

Contrasting Stack-Based and Recency-Based Back Buttons on Web Browsers

Saul Greenberg1, Geoffrey Ho2 and Shaun Kaasten1

1Department of Computer Science and 2Department of Psychology
University of Calgary

Calgary, Alberta, Canada T2N 1N4
+1 403 220 6087

saul@cpsc.ucalgary.ca

Abstract
People frequently use the ubiquitous Back button found
in most Web browsers to return to recently visited
pages. Because all commercial browsers implement
Back as a stack, previously visited branches of the tree
are pruned. While this means that people can quickly
navigate back up the tree, previously seen pages on
alternate child branches are no longer reachable through
Back. An alternate method implements Back on a
recency model. Here, all visited pages are placed on a
recency-ordered list with duplicates removed, which
means that all previously seen pages are now reachable
via Back. Because advantages and trade-offs exist in
both methods, we performed a study that contrasted
how people used stack vs recency-based Back.
Surprising to us, several of our results were contrary to
our expectations. First, people have a poor model of
both stack and recency-Back. Second, people do not
predict what pages will appear as they click Back.
Rather, they use a ‘click until recognize’ strategy,
where they simply click Back until they recognize the
desired page. Third, people show no strong preference
of recency vs. stack-Back. Consequently, we advocate
replacing stack-Back with recency-Back only if other
browser design considerations warrant it.

Key words: History system, browser design.

1 Introduction
A person’s ability to find and navigate effectively to
new information and to new web sites is extremely
important, and this has driven many researchers to
understand both how people navigate within the Web,
and how Web sites should be designed. Equally
important is a person’s ability to return to pages he or
she has already seen: page revisitation is a regular and
surprisingly strong navigational occurrence. An early
study by Tauscher and Greenberg [6] found that around
60% of all pages an individual visits are to pages they
have visited previously. A later replication of this study
by others found an even higher revisitation rate of
around 80% [1].

Given this revisitation statistic, we believe that Web
browsers should go to great lengths to support effective
page revisitation. Indeed, most browsers do provide
revisitation support through various mechanisms: the
Back and Forward buttons, history lists, bookmark
facilities, and even site maps that graph the pages that a
person has visited [2][6].

Of these revisitation mechanisms, it is the Back button
whose use predominates: Tauscher and Greenberg [6]
discovered that pressing the Back button comprised
over 30% of all navigational acts. In contrast, other
revisitation facilities are used infrequently e.g., <3% for
bookmarks, and <1% for history systems.

Greenberg and Cockburn [4] detailed several reasons
explaining Back’s popularity.
1. Back allows people to rapidly return to very recently

visited pages, which comprise the majority of page
revisits. This is important, as Tauscher and
Greenberg [6] found that there is a 43% chance that
the next URL visited will match a member of a set
containing the 10 previous visits. Because 60% of
all pages are revisits, this means that 43÷60 = 72%
of all revisited pages were just seen 1–10 pages ago.

2. Back requires little effort as a person merely clicks
on it until the page is reached.

3. People are willing to keep Back on permanent
display because it is visually compact.

4. People can use Back successfully even when they
have a naïve understanding of the way it works [2].

Back’s popularity as a revisitation tool means that it
deserves special attention. Somewhat surprising to us is
the wide-spread—and unchallenged—acceptance of the
stack-based navigation model underlying Back and
Forward in virtually all commercial browsers. If we can
improve this behaviour even slightly, millions will feel
the added benefit.

Consequently, our focus in this paper is to re-examine
the usability of the way existing Back and Forward
buttons work on a stack, and to compare it to an
alternative button based on recency. We look at recency
for several reasons (see Section 2.1). First, previous Cite as:

Greenberg, S., Ho, G. and Kaasten, S. (2000) Contrasting
Stack-Based and Recency-Based Back Buttons on Web
Browsers. Report 2000-666-18, Department of Computer
Science, University of Calgary, Alberta, Canada, August.
Updated January 2002.

research suggests that recency is closer to how people
think Back actually works [2]. Second, the stack-Back
loses pages, while recency-Back does not.

We also have a personal motivation. We have built a
novel revisitation system that integrates Back, History
and Bookmarks [5]. It represents pages on a sidebar as
thumbnails and titles ordered by recency (Figure 1).
Bookmarks are included in this list as specially marked
‘dogeared’ pages. Using dynamic queries, people can
rapidly filter the list to show only frequently-visited
pages, dogeared pages, pages within a particular
domain, or pages whose title contains a particular
string. Of particular relevance to this paper is that the
Back and Forward buttons are also based on recency:
they simply go up and down the list. While there are
obvious advantages of making Back work directly on
this visible list, we had no idea if a recency-based Back
button would be acceptable to end users.

In this paper, we describe and contrast stack-based vs.
recency-based Back button behavior. After
summarizing how these behaviors work (Section 2), we
introduce our study where we investigate how well
people understand and use these two buttons (Section
3). We then present and discuss our results (Section 4),
and we close by pointing out implications of our work
to the design of web browsers.

