

Phidgets: Incorporating Physical Devices into the Interface

Saul Greenberg and Chester Fitchett
Department of Computer Science

University of Calgary
Calgary, Alberta, Canada T2N 1N4

+1 403 220 608
saul@cpsc.ucalgary.ca

ABSTRACT
Physical widgets, or phidgets, comprise devices and
software that are almost direct analogs of graphical user
interface widgets. Like widgets, phidgets abstract and
package input and output devices: they hide implementation
and construction details while exposing functionality
through a well-defined API. They also have an (optional)
on-screen interface. Phidgets also require: a connection
manager to track how devices appear on-line; a way to link
a software phidget with its physical counterpart; and a
simulation mode to allow the programmer to develop,
debug and test a system using phidgets even when no
physical device is present.

INTRODUCTION
In the last decade, a variety of researchers have championed
human-computer interface designs that include ‘out of the
box’ physical devices augmented by computing power.
Various movements have embraced this approach:
ubiquitous computing and calm technology [13], pervasive
computing [1], tangible user interfaces [7,2], information
appliances [10], and context-aware computing [3].
While an exciting new area, everyday programmers now
face considerable hurdles if they wish to create even simple
device-dependent applications. Perhaps the biggest—but
most easily solved—obstacle is the sheer difficulty of
developing and combining physical devices and interfacing
them within the application software. Several specific
problems are listed below.
1. Even simple devices made out of cheap and readily

available components (switches, sensors, motors) are
hard to build unless one has a background in hobby
electronics, circuit design or electrical engineering.

2. Commercially available devices may have no published
application programmer’s interface (API). As a result
cannot be programmed by an outsider unless the device
is ‘hacked’ (e.g., Microsoft’s Actimates hacked by
Kaminsky, Dourish and Edwards [8]; and Fujitsu’s
email notificaton figurine hacked by Greenberg and
Kuzuoka [4]).

3. Alternatively, commercial devices with an API are often
at the wrong level of abstraction for easy use. Some are
designed for particular application settings: the device
and its accompanying software may be difficult to
subvert to new situations (e.g., X10 protocol devices
packaged as home and security products, but see [5]).
Others may be abstracted at a very low level, where
designers may have to do extensive programming to do
even the simple things.

4. Programmers may not have these devices readily
available at all stages of their programming effort
(perhaps due to expense, shipping delays, cost factors,
etc.) While a program can be written without a device,
they are difficult to test and debug.

OUR FRUSTRATING FIRST EXPERIENCES
Our own first experiences echoed these problems. We were
designing a reactive media space environment (Figure 1)
built around several simple interoperating devices [4]. The
devices illustrated in the figure were built upon proximity

Figure 1. The Active Hydra [4].

Rotating figurine
servo motor

Tippable figurine
light sensors

Proximity detector
ultrasonic sensor

Hydra unit
video, camera,
speakers, microphone

Greenberg, S. and Fitchet, C. (2001) Phidgets: Incorporating
Physical Devices into the Interface. In M. Newman, K. Edwards
and J. Sedivy (Eds) Proceedings of the Workshop on Building the
Ubiquitous Computing User Experience. (Held at ACM CHI'01,
Seattle). Also as Report 2001-681-04, Dept Computer Science,
University of Calgary, Alberta, Canada.

http://www.cpsc.ucalgary.ca/grouplab/papers/index.html

Phidgets: Incorporating Physical Devices into the Interface - 2 - Greenberg and Fitchett 2001

sensors, servo motors and light sensors, as well as switched
cameras, microphones, speakers, and small video displays.
While our overall focus was on media space design (details
in [4]), we found ourselves immersed in a quagmire of
tediousness: selecting and purchasing small electrical
components and hobby kits, circuit board design,
microprocessor programming, wire protocol development,
and so on. Fortunately for us computer scientists, visiting
collaborator Kuzuoka (an electrical engineer) did all the
hardware/microprocessor work. Still, we expended
considerable time (months) and effort developing and
debugging these devices and their related low-level
software. Although successful as a stand-alone project, the
tale ended poorly: after Kuzuoka left the software and the
devices themselves became almost impossible to maintain
or extend. The problem was that we had built a working
prototype, but had not really considered how individual
devices and its software could be maintained, modified and
reused in different ways. Consequently, the devices ended
up in a cardboard box, full of unrealized potential.

