Representing Change in Persistent
Groupware Environments

Lorin McCaffrey (with course supervisor Saul Greenberg)
Department of Computer Science

University of Calgary, Calgary, Alberta

Canada T2N IN4

Abstract

This project deals with the display of change information in object-oriented, graphical
groupware. A review of current literature was performed, and important ideas incorporated
into a conceptual framework. The framework highlighted specific questions that a groupware
user may ask from a change management system. It was used to develop three change display
mechanisms that went through several design and testing iterations. These include a symbolic
approach following a sand trails metaphor, a literal replay mechanism, and a separately
displayed change index. Successes and shortcomings of these mechanisms, as revealed by
testing them with a simple testbed application, are discussed. In particular, the symbolic
sandtrails scheme gave the best overview of changes, but only when the total number of
changes was small and when the order of changes was not important. The replay and change
index schemes were found to work best when coupled together, thereby allowing the sorting of
change information on several attributes, and literal replay of the past user’s actions. Users of
this scheme, however, had some trouble associating index entries (presented in a separate
change index window) with associated objects in the main application screen.

McCaffrey, L. (1998) Representing Change in Persistent Groupware Environments. Grouplab report, Department of Computer Science,
University of Calgary, Alberta, Canada. January.

http://www.cpsc.ucalgary.ca/grouplab/papers/index.html.

ABSTRACT 1

1 INTRODUCTION 3
2 LITERATURE REVIEW 4
2.1 TEXT-ONLY CHANGE MANAGEMENT SYSTEMScutiiiteriteieeieetentenieenieeteenteenresesesssesseesseeseessesmnesmeesseesseenseenseens 4
2.2 GRAPHICAL WORKSPACE AWARENESS AND CHANGE REPRESENTATION TECHNIQUES ...eniiiiiiieiieeeeeeeeeeeeeeeaes 4
23 RESULTING PROBLEM DOMAIN......ctiitttiitttenitteniteeniteesiteesuteesiteesuteesateestteesaseesateesaseessteessseessseesaseessseessseennseessseensees 5
3 CONCEPTUAL FRAMEWORK 6
3.1 WHAT CHANGE INFORMATION DO PEOPLE REALLY NEED?c.coiiiiiiiiiiiieiieiieieieniesteeteeieeieetetesaeste s e sae e eseenennens 6
3.1.1 WHAt WEFE the CRANGES?ooueeieeieeee ettt ettt ettt 6
312 Where did the CHANGES OCCUF?cooooiiiieiiiie ettt ettt 7
3.1.3 WHO did theSE CRANGES?coovuveeiieiieieeeeeie ettt ettt ettt e be b e esseetaesaeeeneene e 7
3.14 How did the user make these CRANGES?c..ccoovvevieiiieiiiiieieeee ettt 7
3.15 When did these changes take PIACE?ccccooiiiiiiiiiiiiiiii ittt 7
3.1.6 Why did theSe CRANZES OCCUT?ccocueieiiiiiiiii ittt ettt e 8

3.2 HOW DO WE CAPTURE THIS CHANGE INFORMATION, AND TRANSLATE IT INTO THE CONSTRAINTS OF
GROUPWARE AND DIGITAL STORAGE?cutiuteuteitetetentenienttetteiteetetenteste st stesueeseestensesestesbesresseeaeensensensensesatesesueeueeneensenne 8
4 INITIAL DESIGN OF RESULTING CHANGE DISPLAY MECHANISMS. 8
5 USER TESTING AND DESIGN ITERATIONS 12
6 CONCLUSION 17
7 REFERENCES 18

