As before, phidgetIK is the PhidgetInterfaceKit object
declared by the programmer. Connecting an analog
physical device (e.g., a physical slider) to a ‘range’ widget
(e.g., a GUI slider) is just as easy. Assuming the physical
slider is the first sensor:
Sub phidgetIK_OnSensorChange (Index, Value)
 If Index = 1 Then
 wTap.Value = Value
 End If
End Sub

Finally, connecting an analog physical output device such
as a servo motor to (say) a ‘range’ widget such as the
battery recharge progress bar on a laptop computer is
almost as easy. The RangeWidgetTap provides a means
to query the current progress bar value. One can set up a
timer to poll this value, and convert it to an angle between
0° and 180° used to set the position of a servo motor.
Sub tmrPoll_Timer()
 ratio = (wTap.Value - wTap.Min) / _
 (wTap.Max - wTap.Min)
 Servo.MotorPosition(1) = 180 * ratio
End Sub

WHAT WE BUILT: INTERNALS
Our architecture provides two fundamental components: the
phidget hardware and software [3], and the widget
picker/tap software. Programmers apply the API of each to
build software that bridges physical and GUI controls.
Thus our discussion of the internal workings of our
architecture will concentrate on the widget picker/tap
component.

‘This object will expose a command-type widget
Dim wTap As CommandWidgetTap

Sub Form_Load()
 ‘Initialize the picker to select only this type of widget
 wPicker.TapClass=New CommandWidgetTap
End Sub

‘A person selected a widget
Sub wPicker_Pick (Tap As Object)
 Set wTap = Tap
 Button.Caption = wTap.Name
End Sub

‘A person pressed the button
Sub Button_Click()
 wTap.Click
End Sub
Figure 5. The code behind Example 1’s Button.

As mentioned, the WidgetPicker control allows the end-
user to interactively choose a widget: it is responsible for
enumerating widgets on the display and getting the user to
select just one. WidgetTap objects allow programmers to
inspect and manipulate the selected widget. The picker and
taps work together to identify which on-screen widgets are
of a suitable class.

The previous discussions also illustrated that a given widget
tap class can support several logically similar yet visually
and interactively dissimilar widget types. In a sense, widget
taps are “meta-classes” of widgets. With our architecture,
these meta-classes are easy to create, and existing ones are
easily extended to include new GUI widgets that fit the
class semantics.

We implemented the picker/tap package on Windows XP as
follows. As the user drags the WidgetPicker about the
display, the picker uses standard Windows APIs to discover
the widget beneath the mouse pointer. It passes a handle to
that widget to the programmer-specified WidgetTap class,
which in turn uses windowing system APIs to discover the
class name (and, in some cases, the class-specific styles) of
that widget. If the widget meets the criteria set by the
WidgetTap class, the WidgetPicker highlights the widget on
the display as being a suitable drop target.

A lot of effort is spent deciding if a widget is of a supported
class. This is because many widget classes with similar
looks and feels are known to the windowing system by very
different class names. Often, GUI toolkits will make it
possible for the programmer to create new widget classes
that override and extend existing ones. This is inheritance
and it is widely used, e.g., in the Java Swing toolkit and the
gtkmm toolkit for GTK+. Some toolkits provide
equivalents of system-supplied widget classes that have
been tweaked to work within the toolkit framework (e.g.,
Microsoft .NET Windows Forms).

The problem is that the underlying windowing system is
ignorant of these inheritance relationships. Thus, while the
system-supplied push button widget class is named
BUTTON, the virtually identical Microsoft .NET
counterpart is called WindowsForms10.BUTTON.app1.
The relationship between base and derived widget classes is
unknown to the windowing system and our widget taps
(except through trial and error experimentation). Worse, in
some toolkits (e.g., GTK+), all widgets are known to the
windowing system by the exact same class name. Thus, to
the windowing system, a GTK+ text box is the same as a
GTK+ push button.

Beyond participating in the selection of a widget, the
WidgetTap must also invoke the functionality provided by
the widget. System-supplied widgets communicate with
their containers (i.e., parent windows) through the exchange
of well-documented messages. The messages are
exchanged using the same underlying mechanisms the
windowing system uses to deliver mouse/keyboard input

events to a widget. For example, clicking a button widget
sends (loosely speaking) a BN_CLICKED notification
message to its container; the container then decides what
action to take in response to this notification. Thus, when
tapping in to a system-supplied button widget, the Click
method of CommandWidgetTap mirrors this process by
sending a BN_CLICKED message to the button widget’s
container, as though it had come from the widget itself.