THE PHIDGET CONCEPT
We then made a concerted effort to think about how we
could package devices and their accompanying software.
We wanted devices that were easy to program, test, debug,
and extend. Most importantly, we wanted devices that were
simple enough so that we could concentrate on the overall
user interface design instead of low-level device
construction and implementation. Our approach was to
develop physical widgets, or phidgets, that are almost direct
analogs to how graphical user interface widgets are
packaged and ‘dropped into’ applications1. As we will see,
a phidget comprises a device and an API to it via a
corresponding software.

Why GUI Widgets are so successful
GUI widgets have greatly simplified the programmer’s
development of interactive software. They abstract and
package well-designed standard and non-standard input and
output controls. They hide (often difficult) implementation
details, while exposing functionality through a well-defined
API. Through relatively simple programming, they can be
interconnected so they can work in concert with one
another. As a toolkit set, widgets give the programmer a
good repertoire of graphical components that can be used to
assemble an interface [9]. The result is that programmers
using widgets could concentrate on GUI interface design
rather than low-level graphical programming2.

1Phidgets differ from Phicons [12]. Phicons are input instruments.

Phidgets are programmable components representing physical
objects.

2 Myers [9] argues that there is a disparity in many GUI toolkits,
where building control panels of widgets is extremely easy, but
composing non-widget graphics is hard.

Phidgets as Physical Widgets
As with conventional GUI widgets, the important idea of a
phidget is that it presents the programmer with an easily
used entity that can be inserted into an application. They
both provide an abstracted and well-defined interface: one
to a graphical interactive device, the other to a physical one.
Both hide details of how the entity is implemented. Unlike
conventional widgets, phidgets require a few more things.
1. Connection manager. Whereas GUI widgets are always

available to the application at run time, physical devices
may appear and disappear. For example, during run time
a device may come on-line or go off-line, or it may have
intermittent connectivity. The job of a connection
manager is to inform the application program about the
appearance and disappearance of particular devices, and
to give the programmer a ‘handle’ to devices as they
appear.

2. Identification. There must be a way to link a software
phidget with its physical counterpart. While not a
problem when there are only a few well-known devices
attached to a single computer, this can become an issue
when several devices of the same type (but perhaps with
different end uses) are attached to the computer, or
where the types and numbers of devices are not known
ahead of time.

3. Simulation mode. For software development purposes,
the same phidget code should work in a simulation
mode. That is, the software designer should be able to
program, debug and test the system even if the actual
physical device corresponding to the phidget is absent.
This could include an extended API to set the
simulation characteristics of the device, and a graphical
representation that allows a person to interactively see
and optionally set the device state.

WHAT WE BUILT
With these features in mind, we designed and built several
phidgets. Most of our phidgets are built around the
CY7C63000 USB micro-controller from Cypress
Semiconductor. Our phidgets connect via the USB port to a
computer running MS Windows, and are seen by Windows
as a USB device3. Each device knows and can transmit its
phidget type, as well as an identification number that is
unique for a phidget instance of that type (see Point 2
above). On the software side, we wrapped all the software
used to interact with a particular device type (including the
wire protocol and the device driver interface) as an ActiveX
COM Component. That is, programmers can create a
software instance of a phidget component, and can access
any of its (abstracted) properties, methods and events via a
documented and simple API. This phidget component can
operate in a simulated mode (where the software mimics the

3 We also built phidgets atop the 16F84 micrcontroller from

Microchip Inc. which connected to the RS-232 serial port. We
may build future versions atop X10 and/or wireless protocols.

Phidgets: Incorporating Physical Devices into the Interface - 3 - Greenberg and Fitchett 2001

device’s behavior: see Point 3), or it can be connected to an
actual physical device (Point 1). Each phidget component
also has a corresponding visual component (an ActiveX
control). This provides a visual on-screen interface to the
device that display its real or simulated state, and that
optionally lets an end-user interactively control it. Finally,
another ActiveX component acts as a connection manager:
it raises an event at run time when devices connect or
disconnect. The programmer can check the device’s type
and identification (if needed), and then connect that device
to its matching phidget component.