2 Stack vs. Recency-based Back Buttons
This section summarizes two different behaviors for the
Back and Forward buttons: the stack-based behavior
found in today’s web browsers, and a recency-based
behavior proposed and implemented by Greenberg and
Cockburn [4]. We will illustrate these two behaviors by
showing how people navigate through the small page
structure shown in Figure 2.

We use the notation x→y where ‘→’ means that the
person has selected or typed a link on page x to go to
page y. Similarly, in y⇐x, the ‘⇐ ’ means backtrack
from page y to page x via the Back button. We also
define hub and spoke navigation as an action where
people follow links from one parent (the hub) to two or
more children (the spokes). For example, when
navigating b→c⇐b→h⇐b in Figure 2, b acts as a hub
while c and h are spokes. Of course, c could also act as
a hub page if the user navigates a similar pattern to two
or more of c’s children. This hub and spoke behavior
deserves special attention because it is a common
navigational act [6] and because it results in page
pruning by stack-Back, as described below.

2.1 Stack
Description. The stack algorithm underlying a
conventional Back button has three different types of
operations.
1. Clicking or typing links adds a page to the top of the

stack.
2. Clicking Back and Forward moves the stack pointer

down and up the stack respectively, displaying the
page at that stack location. The actual stack contents
are not altered when navigating with these buttons.

3. When the user is at any position on the stack other
than the top and selects a link on a web page, all
entries on the stack above the current position are
popped (or pruned) off the stack before the new
page is added. This is critical, as pages popped off
the stack can no longer be revisited using the Back
and Forward buttons.

To illustrate these steps and how the stack behavior
affects what people see, let us say a person follows the
page links in Figure 2 from pages a through d in order,
then presses Back twice to return to page b, and then
selects a new link on page b to page h. Figure 3a shows
the stack after a person navigates a→b→c→d, where
all pages were pushed onto the stack’s top. In Figure
3b, we see that the two clicks of the Back button
(d⇐c⇐b) moves the stack pointer down the stack to b.
Navigating from b→h pops pages c and d off the stack
(Figure 3c), and then adds page h to its top (Figure 3d).
Thus pages c and d are no longer reachable through the
stack-based Back button.

Figure 1. Recency-based Back, history and bookmarks

 a

b

h

d f

c

e g
Figure 2.
Example page
structure.

 page d
page c
page b
page a

Push
abcd

a) User visits pages a-d, in

order

 page d
page c
page b
page a

Move
pointer

b) User clicks Back

twice,
page d
page c
page b
page a

Pop

c) … selects link to h

which pops c & d off the
stack…

 Push h
page h
page b
page a

d) …and pushes h onto

it.

Figure 3. An example navigational trace and its
effect on the stack. Note that pages c and d are
popped off the stack.

Advantages and Disadvantages. The
consequence of using a stack
algorithm is that it automatically
prunes navigational branches when
people use Back followed by link
selection. This approach has some
merit: after exploring a branch and
selecting a new path of interest the
user may no longer need the previous
branch of exploration. Because these
pages are gone, a sequence of Back clicks will always
move one ‘up’ the page hierarchy, making it easy to
return to parent hub pages.

A counter-argument is that there are many cases where
people do want to return to pages seen on a previously
visited branch. For example, in the navigational trace
described in Figures 2 and 3, the spoke pages visited on
the branches below hub page b disappeared as soon as
another spoke of b (page h) was selected. If a person
wanted to go back to spoke page d from page h
(perhaps because they needed to review the information
on page d), they could no longer do it via stack-based
Back as page d has been pruned.

Still, we could argue that the Back button isn’t really
required for this case, because the person can first use
Back to go from h⇐b, and then use the normal links on
b to re-navigate b→c→d. While reasonable for short
pages with few links and simple navigational paths, this
could be onerous for more complex situations. First,
many web pages now override the coloring of
previously selected links, which makes them
indistinguishable from unvisited ones and thus harder to
find. Second, some pages are long and complex:
recalling and finding the correct link within the page
adds the extra burden of scrolling and searching. Third,
finding the correct spot to re-click on image maps may
be challenging. Finally, if the person navigated a
complex path to a particular page, they may find it
difficult to retrace that path later on.

Stack-Back has another problem. Current systems do a
poor job of communicating stack’s tree-pruning
behavior to its users [2], and most people actually
believe that Back just returns sequentially to one’s
previously seen pages (this incorrect view is validated
further in Section 4.1). This discord between how Back
works and how people think it works is no surprise. The
labels Back and Forward imply linearity, rather than of
a tree. There are few cues at the interface to help users
distinguish between the underlying semantics of page
display using link selection (how new pages are added
and how the stack is popped) vs. the semantics of
moving within the stack using the Back and Forward

buttons. Consequently, users sometimes wonder why
pages are seemingly ‘lost’ when using Back.

