
GroupLab Collabrary: A Toolkit for Multimedia Groupware

Michael Boyle and Saul Greenberg
Dept. of Computer Science, University of Calgary

Calgary, Alberta, CANDA T2B 1X5
+1 403 210 9499

{boylem, saul}@cpsc.ucalgary.ca
ABSTRACT
GroupLab Collabrary is a toolkit for rapidly prototyping
multimedia groupware. It provides a straightforward API to
managing and distributing multimedia information between
groupware program instances. The Collabrary also has a
culture of use, where a small generic set of useful
groupware programming patterns has evolved over time. In
this workshop I will describe the Collabrary, what it offers
groupware developers, and how these features in turn drive
requirements for network services for rich groupware.

Keywords: Groupware, multimedia, networks services,
notification servers, prototyping toolkits.

INTRODUCTION
The GroupLab team at the University of Calgary has made
several major technical contributions to the CSCW
community, particularly in our design and implementation
of architectures and toolkits for rapidly prototyping
groupware [e.g., 4]. Because we deal primarily with
distributed groupware, these systems had to concern
themselves with network issues, how data is distributed
across the network, and how processes share data. Yet our
true research interests lie not with technical issues about
the design and implementation of network services for
groupware. Rather, our main goal has always been to give
programmers the power to rapidly prototype groupware
applications, to use these prototypes to examine user
experiences and to uncover the human and social factors
associated with groupware tool use.
Yet we ended up devoting a great deal of our time
experimenting, building and packaging various network
services for groupware. This is because the services we
then had at hand—mostly bare-bones TCP sockets—were
too low level to help us rapidly prototyping the kinds
groupware applications we were interested in building.
This was the rationale for our GroupKit toolkit for building
interactive graphical groupware applications, where we
introduced the notion of session managers and
environments as a way to manage and hide network details
while providing a simple way for programmers to

distributed string-based data [4].
While GroupKit proved extremely effective for prototyping
‘conventional’ groupware applications, we found it
wanting when we moved into building media spaces.
Specifically, the network services behind GroupKit were
too limited to support the demands of rich multimedia
groupware applications e.g., images and audio/video
channels. Consequently, we set ourselves the new research
goal of building an infrastructure for managing multimedia
groupware communication. The idea was to leverage all the
experiences and lessons learned from our previous toolkits
and applications (as well as those reported by others) into a
new toolkit that we felt could meet our desire to rapidly
prototype multimedia groupware.
The result is the GroupLab Collabrary, a toolkit we
developed for rapidly constructing novel multimedia
groupware applications. Our Collabrary is a proven toolkit.
We have used it to build serious applications under daily
heavy use e.g., the Notification Collage media space that
provides informal awareness and casual interactions for a
distributed community [3]. We have also used it to
implement many high-fidelity research prototypes,
including a privacy-preserving video media space
application [1] and the IMVis [4] instant messenger
visualization. The Collabrary also has use outside our
research group, where undergraduates built quite
interesting groupware applications as part of their course
project.
In this workshop, we will highlight those features of the
Collabrary that make it a powerful tool for building rich,
multimedia groupware. In particular, we look at its high
level concepts – its architecture, its client-side API and the
suite of groupware development patterns and practices that
evolved over its use. We caution that we do not specifically
address low level network services, for we believe that the
strengths of the Collabrary are somewhat agnostic towards
the network service upon which it is implemented. While
we actually implement a simple TCP-based binary
prototocol for client/server communications, this plumbing
could conceivably be swapped out for, say, an XML web
service layer that affords features not easily provided by
the existing implementation. Consequently, what the
Collabrary provides is valuable insight behind the
requirements of network services if this service is to
support its API and programming patterns.

Cite as:
Boyle, M. and Greenberg, S. (2002) GroupLab Collabrary: A
Toolkit for Multimedia Groupware. In J. Patterson (Ed.) ACM
CSCW 2002 Workshop on Network Services for Groupware,
November.

COLLABRARY FEATURES
The Collabrary is implemented as a library of COM classes
for the Microsoft Windows platform. The goal of the
Collabrary is to ease many of the mundane yet tricky
aspects of media space programming, namely capturing
multimedia in a way that it can be processed
algorithmically and then distributing it to other media space
participants via the Internet. The Collabrary has two major
parts. The first part included components that ease
multimedia capture, display and manipulation e.g., video,
audio, images. The second part, and the focus of this paper,
is a hierarchical shared dictionary component that eases
how multimedia data is captured in a data structure and
shared between distributed groupware processes. It is this
shared dictionary that encapsulates the network service
layer.