1 Introduction

Groupware involves the development of virtual environments in which more than one person may work
simultaneously. Often, this is done through an artificial worksurface, sometimes mimicking real-world worksurfaces
such as whiteboards or tabletops in a conference room. The use of groupware is often seen in distributed environments
where coworkers may not be in close proximity, but perhaps across the continent. Unfortunately, most current
groupware systems mimicking real-world workspaces receive a failing grade. Often, this is due to the lack of support
for many natural forms of communication that exist in real-world group work. This communication would enable co-
workers to keep up-to-date on each other's work, an aspect that has been termed workspace awareness. For example,
when people work cooperatively in the real world, they are often seated near each other, perhaps around a table. This
alone supports many unconscious actions that aid collaboration: a worker can quickly glance at another's work, hear
them moving objects about, and so on. In this context, workspace awareness can be defined as the collection of up-to-
the-minute knowledge a person holds about the state of another's interaction with the workspace (Gutwin, Greenberg,
& Roseman. 1996).

Up to this point, most commercial attempts at groupware systems leave a lot to be desired, partially because
they do not support workspace awareness. Mechanisms have been developed, however, that restore some of the
information lost when moving from a real-world setting to a virtual one; some of the mechanisms designed by Gutwin
(1997) for example, are discussed later in this paper. While Gutwin concentrated on supplying awareness clues for
concurrent collaboration, TeamWave (Roseman, 1998) is an example of a commercial groupware environment which,
because of its persistent nature (the environment is always available, the users come and go as they please), brings to
light some workspace awareness problems associated with past actions of multiple groupware users.

When a user returns to a previously left task, document, or application, they usually rely on their memory to
track the significant changes done between editing sessions. This is not usually a problem, because users are often only
concentrating on the current state of a document, and are not worried about how it arrived in that state. In a groupware
environment, however, a user may work on a document and return to it later to find it changed due to the actions of
other users. In this case, they need to be aware that changes have been made, and told the relevant information about
those changes. I believe that the computer should, in such a case, support the users by identifying the relevant changes
to them and by informing them of the information about those changes that they want to know.

I have investigated how change information can be displayed to users in an object-oriented graphical
environment. Graphical environments have been targeted because much work has already been done in the domain of
displaying changes in text based applications, some of which will be mentioned in the literature review section that
follows. I have developed several graphical display mechanisms, and have done some exploratory usability testing on
each of them. This work could be a valuable source of information for groupware designers when the development of
change management systems is required, and I give some recommendations about the use of these types of
mechanisms. In summary, the goal of the project is twofold: to generate ideas about how to display change information
in object-oriented groupware, and to discuss the successes and shortcomings of these ideas.

The paper roughly follows a four-step process of information gathering, translation, display, and evaluation.
Information is gathered in the literature section that follows. This knowledge is translated into a conceptual framework
in section 3, while the means of display discussed initially in section 4. Finally, section 5 presents the evaluation

(Information Gathering) (Information Translation\
Section 2 Section 3
\ J \ J
e
Evaluation Information Display
Section 5 Section 4
\ J \ J

Figure 1 — The research process

results.

2 Literature Review

My project advances previous work done in the areas of workspace awareness (e.g. Gutwin, Greenberg, and
Roseman, 1996; Gutwin, 1997), and in information visualization techniques that display change information in text-
only environments (e.g. Hill & Hollan, 1992; Neuwirth et al., 1992).

2.1 Text-only change management systems

AT&T Bell Laboratories, demonstrated a system that visualizes the change history of a set of program source
code files (AT&T Bell Laboratories, 1993). The system was able to demonstrate a colossal amount of change data
including additions, changes, and deletions of text on a per-line basis. It can track the people who performed the
changes, and lets the user build customized views of date ranges. It then displays this information by using colours and
an index showing how the spectrum relates to age of the text (Figure 2). Users of the system were able to
simultaneously see an overview of the source code files as well as use a detailed view window to read individual
sections of code, both with the color coded change information present.