2.2 Recency
Description. Perhaps the greatest disadvantage of stack-
Back is that it cannot guarantee that previously visited
pages are reachable by successive Back clicks. As an
alternative, we could provide a complete history of all
visited pages by having Back and Forward move a
person through a recency-ordered list, where the
buttons simply navigate through the pages in reverse
order to how they were seen. Surprisingly, the design of
recency-Back is not as simple as might be expected.
Greenberg and Cockburn [4] explored several models
of Back based on variants of a recency-ordered history
list: here we describe only the final one that they
advocate: recency with duplicates removed and a
temporal ordering enhancement.

We begin with a side discussion: the management of
duplicate entries in the history list. When a person sees
a page more than once, the system would record them
as duplicate entries on the recency list. The advantage is
that successive Back clicks would go through a literal
representation of the order of pages that the user has
seen. The disadvantage of retaining duplicates is that
the list (and thus the number of Back clicks) could
become unnecessarily long and repetitious. Instead,
Greenberg and Cockburn [4] suggest pruning duplicate
pages by keeping only a single copy of it in its most
recent position on the list: this keeps recently revisited
pages near the top and thus quickly reachable through
Back. Tauscher and Greenberg [6] analyzed this
approach, and found that substantially fewer Back
presses would be required to return to a desired page
when duplicates are pruned.

The algorithm for maintaining a true temporal recency
list with duplicates removed is described below.
1. As with stack, clicking or typing links displays a

page and adds it to the top of a recency list.
2. Similarly, clicking Back and Forward moves a

pointer down and up the recency list respectively,
where the pointed at page is rendered in the
browser. However, the page seen before the button
is clicked is also added to the top of a second list.

3. When the user is at any position on the list other
than the top and selects a link on a web page, the
contents of the second list are moved to the top of
the recency list. Any duplicate entries below the
current ones are then removed. Finally, the new
page is added to the top of the list and rendered in
the browser.

The function of the second list introduced in Step 2 is to
track the order of pages seen as a person navigates the
recency list using Back and Forward. We need this list
in Step 3 for reordering the primary list to its true
temporal order after a new link is selected. This scheme
matches the sequence of page as the user saw them
(excluding duplicates), and works over any number and
combination of link selections and Back and Forward
actions.

Figure 4 illustrates how this algorithm works using the
same set of pages and the navigation example of
Figures 2+3. As before, visits to the pages a→b→c→d
produces the main list {d,c,b,a} (Figure 4a). Going
from d⇐c⇐b creates a second list {b,c} (Figure 4b).
As soon as the person selects the new link b→h, b and
then c are added to the main list and any duplicates of b
and c further down are removed (Figure 4c). Finally,
the new page h is added, giving {h,b,c,d,a} which is the
correct temporal sequence of pages (with duplicates
removed) that the user has just seen (Figure 4d).

Advantages and disadvantages. Recency has several
potential advantages. First, the list of previously visited
pages is complete because no pages are popped off the
list. Therefore users are guaranteed to be able to revisit
pages already encountered during their browsing
session by using the Back button. Second, because the
underlying recency list can grow indefinitely, it is
feasible for Back to work between sessions i.e.,
successive browser invocations and login sessions.
Third, the temporal reordering algorithm means that
users always see a temporally correct retracing of their
page path using Back, which likely matches how people
perceive Back to actually work [2].

Yet one disadvantage of recency-Back arises if a user’s
goal is to navigate back up the tree to a parent hub
rather than to a previously seen spoke page.

Superfluous spoke pages are now interposed as recency
does not prune those spoke pages visited on a different
branch.

3 The Study
Is recency-Back a viable replacement for stack-Back? If
it proves ‘better’, then browsers implementers should
replace stack-Back with recency-Back. If it proves no
better or worse, then implementers have the design
option of using recency-Back if they can justify it e.g.,
as with the integrated revisitation system shown in
Figure 1. If it proves worse, then we know that stack-
Back is the preferred strategy.

To answer these questions, we designed a study that
examined people’s mental model of the conventional
stack-based Back button. We then explored how well
recency vs. stack-Back matched peoples’ expectations
of how it worked by asking people to predict what
pages would appear as they navigated via Back. We
also asked people which button they preferred. We had
several expectations, framed as hypotheses.
Hypothesis 1. Users have a poor mental model of stack-

Back. We expect this as it echoes an earlier result [2].
Hypothesis 2. When revisiting pages over different

navigational paths, users are better predictors of what
pages will appear when using recency-Back vs. stack-
Back. We expect this because people believe Back
navigates through the pages as they were seen [2].

Hypothesis 3. After using both a stack-based and a
recency-based Back button for a similar set of tasks,
people will prefer recency. We expect this because
recency better fits peoples’ reported mental models of
Back [2].

 page d
page c
page b
page a

Add in
order

a) User visits pages a-d,
in order

 page d
page c
page b
page a

Move
pointer page b

page c Add to
2nd list

b) User clicks Back twice
which adds revisited items
to the 2nd list,

Add

page b
page c

page d
page c
page b
page a

page b
page c

c) …and selects link to
h. This moves the 2nd list
to the main one while
removing duplicates…

 Add h

page c
page d
page a

page b
page h

Move
pointer

d) and then adds h onto it
and resets the pointer to the
top

Figure 4 The same navigational trace using a recency list.