Shared dictionaries
A dictionary is a collection of <key,value> pairs. A shared
dictionary is a dictionary shared between distributed
processes. This provides a simple mechanism for data to be
shared among instances of a groupware application. Shared
dictionaries are not new to groupware. Groupkit, the
Collabrary and several toolkits built by others implement
this basic idea. Typically, changes made to a key/value pair
in the dictionary are propagated via the network to other
processes (usually residing on different machines). This
generates notifications or events, so that the programmer
can catch selected changes and handle them
asynchronously.
The strategy of using synchronous notification of changes
to the dictionary has generated two programming patterns.
First, the programmer just uses the shared dictionary to act
on data events as they arrive i.e., as a pure notification
service [2]. Alternatively, the programmer can use the
dictionary as an event-producing model following the
Model-View-Controller style. Our own experiences with
GroupKit and other’s experiences with similar groupware
toolkits illustrate that providing for this clean separation of
the shared model from the view/controller is an important
pattern for successful groupware programming.

Rich values and marshalling
Unlike most other implementations of shared dictionaries,
the Collabrary has the ability to marshal data as network-
representable types, where the dictionary can persistently
store this data into the key/value pairs. This includes
primitive types such as numbers or strings, aggregate types
including arrays and records, and complex types such as
objects that may be marshaled by value. These complex
types include multimedia such as audio or JPEG image
data. For example, Figure 1 illustrates a fragment of a
shared dictionary modeling a video and text-based
multimedia chat program. Values are shown at the right of
the := signs. We see string values representing a user’s
name (‘Michael Boyle’), hexadecimal values representing a

drawing color (#ffee00), and a JPEG object representing a
single frame of video (<JPEG image data>).

Hierarchical keys
Collabrary shared dictionary keys are hierarchical, in that
the string comprising a key’s name looks much like file
system path e.g., /a/b/c. The Collabrary also supplies the
programmer with a simple pattern matching language that
works over these keys, so that a sub-tree containing many
<key,value> pairs can be treated as a single logical
construct.
These hierarchical key names are a very powerful
programming construct. With them, the groupware
application developer can arrange and manipulate
associated items in the dictionary as a loose hierarchy. This
allows data in the dictionary to be compartmentalized, or to
be aggregated into larger logical units.
To illustrate, the keys in Figure 1 are structured as
followed. We see two root keys: /users stores information
about users, and /chat stores information associated with
each chat message. We also see that /users has two
immediate children that identify two different people. Here,
the 2nd term in each users path comprises a system-
generated unique ID: /users/{a1b2c3..d4} and
/users/{1d4234..77}. Similarly, there are two chat
messages: /chat/#1 and /chat/#2. The third levels of the
hierarchy define content: the name and video image of that
particular person, and the author, text contents, and
font/color description for the particular chat message.
Programmers can then specify patterns to act over these
hierarchical keys. For example, one iterates a list of the
names if all users by simply writing

ForEach n in /users/*/name
print n

There are almost no restrictions on key name formats,

/users ←stores per-user information
 /{a1b2c3..d4} ←info about a particular chat user
 /.transient := '{a1b2c3..d4}' ←metadata
 /name := 'Michael Boyle' ←friendly name
 /video := <JPEG image data> ←live video snapshot
 /{1d4234..77} ←info about another user
 /.transient := '{1d4234..77}'
 /name := 'Saul Greenberg'
 /video := <JPEG image data>
/chat ←stores all chat messages
 /#1 ←info about one chat message
 /author := 'Michael'
 /text := 'Hey, Saul, how's the
 weather in the mountains?'
 /font := 'helvetica'
 /color := #ffee00
 /#2
 /author := 'Saul'

 /text := 'It's sunny now, but the
 forecast is showers.'

 /font := 'times'
 /color := #003bff
Figure 1 Shared dictionary hierarchy for a chat
application.

making it possible for the developer to use meaningful
nomenclature, and to arrange the items in a logical fashion
that models the desired groupware application. That is, the
groupware developer can readily apply familiar
programming patterns borrowed from file system and
object-oriented programming, e.g., using abstractions and
factoring to reduce complexity and coupling.

Subscriptions
As previously stated, the Collabrary uses an asynchronous
event-driven programming model for discovering changes
made to the shared dictionary. Programmers manage these
events by defining subscriptions to particular key patterns,
and by attaching callbacks to these subscriptions. Pattern
matching leverages hierarchical keys. For example, a
programmer can write a single callback that manages
changes to chat text by subscribing to /chat/*/text. When
the callback is fired, the programmer can easily query the
key that triggered the callback to find out the parent of this
key (e.g., /chat/#2), and then use that information to access
all other information related to that message (e.g., the child
keys identifying the author, font and color).
It should be readily apparent that our approach to managing
subscriptions via events and callbacks reflects the familiar
design pattern of how programmers now manage GUI
widget events. This makes it possible for the shared
dictionary to be used conveniently within a GUI
application framework.