= 1F

= | |E=f
Colour 7 X

Legend
i J \— Source

Code Files

Figure 2 - a mockup of AT&T’s “Program Change History” viewer

In addition, Hill & Hollan (1992) introduced the concept of read wear and edit wear. The original technique
involved mapping horizontal lines, whose length was proportional to the amount of changes or reading of the
corresponding line of text, into the scrollbar of a text document. As users read and/or edited lines of text, the
corresponding lines in the scrollbar would lengthen to represent the occurrence of change. The authors compared this
mechanism with the wear that objects receive in real life. As Hill & Hollan noted, "The best recipe cards in a stack are
often dogged-eared and stained." As with the system from AT&T, this system let you filter out some of the recorded
data so that you could ask specific questions, such as "How long did Bill spend reading this section?"

Neuwirth and Chandhok (1992) modified the existing PREP text editor (a tool for collaborative writing) so
that it annotated changes made by other group members. In so doing, they brought to light some important facts about
group authorship that have had an effect on my work. For example, it was found that because there are different roles
within the group (editor vs. writer) and because the needs of the group change over time (first draft vs. final draft), it
was desirable to have variability within the change representation mechanism so that the user could match the change
display to his needs at any one time. This was incorporated with their idea of change threshold and resulted in a system
in which, in addition to many other features, the user could select the granularity of changes to display in order to
reduce negative distractions caused by displaying trivial change information.

2.2 Graphical workspace awareness and change representation techniques

Carl Gutwin (1997) recently completed a comprehensive thesis on workspace awareness in distributed
groupware. In it, Gutwin examines the underlying cognitive aspects of situation awareness, collaboration, and shared
workspaces, and then tackles the problem of supporting these processes in groupware. A framework was developed
based on a modified version of Neisser's (1976) perception-action cycle. This cycle stipulates that human awareness

follows a threefold iterative process of gathering perceptual information, interpreting it, and then determining what to
look for next.

Workspace awareness techniques developed using this framework were then categorized using the matrix of Table
1— Dimensions of design space. This organization makes apparent the difference between situated and separate
placement of awareness information, as well as the form of presentation: either /iteral or symbolic:
e Situated placement means to display the information at the workspace location where it originated.
e Separate placement refers to displaying the information in a separate part of the interface.
e Literal presentation implies that information is shown in the same form in which it was gathered.
e Symbolic presentations extract and display explicitly only particular information.

Table 1 - Dimensions of design space

Placement
Situated Separate

Presentation Literal
Symbolic

As well, Gutwin operationalizes the elements of workspace awareness, and is able to group them into categories
labeled with the 5 W’s (and one H): Who, What, When, Where, Why, and How. When discussing these, he noted in
particular that some of these categories relate only to past occurrences (such as How and When), and so the thesis
touches lightly upon the subject of change display mechanisms, but falls short of suggesting specific solutions. We will
visit these questions in more detail when discussing my conceptual framework in section 3. Gutwin's conceptual and
organizational framework has been extremely valuable to this project, because it provided a convenient means by
which I can organize and evaluate my own ideas.

In addition to Gutwin’s work on workspace awareness, the beginnings of change representation have surfaced
in work such as the ‘Editable Graphical Histories’ system by Kurlander and Feiner (1988). They realized that graphical
histories require more of a temporal browsing method than do their text-only cousins. To do this, they made use of a
comic strip metaphor, Kurlander and Feiner used a set of heuristics to determine which graphical ‘snapshots’ to use in a
series of separately displayed before-and-after panels showing the history of a graphical editor document. The true
power of the system came into play when a user ‘undid’ several actions by selecting a past frame of the history, made
modifications, and then ‘redid’ all the subsequent frames, propagating the changes all the way through.

2.3 Resulting problem domain

As aresult of my review of previous work, I estimate that my problem lies within the shaded area of Figure 3.
Specifically, it shares concerns with research focusing on workspace awareness as well as research on change
management. It does not include text-only change management systems, however.