3.1 Participants and expertise
Thirty volunteers participated in this study. All had
some level of post-secondary education. Answers to a
pre-test questionnaire indicated a mixed but generally
web-savvy group. For web usage: 20 participants
claimed to use a browser almost every day; 5 stated
their use as ranging from once every few days to once a
week; while the remaining 5 reported low Web use.
Participants described themselves as: 4 being skilled
experts, 13 having good (but not expert) skills, 7 having
basic skills, and the remaining 6 having beginner-level
skills. All participants stated that either Netscape
Navigator or Microsoft Internet Explorer was their
preferred browser.

3.2 Materials
Participants used Microsoft’s Internet Explorer version
5.0 running within Windows 98 on a modern PC with a
1024x768 24-bit color display. All pages used for the
study were stored on the local computer. In essence,
this configuration meant that navigations and resulting
page displays were uniformly rapid.

We added two non-standard software systems to the
browser. First was a (visually identical) Back button
that used the recency with duplicates removed/temporal
ordering enhancement algorithm [4], as described in
Section 2.2. Second was an artificial search bar used for
one of the tasks: while it resembled a browser’s typical
search bar result, it actually contained a pre-defined set
of static links.

We used several local web sites. We created these by
importing/modifying a few popular commercial sites.

3.3 Method
The entire procedure listed below required
approximately one hour of participant’s time.

Stage 1: Initial mental model. Hypothesis 1 claims that
people have a poor mental model of Back. Our strategy
was to confront people with how they thought Back
worked with how stack-Back actually worked. First, we
asked them to articulate their mental model of the
(stack-based) Back button they normally use (Figure 5,
question 1). Second, we gave them a simple web site—
a book table of contents containing links to several
chapters—and had them navigate the hub and spoke
pattern a→b⇐a→c. Participants did not see this arcane
notation; they were told to go from the table of contents
to Chapter 1, then Back to the contents, and then to
Chapter 2. Third, we then asked participants how many
times they would have to click the Back button from
their current page c to go back to b i.e., from Chapter 2
Back to Chapter 1 (Figure 5, question 2). Fourth, we

then told participants to try to return to b by actually
using the standard stack-Back button. Finally, they were
asked questions 3-5 in Figure 5 about how the observed
stack-Back behavior matched the answer they
previously gave in Question 1.

Stage 2: Navigation and prediction tasks. Hypothesis 2
suggests that people can better predict what pages they
will see when using recency-Back vs. stack-Back. To
check this claim, we randomly assigned participants to
one of two groups, where each group saw either the
stack or recency-Back button first. We gave each
participant five different and increasingly complex
tasks. Instructions for all tasks are summarized below.
1. We reminded participants to think aloud as they

worked.
2. From a home page, we had participants navigate

through a series of links to a destination page.
Participants had to scan each page they saw in order
to find and choose the correct next link.

3a. We asked participants to return to a particular
previously visited target page using only the Back
button.

3b. Before each and every Back click in step 3a,
participants had to predict what page they expected
to see. They described the expected page, clicked
Back, and then stated if their prediction was correct.

The five tasks stepped through different navigational
sequences, corresponding to those illustrated in Figures
6–9 and described below.

Short linear sequence (Figure 6). The participant
navigates from page a (the home page of the Discover
Alberta web site we used) through two intermediate
pages b and c to reach the destination page d (a page
describing hostels in Edmonton) i.e., a→b→c→d; this
is illustrated by the straight arrows in the Figure. The
participant then uses Back to return to page a, making
predictions before each click. Correct predictions are
denoted in Figure 6 as P1 to P3 (for predictions 1 to 3).
Because there are no branches, both recency and stack

1. Describe how the back button works, and how the Back
button internally manages and stores the pages you visit.

Participants were then asked to navigate through three pages
comprising a simple hub and spoke system a→b⇐a→c.
2. How many times would you have to click Back to return to

<page b>?
They were then told to try to return to a via Back.
3. Were there any problems?
4. Did this match your model of the back button in question 1?
5. Is the version of the Back button you are using is the same

as the one supplied with your normal web browser?
Figure 5. Questionnaire excerpt concerning people’s
mental model of the Back Button.

behave identically i.e., a is returned to by d⇐c⇐b⇐a
(the curved arrows in the Figure).