Example
Phidgets we have built (or have almost completed) include:
• GlabServo: a controller for several servo motors, where

the position of each motor can be set programmatically
(see Figure 2);

• GlabPowerBar: a power bar where individual outlets
can be programmatically turned on and off for various
time durations;

• GlabProximitySensor: a device that periodically
determines how close something is to it;

• GlabIO: a device that controls up to 8 simple output
devices (e.g., LEDs) and returns the state of up to 8
simple input devices (e.g., switches and heat sensors).

The Visual Basic program in Figure 3 illustrates the
complete source for an application that uses the
PhidgetManager and the GlabServo phidget to implement a
physical ‘clock’ with two flaps that open or close every
second (the flaps are just bits of plastic glued each motor
platform). While a nonsense application, it does serve to
illustrate how simple it can be to program physical devices.
We could also (with few changes) simulate this application
by using the visual version of the servo phidget and seeing
its behavior on screen.

Even this simple phidget set can let
people replicate existing physical
devices. Natalie Jeremijenko
pioneering Dangling String—an 8 foot
plastic string that vibrates to indicate
the amount of local Ethernet traffic
[13]—can be easily created using the
GlabServo with a program similar to
that illustrated in Figure 2. Dahley,
Wisneski, and Ishii’s Pinwheels [2]—a
motorized toy fan used to broadcast
events— can be built atop the
GlabPowerBar (to control the motors
that spins the pinwheels). Heiner,
Hudson and Tanaka’s information
percolator—water-filled tubes that can
display patterns as bubbles [6]—can be
built using the GlabPowerBar to rapidly
switch the aerator pumps on and off.
We can enrich the kinds of applications
we build by including one more
software component: a notification
server [11, 4, 5]. Our version of the
notification server implements a shared
dictionary: any distributed process can
set key/value pairs into this dictionary,
and all processes see changes to these
keys/values as events [4]. It then
becomes very simple to program
groupware based on physical devices,

Private WithEvents PM As New GlabPhidgetManager ‘The phidget manager
Private Servo As GlabServo ’The servo phidget

‘Create a new instance of them on start up, and configure a timer
Private Sub Form_Load()

Set PM = New GlabPhidgetManager
Timer1.Enabled = False ‘Set up the timer to tick once/second
Timer1.Interval = 1000 ‘Timer measurements in milliseconds

End Sub

‘‘When the phidget manager detects that a new Servo controller has been connected,
‘ link it to the servo phidget, set their intial positions, and start the timer
Private Sub PM_OnAttach_(ByVal Phidget As GlabPhidget.IGlabPhidget)
If Phidget.DeviceType = "GLAB Servo Controller" Then

Set Servo = Phidget
Servo(1).ServoPosition = 0 ’Settings are in degrees
Servo(2).ServoPosition = 180 ’Start the timer
Timer1.Enabled = True

End If
End Sub

‘Turn off the timer when the device is disconnected,
Private Sub PM_OnDetach(ByVal Phidget As GlabPhidget.IGlabPhidget)

If Phidget.DeviceType = "GLAB Servo Controller" Then
Timer1.Enabled = False

End If
End Sub

‘On every tick of the timer, flip the two servos 180o
Private Sub Timer1.Timer()

Servo(1).ServoPosition = Servo(2).ServoPosition
Servo(2).ServoPosition = 180 - Servo(1).ServoPosition

End Sub

‘The servo phidget generates an event every time its position is changed.
’However, we don’t do anything with this event in this example: its here just for illustration
Private Sub Servo_OnServoPosition (Index, position)

End Sub

Figure 3. The complete program for controlling an odd physical clock

Figure 2. The undecorated Servo phidget device

Phidgets: Incorporating Physical Devices into the Interface - 4 - Greenberg and Fitchett 2001

such as those shown in Figure 1. For example, an
application can capture a person’s presence using a well-
positioned GlabProximitySensor and write that into the
shared dictionary. Other applications can see this
information and use it to activate physical devices. For
example, it can use the GlabServo to rotate a figurine as
shown in Figure 1, or turn a lamp on and off [5] with the
GlabPowerBar. Our example programs for controlling and
interconnecting these devices are surprisingly short, each
taking only minutes to write.