While this sounds simple, it is difficult to do in practice.
For example, if application- or widget-specific messages
carry pointers as arguments then they cannot be marshaled
between processes as the windowing system is largely
ignorant of the format of these widget-specific messages.
Messages have no meta-data to describe parameter types
and formats. Careful use of various system-supplied hooks,
however, will circumvent process boundaries.

Each application/toolkit may implement its own widgets
with idiosyncratic class names; these widgets are ignored if
unknown to a WidgetTap class. Thus, the user may not be
able to pick whole sets of widgets, even if the widget
‘looks’ and ‘feels’ like a system-supplied one. Moreover,
some toolkits use lightweight widgets: those that (as a
resource-use optimization) have no representation known to
the windowing system. Because our widget picker relies
solely on information available from the windowing system,
it is thus ignorant of these lightweight widgets.

One promising way around these issues draws upon the
accessibility facilities of the operating system. These
features allow applications to support assistive technologies
that help users with mobility, hearing, or visual impairments
by giving them alternate interfaces. This is very similar to
what we wish to accomplish with our package. For
example, these accessibility facilities provide a standard
way to access command bars: the menu bars and tool bars
used in Microsoft Office products. The individual buttons
on command bars are lightweight widgets, and each is
registered with the system’s accessibility facilities.
Enumerating the accessible widgets is precisely how the
dialog of menu items shown in Figure 1c is made.

Sadly, there is no means to automatically register all
widgets with the accessibility facilities. Furthermore, the
accessibility APIs themselves have poor support for output
(i.e., user feedback). Worse, a modest amount of
programmer effort is needed to incorporate accessibility
features into applications, and developers are often unaware
of these facilities and their value. Not surprisingly, only a
handful of existing applications presently leverage
accessibility features (e.g., Microsoft Office). The U.S.
government’s strong commitment to the development and
deployment of assistive technology [16] does offer hope
that this situation will improve with time.

We should stress that this implementation is far from ideal.
For example, most windowing systems do not use instance-
invariant widget identifiers, and so if a widget is destroyed

and then subsequently recreated there is no convenient
means to readily derive the new widget instance given the
old one. Consequently, with our package, if a user selects a
widget and then restarts the application, the widget tap
chosen is rendered useless. Although some toolkits provide
instance-invariant widget names (e.g., widget paths in
Tcl/Tk) there is little consistency between them and the
underlying windowing system remains ignorant of these
names.

In a subsequent section we summarize the implications to
windowing system and GUI toolkit makers prompted by
issues related to our package implementation.

IMPLEMENTATION DESIGN SPECTRUM
Our goal was to customize a broad base of applications
already in wide use to work with physical controls. As this
in turn implies no modifications may be made to the
existing applications, we designed our package to expose
existing application functionality to programmers so that
they can write software to customize these applications with
physical interfaces. Our solution represents only one point
on a spectrum of possible solutions, each with its own set of
advantages and issues. In this section, we present this
spectrum of approaches to the problem of accessing and
exposing application functionality.

In general, we can access an application’s functionality
using a range of syntactic to semantic methods.

At one extreme, syntactic access simulates raw user input:
that is, the syntax of the interaction. Syntactic access
closely mirrors the low-level motor operations performed
by users as they interact with the application, e.g., click the
mouse at display coordinates (x,y), press the Ctrl+S key
combination. Programmable function keys of older
character terminals illustrate this. Pressing a function key
inserts a user-programmable character stream into the
terminal. An advantage of syntactic access is that it exactly
mirrors how a user expresses a function, i.e., ‘I did X to get
Y; the physical device just has to do the same thing’. The
problem is that syntactic access is difficult to implement
reliably. It is ignorant of the modes that the application
may be in, and provides little opportunity to assess an
application’s feedback. It also fails in GUIs when things do
not appear in constant locations or when the interface is
rearranged from one invocation to the next. Also, while
syntactic access lets us emulate user input, it does not give
easy access to an application’s output, e.g., the name of a
button visible on the display or the invisible minimum and
maximum properties of a trackbar (slider).

At the other extreme, semantic access uses high-level
abstractions and hooks that expose access to the
components and operations performed by an application,
i.e., the semantics of the interaction. Hooks, automation
APIs and scriptable object models used by macros are
examples of this kind of access. The advantage of semantic
access is that it provides reliable access to an application’s

functionality, and provides the ability to respond to
(significant) application events. Ideally, these functions and
events will mirror the high-level cognitive operations
performed by users, e.g., save the document, delete the e-
mail message.