Long linear sequence (Figure 7). This task is similar to
the one above, except that more intermediary pages are
involved. Reaching destination page i requires
a→b→c→d→e→f→g→h→i. Returning to a using
both recency and stack Back is by
i⇐h⇐g⇐f⇐e⇐d⇐c⇐b⇐a

Hub and spoke with return to hub (Figure 8). Reaching
destination page h after visiting all the children of d
requires a→b→c→d→e⇐d→f⇐d→g⇐d→h.
Returning to revisit target hub a using the stack Back
just goes up the hierarchy by h⇐d⇐c⇐b⇐a (4 Back
clicks). Recency Back takes 7 clicks, as all d’s children
are seen again h⇐d⇐g⇐f⇐e⇐c⇐b⇐a. These paths
and corresponding predictions are denoted in the figure
as PR1-7 for recency predictions, and PS1-4 for stack
predictions.

Hub and spoke with return to spoke, then hub (Figure
8). This is almost identical to the task above (although
using a different set of pages). The only difference is
that participants are first asked to revisit the child spoke
page f of hub d, and then the root page a. Note that
spoke page f is not reachable via stack as it is pruned.
The revisitation sequence of both recency and stack
Back are identical to the hub and spoke task above.

Search bar (Figure 9). This complex task simulates a
user navigating through several sites by using the
results of a search presented in a search bar. The order
of navigation by the participant (where sb denotes the
search bar) is: sb→b→c⇐b→d; sb→e;
 sb→f→g→h→i; sb→j→k. The participant is then
asked to return to target page f, and then to c. The path
of stack Back is k⇐j⇐i⇐h⇐g⇐f⇐e⇐d⇐b (8 Back
clicks). Note that because stack Back pruned spoke
page c when the participant went back to b, target c is
not reachable. Recency Back takes 9 clicks, and
includes target page c k⇐j⇐i⇐h⇐g⇐f⇐e⇐d⇐b⇐c.

Stage 3: Subjective preferences. Hypothesis 3 claims
that people would prefer recency-Back. To check this,
we had participants redo the entire set of tasks
performed with the first type of Back button with the
other type of button. Through a post-test questionnaire,
we then asked them to comment on each Back button
type and which they preferred.

4 Results
We first describe our participants’ mental model of
stack-Back. We then report both the prediction and
preference data of only the first 15 participants for
reasons that will become apparent in the subsequent

discussion. Afterwards, we present the preferences of
the remaining 15 participants.

4.1 Mental Model of the Stack-based Back button.
When asked to describe how their conventional stack-
Back button worked (Figure 5 question 1), the
description of all but two participants indicated an
incorrect or incomplete mental model. Most
participants simply said that Back just returns to all
previously viewed pages. Some were more explicit (but
still incorrect), where they said that pages are stored
and displayed as a list of all pages in the order seen. A
few other answers hinted that participants were aware
of the stack-Back pruning behavior, but even then they
had an incorrect view as to when and why this
happened. To quote several participants, Back:
• goes to previous page, but sometimes you can’t…I

think it goes back to [a] different user;
• takes you back to previous pages in your navigation

path…does seem to fail;
• takes you back to last few pages you visited but

after a few clicks it takes you to the main pages
(only).

We then confronted participants with how the stack-
based Back button actually worked. As mentioned
previously, after they navigated a simple hub and spoke
pattern, they were asked to predict how many Back
clicks were required to return from the second spoke to
the first spoke. The correct answer is that it is not
possible, as stack-Back will have pruned it off the list.
However, only 2 of the 30 participants correctly
answered this question (the same two that knew about
the stack); the 28 others incorrectly predicted two Back
button clicks.

We then asked people to try and navigate to that page
via Back, only to find that they could not. Most, but not
all, admitted that it did not match their mental model as
stated when replying to Question 1 (Figure 5). A few
said that in hindsight it did, but not for the correct
reason. For example, one person said “there are often
errors…it often doesn’t work at all”. Two others said
that “some sites just do this”. Also interesting is that
about half of all participants thought that the Back
button they just used did not behave the same as the one
they normally used, even though it did!

What is clear is that people have a poor mental model
of stack-Back i.e., Hypothesis 1 is supported. Most
people were not able to articulate how stack-Back really
worked. They could not predict its pruning behavior in
even a very simple hub-and-spoke example. They were
either surprised when the system did not work as
predicted, or they had an arcane rationale for why it

Stack

0

5

10

15

P1 P2 P3
Predictions

Er
ro

rs
recency 1st
stack 1st

a) Alberta

b) Edmonton

c) Lodging

d) Hostels

Revisit
Target

Destination

Figure 5: Short Linear

Figure 6. Long Linear
Destination

a) Alberta

b) Rockies

c) Jasper

d) B&Bs

e) Riv. Lodge

f) Rooms

g) Cabins

h) Rates

i) Reserve

P6

P5

P4

P3

P2

P1

Figure 9. Search bar.