Metadata
We exploit the hierarchical nature of our shared dictionary
by associating and storing metadata side-by-side with
regular data in a sub-tree of the dictionary. Using this
metadata, the Collabrary architecture can then make
decisions and take action on the programmer’s behalf. For
example, the programmer can attach a ‘.transient’ key that
associates a sub-tree with a particular conference
participant (see Figure 1). When that participant
disconnects from the server (either gracefully or by
abortive closure), the server will automatically search for
that .transient sub-key, and then remove the sub-tree
associated with that key. For example, in the chat
application in Figure 1, the sub-tree assigned to each user
stores his/her friendly name, e-mail address, and
availability status. When that user’s client disconnects
from the chat session, all of the information for that user is
automatically removed from the dictionary because it is
marked with .transient. This greatly simplifies
housekeeping.
Because metadata in the Collabrary is just a standard key
name that follows a particular convention (the Collabrary
prefixes it with a ‘.’), clients can easily specify metadata
through the standard Collabrary API i.e., no additional
APIs are needed to manage metadata. It also means we can
easily grow the metadata vocabulary in an incremental and
fully backward-compatible fashion, e.g., future versions of
the shared dictionary server may use metadata to

implement access control lists (ACLs) or specify QoS
parameters.

Signals
The shared dictionary normally stores all its data in a server
(this data is also cached on clients for efficiency). While
useful for implementing the model-view-controller pattern
(especially for updating newcomers to the groupware
session), there are times when the programmer does not
need to store data once all clients receive a copy of it.
Perhaps the best example of this is data that do not need
guaranteed delivery or storage because another copy of it
will be sent along shortly. Examples are motion video
frames or mouse telepointer coordinates. A better pattern
is to use the dictionary’s capability to stream data to one or
more participants by repeatedly ‘signalling’ the same key
with a different value (e.g., compressed video frame) each
time. The value is discarded after signaling is complete.
We can then apply simple QoS parameters to signals. such
timeouts and priorities. Thus, these ‘signals’ are analogous
to notifications found in pure notification servers [2].
Indeed, because the Collabrary shared dictionary
architecturally uses a client-server network topology, it
could easily be implemented atop an existing pure
notification network service by augmenting it with a data-
storing service. However, it is important to point out that
the practical benefits of the Collabrary (e.g., automatic data
persistence) are not provided by pure notification servers.

WHAT YOU CAN’T DO WITH THE COLLABRARY
The Collabrary shared dictionary is a research system, and
we did not intend it for large scale commercially deployed
groupware. Consequently, while fine for our research
projects, its current implementation has several noticeable
omissions. It does not scale well beyond a few dozen
clients. It provides no support for authentication or
authorization (access control). It does not implement wire
privacy (encryption) and is, as constructed, not particularly
platform independent. On a much higher level, the
Collabrary does not offer QoS feedback, which is
important for some kinds of interactive multimedia
communications applications.
While addressing these omissions will likely require
architectural and other changes to the implementation and
underlying network services, the Collabrary features and
programming patterns described above remain valid.
Again, we reiterate: the value of the Collabrary is not in the
design of its internal network service layer, but rather the
demands upon such a layer it places.

CONCLUSION
The Collabrary contributes a hierarchical shared dictionary
programming paradigm. It gives the programmer a great
deal of power through its pattern-based subscriptions and
asynchronous notifications. Its data model encourages the
model-view-controller programming pattern now found in
good groupware application design. The Collabrary offers

server-side persistent data, and also transient data with
signaling for managing streaming multimedia. Both can be
intermixed, and both are critical for prototyping rich,
multimedia groupware.
In our experiences, programmers find the Collabrary an
easy yet expressive infrastructure for building multimedia
groupware. Programmers combine a few well-understood
patterns for groupware development with its very simple
yet generic API. This gives them the opportunity to rapidly
build groupware prototypes, where they remain focused on
the group interaction it affords, instead of on the mundane
aspects of maintaining network connections and passing
data through them.
Taken together, the Collabrary shared dictionary embodies
several key concepts that could influence future network
services for groupware programming.

REFERENCES
1. Boyle, M., Edwards, C. and Greenberg, S. (2000). The

Effects of Filtered Video on Awareness and Privacy.
Proceedings of the CSCW'00 Conference on Computer

Supported Cooperative Work [CHI Letters 2(3)], p1-10,
ACM Press

2. Fitzpatrick, G., Mansfield, T., Kaplan, S. Arnold, D.,
Phelps, T. and Segall, B. (1999) Augmenting the
Workaday World with Elvin. Proc 6th European Conf
Computer-Supported Cooperative Work (ECSCW'99),
p431-435.

3. Greenberg, S. and Rounding, M. (2001) The
Notification Collage: Posting Information to Public and
Personal Displays. Proceedings of the ACM Conference
on Human Factors in Computing Systems [CHI Letters
3(1)], 515-521, ACM Press.

4. Neustaedter, C., Greenberg, S. and Carpendale, S.
(2002) IMVis: Instant Messenger Visualization. Video
Proceedings of the ACM Conference on Computer
Supported Cooperative Work.

5. Roseman, M. and Greenberg, S. (1996). Building Real
Time Groupware with GroupKit, A Groupware Toolkit.
March. ACM Transactions on Computer Human
Interaction, 3(1), p66-106, ACM Press.