Unfortunately, semantic access has disadvantages. First,
the only functions available are those that the application
programmer a priori decided to supply through the
application’s high-level object models and automation
interfaces. Second, the provided semantic functions may
not match how the end-user actually thinks of their
application. For example, a user’s view of a ‘function’ may
actually be a chain of automation calls and logic, e.g., as
captured in a macro. Lastly, these API calls are hidden
from the user—they do not have a graphical, on-screen
presence—and are not written in the user’s language (they
are written in the programmer’s language). Given this, how
can the end-user specify which function he/she wishes to
invoke?

Straddling these two extremes is an application’s graphical
interface, e.g., the types of widgets, their positions, styles,
and properties. Widgets simultaneously reveal both the
semantics of their functionality and the syntax of their
invocation. Information about available functions normally
provided intentionally through hooks and automation APIs
are also expressed as a consequence of the GUI widgets
presented to the user. For example, we can infer that a
menu item that displays the text “Save” invokes the
application’s Save functionality. A very important
advantage of using widgets to access functions is that it is in
the language of the end-user. This makes it very easy for
the end-user to specify a desired action simply by selecting
the widget that invokes that action. Another advantage is
that the invoked function may actually execute a complex
bit of application code; it is not limited to invoking only
primitive automation calls.

While a good solution, widget disadvantages concern
implementation. When an application’s widgets are of
known standard types, we can use well-documented system-
supplied hooks and APIs to access them on a level that is
more semantic than syntactic e.g., invoke the ‘Save’ menu
item vs. ‘click the second item of the first sub-menu of an
application’s main menu bar.’ This approach, sadly, cannot
be applied universally as custom widgets used in an
application may have no publicly viewable documentation.
Given the diversity in application implementation, it is quite
likely that no matter the technique used to gain access to
functionality of one application, it will eventually fail for
some other application.

DISCUSSION

Implications to application framework designers
We summarize here the issues raised in the previous
discussions that are most relevant to windowing system and
GUI toolkit makers.

1. Lack of instance-invariant widget identifiers makes it
hard to find a widget after it has been recreated.

2. Implementation inheritance relationships are not known
to the windowing system. GUI toolkits do not make
each derived widget class look distinct to the windowing
system.

3. Accessibility features are not automatically applied to
every widget, neither by the windowing system nor GUI
toolkits. Accessibility features are often poor at
communicating application feedback.

4. Lightweight widgets are inaccessible using standard
windowing system APIs.

5. Widgets are not self-describing, i.e., they do not reveal
the semantic operations they support. This is especially
true of undocumented custom widgets.

6. Windowing-system events carry no metadata about
parameter types and formats. There is no reliable means
to learn of application-specific events.

Design possibilities
While the basic idea of a customizable physical interface is
fairly simple, it opens the door to many design possibilities.
A few are listed below, although we believe that many more
compelling examples remain as yet undiscovered.

Construction kits. Instead of giving end-users pre-
assembled physical consoles, one can give them a
construction kit that, for example, includes a
PhidgetInterfaceKit and a multitude of switches and sensors
mounted on Lego™-like blocks. End-users can then
assemble their own custom panels using whatever controls
they wish. On the software side, we can easily create
movable controls representing the eight digital inputs and
outputs, and the four sensor inputs. Users can match the
type of input with what they actually attached to the
PhidgetInterfaceKit through a shortcut menu, e.g., a
particular sensor input could be set to look like a slider or a
force sensor. Finally, users can position these movable
controls on the display so they match the arrangement of
physical controls thus creating a mimic diagram.
Interfaces for people with special needs. While many
people suggest that computers should help those with
special needs, most of today’s computers tend to have built-
in help for only particular types of disabilities e.g., low
vision. One of the problems is cost: unless many people
have a particular type of disability, it is just too expensive
to build in accessibility features. Customizable controls can
lower this cost, as it would be fairly easy to create a custom
physical control panel that (say) gives people with fine
motor control problems easier access to their applications.
Similarly, we can map an application’s state onto output
devices to make them more perceivable (e.g., mapping a
progress bar to a fan, as mentioned earlier, benefits those
with visual and/or aural impairments).

It is important to point out here that assistive technology
(AT) product makers often use approaches similar to what
we describe here. However, our widget picker/taps package
is not a product focused on one or a few particular kinds of
ability impairments, nor is it wholly restricted to the AT
domain.

Customizable reactive environments. A reactive
environment is one where computers sense the environment
and take action depending on what is sensed. There are
now many examples of reactive environments. e.g., those
reported in the ubiquitous and context aware computing
literature. However, most are hard-wired to particular
environments and situations. In contrast, customizable
physical controls would make it simple for a person to
‘build’ his/her own—albeit limited—reactive environment.