Revisit Target 2

sb) Search Bar

P1

b) CarPrices.com f) Edmunds

Revisit
Target 1

c) Prices

e) Corolla NC

d) Reviews g) Toyota

h) Corolla
CE

i) Review

j) Toyota

k) 2000
Corolla

P3

P2P4

P5P6
P7

P8 PR9

Figure 8. Hub and Spoke: a) hub and b) spoke/hub results

a) Discover Alberta

b) Banff

c) Photo Gallery

Revisit hub

d) Sunrises

PS2

f) Photo 2 e) Photo 1 h) Photo 2 g) Photo 1 P

Revisit
spoke

P1

P2

P3

P7

P7

PS3

PS4

PS1
PR1

PR2

PR3 PR4

PR5

PR6

PR7

Recency

0

5

10

15

P1 P2 P3

Er
ro

rs

stack 1st
recency 1st

Revisit
Target

Recency

0

5

10

15

P1 P2 P3 P4 P5 P6 P7 P8

Er
ro

rs

stack 1st
recency 1st

a) hub and spoke with return to hub
Stack

0

5

10

15

PS1 PS2 PS3 PS4

Er
ro

rs

recency 1st
stack 1st

Recency

0

5

10

15

PR1 PR2 PR3 PR4 PR5 PR6 PR7
Er

ro
rs

stack 1st
recency 1st

Stack

0

5

10

15

PS1 PS2 PS3 PS4
Predictions

Er
ro

rs

recency 1st
stack 1st

b) Hub and spoke with return to spoke, then hub
Recency

0

5

10

15

PR1 PR2 PR3 PR4 PR5 PR6 PR7
Predictions

Er
ro

rs

stack 1st
recency 1st

Recency

0

5

10

15

P1 P2 P3 P4 P5 P6 P7 P8 PR9

Er
ro

rs

stack 1st
recency 1st

Stack

0

5

10

15

P1 P2 P3 P4 P5 P6 P7 P8 PS9
Predictions

Er
ro

rs

recency 1st
stack 1st

Stack

0

5

10

15

P1 P2 P3 P4 P5 P6 P7 P8
Prediction

Er
ro

rs

recency 1st
stack 1st

behaved the way it did. This result accords with
Cockburn and Jones’ [2] study involving ten computer
scientists. As their study was done in the fairly early
days of web browsers, we could have argued that
today’s web users are more browser-literate. This
replication of their findings clearly demonstrates this is
not the case: users find the exact behavior of the Back
button as inscrutable now as it was then.

4.2 Predicting pages returned to by Back.
We asked the first 15 participants to predict what page
they would see before they pressed Back as they tried to
return to the revisit target. We will explain shortly why
we did not ask the remaining 15 participants to do this
prediction task. Eight participants began with recency-
Back, while the remaining seven began with stack-
Back. The results of these 15 are summarized below
and plotted in Figures 5-8.

All graphs work as follows. First, graphs come in pairs,
where one plots data from the stack-Back and the other
from the recency-Back conditions. Second, the X-axis
is the prediction number, which corresponds to those in
the navigational sequence included in each figure. The
Y-axis is the number of people who made errors on that
prediction. Third, we divide the error data into two
categories: if a graph plots a condition, we plot errors
made by those who did that condition first as the
bottom dark part of each bar. Those who used that
condition second are on the upper light area. For
example, the dark parts of the bars on a graph plotting a
stack-Back condition indicate the errors made only by
participants who did stack-Back first, while the light
area are errors made by those who did the recency-Back
first. This categorization lets us visually separate the
data for learning effects. While included for illustration,
our results will discuss only on the bottom dark area of
each bar; we know there should be no learning effects
in this data because these people did that condition first.

Short linear sequence. Each participant made three
predictions P1, P2 and P3 for this sequence. The two
graphs in Figure 6—the bottom one for the stack-Back
and the top one for the recency-Back—plots where they
made errors. Errors are rare; people are good at
predicting short linear sequences in either condition.

Long linear sequence. Each participant made eight
predictions P1 through P8 as they navigated back to the
revisit target (Figure 7). As seen on the graphs, people
made many errors in both the stack and recency-Back
conditions after the first two predictions, although there
are relatively fewer errors in the stack-Back condition.

Hub and spoke with return to hub. In this task, the
target page was a hub up the hierarchy (the root page

a). Four of the seven participants who went first using
stack-Back erred only in their second prediction PS2
(Figure 8a, graphs at top). That is, there seemed to be
some confusion as to where Back would take them after
reaching the hub page d. In contrast, the eight
participants using recency-Back made many prediction
errors. As with stack, they were uncertain of what
would happen after first reaching hub page d (PR2) and
then again after seeing the second child (PR3)—most
thought it would return to hub page d again. Only one
person made an error on PR4, likely because they now
realized they would see all children in order. However,
many then expected to see hub page d again on PR5
rather than the hub’s parent c.

Hub and spoke with return to spoke, then hub. The only
difference between this and the previous task is that
participants were asked to revisit the spoke page f
before revisiting hub page a. We wanted to see if
predictions were better or worse if they were looking
for a child spoke page instead of a page up the
hierarchical path. Comparing errors with the previous
hub and spoke navigation with stack-based Back (where
target page f is unreachable), we see two additional
errors on PS3 (Figure 8b, graphs at bottom). We
surmise that participants thought they would see the
other spoke pages at these points. Recency-Back seems
to have somewhat fewer errors going through the first
few children (PS2 and PS3) when compared to the
return to hub data, although the error rate is somewhat
higher afterwards. As before, many expected to see hub
page d after each spoke was revisited.