FINAL THOUGHTS
Our main message is that packaging devices as physical
widgets or phidgets greatly simplifies programming these
devices, which in turn allows designers to concentrate on
how devices can be crafted to fit within the environment vs.
low-level implementation details. Of course, this is not a
revolutionary idea: we suspect that existing practitioners
have already packaged their own devices for internal reuse.
We are surprised, however, that there has been no real push
to publish, standardize and even to commercialize devices
as phidgets. Yet there is a real need for this: almost all the
people we have talked to who developed systems based on
physical devices—researchers, developers, artists—had to
start from scratch.
As well, we need to define a ‘standard’ phidget set. This
already exists for GUI toolkits; for example, virtually all
sets include buttons, listboxes, checkboxes, textboxes and
so on. However, it is unclear what phidgets would be
included in a standard phidget set. Certainly the ones we
mentioned are likely candidates, but there are likely many
more. As with GUI widgets, this phidget set must provide
the programmer with conceptual building blocks that are
not only individually useful, but can be assembled in a way
that lets the designer build a rich ubiquitous computing
experience.
Acknowledgements. We thank our collaborator Professor
Hideaki Kuzuoka (University Tsukuba), whose visit started
this going. The Collaboration Group at Microsoft Research,
the National Sciences and Engineering Research Council of
Canada (NSERC), and the Alberta Software Engineering
Research Consortium (ASERC) partially funded this work.

REFERENCES
1. Ark. W. and Selker, T. “A look at human interaction

with pervasive computers.” IBM Systems Journal 38 (4),
1999.

2. Dahley, A., Wisneski, C. and Ishii, H. “Water Lamp and
Pinwheels: Ambient projection of digital information
into architectural space.” Summary of CHI ’98, 269-
270, 1998.

3. Dey, A. K., Salber, D., Abowd, G. D. A conceptual
framework and a toolkit for supporting the rapid
prototyping of context-aware applications. Human-
Computer Interaction, 16, in press-2001.

4. Greenberg, S. and Kuzuoka, H. “Using digital but
physical surrogates to mediate awareness,
communication and privacy in media spaces.” Personal
Technologies, 4(1), January, Elsevier. 2000.

5. Gruen, D., Rohall, S., Petigara, N. and Lam, D. (2000)
“In your space” displays for casual awareness.
Demonstration at ACM CSCW 2000.

6. Heiner, J., Hudson, S. and Tanaka, K. “The information
percolator: ambient information display in a decorative
object.” Proc ACM UIST’99 Symposium on User
Interface Software and Technology. 141-148, 1999.

7. Ishii, H. and Ullmer, B. “Tangible bits: Towards
seamless interfaces between people, bits and atoms.
Proc ACM CHI’97 Conference on Human Factors in
Computing Systems, 234-241, 1997.

8. Kaminsky, M., Dourish, P., Edwards, K. LaMarca, A.,
Salisbury, M. and Smith, I. “SWEETPEA: Software
tools for programmable embodied agents.” Proceedings
of ACM CHI 99 Conference on Human Factors in
Computing Systems, 144-151, 1999.

9. Myers, B. (1995) State of the Art in User Interface
Software Tools. In Baecker, R., Grudin, J. Buxton, W.
and Greenberg, S. Reading in Human Computer
Interaction: Towards the Year 2000. Morgan
Kaufmann.

10. Norman, D.A. The Invisible Computer. MIT Press,
1998.

11. Patterson, J., Day, M. and Kucan, J. Notification servers
for synchronous groupware. Proceedings of ACM
CSCW'96 Conference on Computer-Supported
Cooperative Work, p122-129. 1996.

12. Ullmer, B., Ishii, H. and Glas, D. “mediaBlocks:
Physical Containers, Transports, and Controls for
Online Media.” Proceedings of the 25th Annual
Conference on Computer Graphics. 1999.

13. Weiser, M. and Brown, J. “Designing calm technology”,
Powergrid Journal, v1.01, July, 1996.