For example, let us say two people have created a voice
connection through an instant messenger client (Figure 6)
and wanted to leave it running. Because of privacy
concerns, both parties only want the microphones to be
enabled when people are close to their computers. They
can easily achieve this by using a capacitive sensor instead
of a physical slider, and embedding that into the chair (this
would set the microphone to maximum when someone sits
in the chair and off otherwise). Alternatively, one can plug
in an ultrasonic proximity sensor and place it atop the
computer. In this case, the microphone is sensitive when
one is nearby, but decreases in sensitivity as one moves
away (e.g., one may only receive a slight murmur of
conversations occurring away from the computer).

Linking smart appliances to applications. Looking ahead,
as our appliances get smarter, there is nothing to stop them
from becoming wireless physical devices that control
similar applications on desktop PCs. For example, the
controls of a physical MP3 player could be linked to a
media player application running on a traditional PC
desktop. If one presses a mode button, all the physical
player controls (e.g., volume control, play, seek) could then
be used to operate the media player application. If the MP3
player device was Bluetooth™-enabled, it could become a
kind of wireless remote control for the PC.

Figure 6. Controlling Windows™ Messenger.

HISTORY AND RELATED WORK
In 1963, Ivan Sutherland [9] demonstrated Sketchpad, the
very first interactive graphical user interface. Films of
Sketchpad [7] highlight how people use a light pen to
manipulate drawings, which foreshadowed the widespread
use of pointing devices for graphical interaction. What is
often overlooked in these old demonstrations is that almost
all user actions involved two hands—a person would
simultaneously manipulate large banks of physical controls
as they used the light pen. These physical controls had
dedicated functions that modified the light pen actions, for
example, to specify start and end points of lines, to make
lines parallel or co-linear, to delete existing lines, to
indicate centers of circles, to store drawing objects, and so
on [8]. Physical controls were also used for other
interactions, such as zooming and rotation of objects. As
seen in Figure 7, these controls surround and dwarf the 7-
inch display containing the Sketchpad interface, and
comprise physical knobs, push-buttons and toggle switches.

Sketchpad’s use of physical interaction techniques was not
atypical, as many computers of the 1960’s and earlier often
came with consoles packed with physical controls. For
example, the operator console of the IBM Stretch machine,
built in 1961, was immersed in a myriad of dials, lights,
meters and switches.

In 1967, Douglas Engelbart introduced a new way of
interacting with technologies, where almost all physical
controls were replaced by the mouse and the two keyboards
pictured in Figure 8. Similar to Sketchpad, keyboard
‘commands’ (instead of physical button presses) would
modify mouse actions [1].

While Engelbart’s system did away with most special
purpose physical controls, they appeared again as special
purpose function keys in the Xerox Star ([6]). Because
there were relatively few function keys on the keyboard and
a fairly large repertoire of system commands, the Star
inventors came up with the notion of ‘generic commands:’
a small set of commands, mapped onto the function keys in

Figure 9 that applied to all types of data. The active
selected object interpreted these function key presses in a
semantically reasonable way.

Later desktop computers, as popularized by the Apple
Macintosh in the early 1980’s, reduced even these special-
purpose keys by replacing them with the now-familiar on-
screen graphical user interface widgets. From this point on,
graphical user interface controls reigned supreme on
desktop computers. While most keyboards do allow some
keys to be reprogrammed (including function keys), they
are no longer a dominant part of interaction. In the last
decade, the only other physical devices prevalent on
desktop computers were games controls. Typically a
generic input device (such as a joystick or steering wheel)
controls a broad class of gaming applications, although one
can also buy dedicated controls for particular games.

Recent research in human computer interaction has
reintroduced physical controls. Many of the examples
involve controls for new classes of computers e.g., tilting
and panning actions for scrolling through items on a
PDA [4]. Others try to bridge physical world objects with
computer objects through tagging and tracking [17].
Perhaps the closest to our work is tangible media [10,11],
which describes how physical media can be attached to
digital information and controls. An excellent example is
Ullmer, Ishii and Glas’s
mediaBlocks [10]. Similar to our
Example 2, their mediaBlocks
(electronically tagged blocks of
wood) can be assigned to particular
functions and bits of information,
further depending upon the location
of the block reader.

There are many more exciting
examples of how new technology
can use physical devices (e.g., [15]).
Almost all of them, however,
interact with special purpose
software rather than commonly used

Figure 7. Ivan Sutherland interacting with Sketchpad on
the TX-2 computer console.