Search bar. The error rate for predictions on this
complex revisitation task was very high for both
conditions (Figure 9).

Preferences. After completing all tasks with one Back
button type, participants repeated them with the other
button. While the web site used was different, the
navigational structure was identical. We then asked
them which button they preferred. Nine favoring stack,
four recency, and two were undecided. Comments by
participants suggested that predictions were easier to
make with the stack model as it went directly up the
tree, thereby skipping sub-pages.

Think-aloud. During all tasks, we observed participants
as they formed their predictions and thought-aloud
about how they were making them. What was
immediately obvious after running just a handful of
participants was that predicting the next page often
required a great deal of cognitive work as well as time.
We saw participants try to mentally reconstruct where
they had been: they would search the current page for
clues as to what its parent could be while trying to

recall what they had seen. They seemed to fare better
on pages that had a logical hierarchical or path
structure, and less so on pages whose structure was
somewhat more arbitrary.

4.3 Discussion Part 1
On the surface (and without looking at statistical
significance) Hypotheses 2 and 3 are rejected: stack-
Back seems better than recency. Participants’ error rate
for predictions appears lower, and a majority of
participants (9:4, 2 neutral) preferred stack to recency.
This poor overall performance also supports Hypothesis
1 i.e., that people have a poor mental model of how
stack-Back works. Surprising to us is that people’s bad
performance with recency hints that they have a poor
mental model of how a recency-Back button works.

Yet something is wrong with this story. In the think-
aloud observations for both conditions, we saw
participants expend a great deal of time and effort when
making predictions. That is, making predictions is hard
work and does not accord with how we see people
using Back in everyday use: navigating with Back is
done without much apparent thought, and people
backtrack through successive pages very quickly and
successfully.

This discordance led us to rethink our rationale for
Hypothesis 2. We initially thought that people could
anticipate or predict from their mental model what
specific pages would appear when clicking Back, and
they somehow did this in their everyday use of
browsers. From our observations, this is clearly
incorrect. Instead, our findings suggest an alternate
Hypothesis 2:

Hypothesis 2 (alternative). When revisiting pages over
different navigational paths, users are poor
predictors of what pages will appear when using
either recency-Back or stack-Back. Instead, people
use a ‘click until recognize’ strategy, where they
have a vague expectation that the searched-for page
will appear sometimes, and they simply click the
button until they recognize the desired page.

This alternative Hypothesis 2 also raises doubts about
our previous rejection of Hypothesis 3, for the
prediction task does not reflect how people actually
used Back. Forcing them to make predictions almost
certainly interfered with their goal of returning to the
target page. This may have led to some preference bias
for stack-Back, which is likely easier to predict because
one just has to reconstruct how one moves up the
hierarchy.

Participants’ difficulties for page prediction were so
striking that we felt no need to statistically analyze our

data further, or to have our remaining 15 participants
suffer through the prediction task. Rather, we altered
the study on the fly to re-evaluate Hypothesis 3 as
described below.

4.4 Stack vs Recency-Back without Predictions
We re-examined Hypothesis 3 by seeing how
participants would rate their preferences to the two
Back buttons if they did not have to make predictions.
We continued the study with the next fifteen
participants exactly as before, except that we omitted
step 3b in stage 2 of the method outlined in Section 3.3.

Unlike the previous 15 participants, we saw people
quickly and effortlessly returned to the target page (if it
was reachable) using both Back buttons. Where
previous participants favored stack, this new set of
participants showed no strong leaning for one button
type over another. Eight preferred recency, six
preferred stack, and one was undecided. People who
preferred recency commented:
• go through the actual order more than not;
• pages come back sequentially as they should;
• more predictable: goes through the actual order;
• doesn’t feel like more clicking;
• stack missed a whole bunch of pages;
• more intuitive… liked [that it had] no duplicates.

People who preferred stack commented:
• more used to it;
• recency produced extra clicks;
• doesn’t take you back to sub-pages.

4.5 Discussion Part 2
Hypothesis 3 is still rejected, as people did not prefer
recency over stack-Back. However, our new results
suggest the following alternate hypothesis:

Hypothesis 3 (alternative). After using both a stack-
based and a recency-based Back button for a similar
set of tasks, people will not prefer one type of button
over the other.

This change in preference as well as the ease which
participants returned to target pages also re-enforces
our conviction stated in the alternative Hypothesis 2.
That is, people do not have an exact model of what
pages they expect to see as they use Back, and that they
use a ‘click until recognize’ strategy instead.