Text-Only Change
Management

Workspace
Awareness

Groupware

Graphical Change
Management

Figure 3 - Resulting problem domain

3 Conceptual Framework

In order to begin experimenting with change display systems, it was necessary to define the conceptual
framework in which to work. I began with a simplified approach where I focused mainly on representing changes that
can come about on a single generic object, no matter what the type. The term ‘changes’ was defined as a small list of
fundamental actions that can be done on any object. Table lists the basic operations that were finally chosen: object
creation, object deletion, object movement, and any combination of these three. These fundamental actions are
common amongst most object-oriented graphical environments, and so the hope is that this work will be generalizable.
The work is restrictive, however, as this approach will not consider relationships between objects, nor take into account
any domain knowledge behind changes. As well, I have not experimented with displaying other actions such as
resizing, change in colour and shading, etc. In essence, this means that applications that require change awareness such
as groupware drawing packages (which probably have such advanced features), and applications such as groupware
concept map editors (where relations among objects is paramount) will only be partially covered.

Table 2 - Basic change actions

Object creation

Object deletion

Object movement

Any combination of the above

I limited the size of the project by focusing on representing the changes since the last time the user was in the
system, that is, the last time the user saw a particular set of objects. The research can be summarized by the following
questions. The first two I will cover in this section while the last two are left for sections 4 and 5, respectively:

e What change information do people really need?

How do we capture this change information, and translate into the constraints of groupware and digital storage?
How are we going to display this information to the user?

How can we evaluate whether the displayed information is useful in practice?

3.1 What change information do people really need?

Fairly early in the research process it became clear that a definitive answer to this question is not possible,
mainly because it depends heavily on the task domain. It is quite apparent that displaying all change information is
often inappropriate (Nachbar 1988 as cited in Neuwirth, 1992), such as when we compare changes in white space and
comments in two versions of source code even though they have no effect on the operation of the compiled product. In
fact, a central idea in Neuwirth’s (1988) flexible diff system was indeed flexibility, as she realized that people play
different roles in a writing group, and that the needs of collaborative writing groups change over time. Neuwirth
maintains that the only changes that should be displayed are those that reduce negative distraction and increase positive
distraction (positive distraction being information that the user finds informative), but this depends on the reader and
the task. Nevertheless, for any groupware environment, the desired level of history awareness will probably be a
combination of the following elements, which I’ve grouped into the “who, what, where, when, why, and how”
questions as suggested by Gutwin (1997, p.34). Further distinctions within these categories was made by asking
specific questions which, in theory, could be used to guide groupware designers to find the prioritization of elements
that fit their particular task domain. As will be seen later, some of these questions were indeed used during the
usability testing of the mechanisms that I have developed.

3.1.1 What were the changes?

Most of the time, this category will be quite important to any change display mechanism since, in my opinion,
it will often be the primary motivation for implementing a mechanism in the first place. However, this
component is affected by the significancy complication: what magnitude of a change is required to pass the
threshold of negative to positive distraction? In some forms of authorship of text documents, for example, it
was found that a mechanism for simply counting the number of times changes have occurred was sufficient
(e.g. Hill & Hollan, 1992).

Questions include:

3.1.2

3.1.5

e What object was the person working on?
e What action (in my case, one of creation, deletion, or movement) was the person doing to/with that
object?

Where did the changes occur?

Once again, | have classified this element as required information, due to the importance of the location of an
object in relation to other objects is important in graphical workspaces. Mechanisms that display this element
will be entirely different in the graphical domain than they would be in a textual one, due to the fact that we
can “attach importance to the actual physical screen locations at which input and output occur, modifying in
place what is being displayed” (Kurlander, 1988).

Questions include:
e Where has a person been (what did he/she look at)?
e Where did the person make a change?

Who did these changes?

This is often needed as a secondary piece of information, or one that can be used to filter displayed changes.
For example, while a co-author may not be interested in seeing every change that a trusted co-author made, he
or she may want to check every change from a less trustworthy editor (Neuwirth, 1998). It may not be
necessary for this information to appear obvious at first-glance, however.