Figure 8. Engelbart’s mouse-keyset combination, including
a one-handed chorded keyboard (from www.bootstrap.org)

Figure 9. Star’s left
function key cluster.

applications, thus limiting their immediate use in daily life.
Overcoming this serious limitation was one of the
motivations behind our work

SUMMARY
Customizing existing applications with physical interfaces
allows us to immediately realize very diverse design
opportunities for accessible, tangible, and context-aware
computing. This technique certainly does not apply to all
of the capabilities afforded by an application. However, we
feel that the pendulum has been swung too far, and
applications are now so dependent in GUI widgets that we
have lost the benefits of judicious application of physical
controls.

We presented in this paper our notion of customized
physical interfaces to existing applications. We described
our widget picker/taps package that allows programmers to
seize upon this design idea, and offered examples
demonstrating its use. In implementing this package we
have identified a number of impediments that could be
addressed by windowing system and GUI toolkit makers.

Our future work in this area will focus on finding solutions
to the architectural problems presented here, in particular
the problem that widget taps are rendered useless if the
corresponding GUI widget is destroyed. We will also focus
on exposing application feedback so that it may be rendered
using physical devices and techniques borrowed from calm
computing.

Software and hardware availability. Phidgets hardware
and software is available through www.phidgets.com. The
widget picker/taps package and examples will be available
summer 2002 at http://www.cpsc.ucalgary.ca/grouplab/.

Acknowledgements. The Microsoft Research Collaboration
and Multimedia Group, the National Sciences and
Engineering Research Council of Canada, and the Alberta
Software Engineering Research Consortium partially
funded this work.

REFERENCES
1. Engelbart, D. and English, W. A Research Center for

Augmenting Human Intellect, AFIPS Conference Proc
Fall Joint Computer Conference (33), 395-410, 1968.

2. Greenberg, S. The computer user as toolsmith: The use,
reuse, and organization of computer-based tools.
Cambridge University Press, 1993.

3. Greenberg, S. and Fitchett, C. (2001) Phidgets: Easy
Development of Physical Interfaces through Physical
Widgets. Proc ACM UIST 2001, 209-218, ACM Press.

4. Harrison, B., Fishkin, K., Gujar, A., Mochon, C. and
Want, R. Squeeze Me, Hold Me, Tilt Me! An
Exploration of Manipulative User Interfaces. Proc ACM
CHI’98, 17-24,1998

5. Ishii, H. and Ullmer, B. Tangible bits: Towards
seamless interfaces between people, bits and atoms.
Proc. ACM CHI’97, 234-241, 1997.

6. Johnson, J., Roberts, T., Verplank, W., Smith, D., Irby,
C., Beard, M. and Mackey, K. The Xerox Star: A
Retrospective. IEEE Computer 22(9), 11-29, 1989.

7. Kay, A. (1987) Doing with images makes symbols.
Distinguished lecture series, Apple Computer.

8. MIT. Sketchpad. ACM CHI’83 Video Program in
SIGGRAPH Video Review Issue 13. 1983.

9. Sutherland, I. Sketchpad: A man-machine graphical
communications systems, Proceedings of the Spring
Joint Computer Conference, 329-346, Baltimore, MD:
Spartan Books, 1963.

10. Ishii, H. and Ullmer, B. Tangible bits: Towards
seamless interfaces between people, bits and atoms.
Proc. ACM CHI’97, 234-241, 1997.

11. Ishii, H., Mazalek, A., Lee, J. Bottles as a minimal
interface to access digital information. Extended
Abstracts of ACM CHI, 2001.

12. Kaminsky, M., Dourish, P., Edwards, K. LaMarca, A.,
Salisbury, M. and Smith, I. SWEETPEA: Software tools
for programmable embodied agents. Proc. ACM CHI,
144-151, 1999.

13. McGrenere, J., Baecker, R. and Booth, K. An evaluation
of a multiple interface design solution for bloated
software. ACM CHI 2002 [CHI Letters 4(1)], 163-170.

14. Resnick, M. Behavior construction kits.
Communications of the ACM 36(7), 64-71.

15. Ullmer, B., Ishii, H. and Glas, D. mediaBlocks: Physical
Containers, Transports, and Controls for Online Media.
ACM SIGGRAPH’98, 379-386, 1998.

16. Government of the United States of America. Section
508 of the Rehabilitation Act (29 US.C. 794d, Public
Law 10-24). http://www.section508.gov.

17. Want, R., Fishkin, K., Gujar, A. and Harrison, B.
Bridging Physical and Virtual Worlds with Electronic
Tags. Proc ACM CHI’99, 370-377, 1999.

18. Winograd, T., and Flores, F. Understanding Computers
and Cognition: A New Foundation for Design, Ablex,
1986.