One point deserves further elaboration. A recurring
comment made in regards to the recency model was the
inability to recover ‘hub’ pages: participants expected
to see the hub page after each visit to a child. Our
recency with duplicates removed algorithm showed the
hub page once, but the perception of the users was that

it did not. Instead, they expected a pure sequential
model. Does this suggest that hub pages should be
duplicated rather than only shown once? We think not.
With more extended use of recency Back, users may
realize that the hub pages are accessible and may find
the duplication of pages unnecessary. We also believe
that seeing hub pages several times will introduce a
different type of confusion i.e. that Back is merely
cycling through the same sequence of pages. Still, more
testing is needed before drawing a final
recommendation of how duplicates are handled.

5 Implications to Browser Designers
At first glance, there is no compelling reason to change
the current stack-based Back button to a recency-based
one. People seem comfortable with stack-Back, even
though they have a poor model of it. This is because
their ‘click until recognize’ strategy does not require an
accurate model of its behavior. As well, people seem
somewhat unconcerned about the mysterious
disappearance of pruned pages, blaming it on the
vagrancies of computers. Importantly, there is no
overwhelming preference by our participants of
recency-Back over stack. While we could still argue
that recency is better than stack because no pages are
lost, we cannot make a compelling argument that the
familiar stack-Back idiom should be replaced in
conventional browsers.

However, the ambivalence between recency vs. stack
means that new designs can include recency with no
penalty. One possibility we prototyped includes both
the stack and
recency-based
buttons. We
relabel stack-Back and Forward as Up and Down, as this
more accurately reflects the semantics of moving up
and down the navigational hierarchy that is a side
product of stack-pruning. Back and Forward are now
recency-based, as they reflect the semantics of moving
backwards and forward on the recency-ordered history
list. This is not new, as similar buttons are found on
several non-web browser products e.g., Microsoft’s file
explorer, and the MSDN document browser.
Nonetheless, we recommend caution. Because users
have a fuzzy notion of how stack and recency behave,
the differences between these buttons may be unclear to
them. As well, it adds complexity: yet another decision
must be made as to which revisitation method should be
chosen.

Perhaps a more compelling reason for using a recency-
based Back button is to remove the differences between
Back and the other revisitation systems available on
web browsers. As previously described and as

illustrated in Figure 1, our new revisitation system
integrates Back, history, and bookmarks by unifying
them to operate over a single recency-based list [4].
Back and Forward simply become shortcuts for
navigating the history / bookmark list item by item. If
the history list is visible, then items are highlighted as
the user selects Back e.g., we see in Figure 1 that the 2nd
item is marked, which means the person has just
pressed Back once. This visually exposes and re-
enforces how Back works. Our study suggests that this
replacement of stack-Back with recency-Back can be
done with no penalty.

6 Summary
Even though Back is probably the most highly-used
interface widget in existence today, there are (to our
knowledge) no other published studies that scrutinize
alternatives to its widely-deployed stack algorithm. In
this paper, we studied an alternative Back algorithm
using recency with duplicates removed.

While we began the experiment with particular
expectations (framed as hypotheses), some of them
proved incorrect. From our results, we now claim that
people have a poor model of both stack and recency-
Back. We also claim that in everyday use, people do not
mentally predict what pages will appear as they click
Back. Rather, we suggest that people employ a very
simple ‘click until recognize’ strategy, where they
simply click Back until they recognize the desired page.
We also claim that people have no strong preference of
recency or stack.

For browser designers, we advocate the replacement of
stack-based Back with recency only if other design
considerations warrant them. We feel that good design
opportunities do exist, especially for a recency-based
Back to be integrated with a recency-based history list
to produce a single model of how pages can be
revisited.

There is no question that the high usage rate of Back
warrants further research: millions will be affected by
even a small improvement in its design.

Acknowledgements. Microsoft and NSERC funded us.
Kent Sullivan, Robert Graf, Linda Tauscher and Andy
Cockburn contributed intellectually.

References
[1] Cockburn, A. & McKenzie, B. What do web users

do? An empirical analysis of web use. Int J Human
Computer Studies 54, 903-922, 2001.

[2] Cockburn, A. & Jones, S. Which way now?
Analysing and easing inadequacies in WWW

navigation. Int J Human-Computer Studies 45(1),
105-129, 1996.

[3] Cockburn, A. & Jones, S. Design issues for World
Wide Web navigation visualisation tools. Proc
RIAO’97: The 5th Conference on Computer-Assisted
Research of Information. McGill University,
Canada, 55-74, 1997.

[4] Greenberg, S. & Cockburn, A. Getting back to
Back: Alternate behaviors for a web browser's Back
button. Proc 5th Annual Human Factors and the
Web Conference, NIST, Gaithersburg, USA, 1999.

[5] Kaasten, S. and Greenberg, S. (2001) Integrating
Back, History and Bookmarks in Web Browsers.
Extended Abstracts of ACM CHI'01, 379-380.

[6] Tauscher, L. & Greenberg, S. How people revisit
web pages: Empirical findings and implications for
the design of history systems. Int J Human
Computer Studies, 47(1), 97-138, 1997.