Questions include:
e Who produced this change?
e Who was here, and when?

How did the user make these changes?

It quickly became apparent that in some situations, the series of actions a user takes to enact a change on the
environment helps an observer to understand the action as a whole. As this project is concerned with the
goupware implementation of change display mechanisms, it is important to present object feedthrough (Dix et
al 1993, as cited in Gutwin, 1997): “when artifacts are manipulated, they give off information, and what would
normally be feedback to the person performing the action can also inform others who are watching” (Gutwin,
1997). Therefore, it is often useful to display all intermediate steps seen when a change is occurring,
essentially showing sow the user made the change in a very explicit way. Contrast this with the previously
mentioned start-state versus end-state approach as demonstrated by Kurlander & Feiner (1988), where
intermediate steps were filtered out because both the actor and observer are the same and did not need this
information.

Questions include:
e How did that operation happen?
e How did this object come to be in this state?

When did these changes take place?

Consideration of this question is partially alleviated by the constraints on this project. In our scope, we are
only interested in changes that have occurred since the last time that the user was in the system. As well,
sometimes the order of changes is important, while in other domains it is not'.

Questions include:
e When did that change occur?
e In what order did a sequence of changes take place?

" As will be seen in section 4, our choice of testbed applications for this project was one in which the sequence of
changes was not very important.

3.1.6 Why did these changes occur?

Unfortunately, this question assumes some knowledge of the problem domain. Unless we want to implement
Al techniques, it is hard to guess what the user is thinking when he or she is making a change. However, it
may be sufficient to allow the user to attach short notes to his or her changes to notify subsequent users of
their motives in an explicit way. Perhaps the only other method would be to rely on the future user’s
knowledge of context to sort out the motivations of the previous person.

Questions include:

e What motivated that person to make this change?

e What is the new meaning of the environment after this change (i.e. the person wanted to communicate
something or accomplish something, what was it)?

As a caveat to this discussion, it should be noted that, while helpful to me in designing the first versions of
change display mechanisms, my own prioritization of these elements will not always be optimal since they could
change over time (i.e. Neuwirth et al. 1992) and could be extremely domain dependant. For example, if there have
been many changes since a user last logged in to an environment, answering the ‘where’ question at a detailed level
may be quite distracting and certainly not be as valuable as it would be if there have been only a few changes.

3.2 How do we capture this change information, and translate it into the
constraints of groupware and digital storage?

Neuwirth et. al’s concerns in 1992 when developing the Flexible Diff program included efficiency and storage
space for change histories. Because of the rapidly decreasing cost of digital storage and increasing speed of computers,
I am willing to discount this issue. In order to make this work as generalizable as possible, I have chosen to use the
following data capturing scheme as the basis for all my change display mechanisms. Individual groupware designers
are then free to increase or decrease the amount of data capturing to support their specific cases. For the most part, this
information is kept in a central ‘change-database’ rather than being attached to the objects themselves. This
arrangement was found to simplify the coding of some change display mechanisms, but they are not dependant on it.

For adding objects, record:

e The location in the environment where the object was introduced
e The time the object was introduced

e The user that introduced the object

e A pointer to the object

For deleting objects, record:

e The location in the environment where the object was deleted
e The time the object was deleted

e The user that deleted the object

e A pointer to the object

For moving objects, record:

e The path (probably as a series of x,y coordinates) the object took when moving through the environment, with a
granularity high enough to be able to reproduce an approximation of it’s path at a later time

e The time the move was completed. Because a move operation often will take more time than the others, it would
be more accurate to attach a time stamp to every entry in the path description. This issue is discussed further in the
section describing the ‘replay’ mechanism below.

e The user that moved the object

e A pointer to the object

4 Initial Design of Three Change Display Mechanisms

A small testbed application was first designed in order to test future change display mechanisms. The testbed
is a single user application allowing the adding, deleting, and moving of arbitrary objects around a small environment.
It was coded using the Tcl/Tk programming language (Osterhout 1996). The first version of this environment allowed

mainCanvas N =] zandM ain M=

Mew.. Changes...

Mew...
= DECK [T
SCREENED PORCH °> s
hi J T
|
I ivinG Room
| 237 % 19"
MASTER BEDROOM |
159" 14' |
e
& T8'x 20 =] - =
KITCHEN
. |l s 167% 12"
L 1
B - (@)
| - 9
o = E COVERED PORCH
] *
] Q] Q]]]
| |
1 | | 4 | i

Figure 4 - Version 1 & Version 2 of the testbed

the creation, move, and delete operations on representative text and bitmap objects. However, when coding of change
mechanisms began using this testbed as a base, it was deemed too unrealistic since it did not reflect any real-world task.
Version 2 of the testbed was therefore created to resemble the floorplan of a building on which plants and other objects
may be moved about, as if the user was planning the landscaping of his or her house. Both versions of the testbed are
visible in Figure 4. In spite of their quite different appearance, the possible actions are identical. The testbed
application uses the data capturing scheme mentioned above, but is independent of any change display mechanism.

On top of the testbed, change display systems were then implemented. This section discusses the initial design
of three completed systems, sandtrails, replay, and the change index. In the next section, I will discuss the
improvement of these mechanisms as they progressed through several design iterations.

Table 3 — The three display mechanisms as classified by design space

Placement
Situated Separate
Presentation Literal Replay
Symbolic Sandtrails Change Index
Sandtrails

The sandtrails display mechanism follows the example put forth by Hill & Hollan’s (1992) Editwear and
Readwear by attempting to make the objects reflect the changes done to them. Sandtrails adheres to the metaphor of
objects on a beach, leaving trails as they are moved about. It is classified as a situated, symbolic method as can be seen
in Table 3. Sandtrails are situated since they are drawn at the locations that the actions took place, but symbolic since
they do not present a literal representation of the action. Figure 5 presents two snapshots of the sandtrails method after
a user made several ‘changes’ to the environment. Here is how the sandtrails method handles each of the basic change
actions (respective annotations can be found on Figure 5):

Object creation:

Object creation is represented by the object itself existing in the environment, but with a star placed on top of
it, made to resemble somewhat of a gleam of light off a shiny new object. This can be seen in Figure 5 on top of the
round tree at the top-right of the screen.

zandM ain

=l
Mew.. Changes...

DECK
SCREENED PORCH "> At

MASTER BEDROOM
159" x 14

a2

KITCHEN

i | 18 x 12 Eﬂ l

i

A move operation

(source grayed out, destination
full colour)

|

| sandMain

Mew... Changes...

A creation+move operation
(yellow star symbol at destination)

A move+delete operation -
(source & destination grayed out)

1]

SCREEMNED PORCH
20'x 100

MASTER BEDROOM
158" x 14

. Q -‘L;'] 40" x &'

IS [=] B3

DECK
20

"

LIVING RO
23 1%

COVERED PORCH

Figure 5 - Curved line and straight line versions of Sandtrails

10

sandMain =] B3

Mew... Changes...

Change information
(seen colourless, below
a yellow screen)

Object part of current state
(full colour, above screen)

Figure 6 — The Sandtrails mechanism used in
conjunction with a transparent screen.

Object deletion:

Deletion of the object causes the object to be displayed at the location of the deletion, but faded out to
resemble the imprint it would have left in sand after being removed. Any other change information applying to this
object (such as a ‘new’ symbol or a “‘move line’) is also faded. The picnic table in Figure 5 is an example of a delete
action.

Object movement:

When a heavy object is dragged through sand, it leaves a trail behind it. The sandtrails mechanism therefore
attempts to reproduce this effect by drawing lines along the movement path. Unfortunately, some users who were
either fussy or indecisive about object placement may create long drag paths using this mechanism. Two choices are
therefore presented to the user (as are displayed in Figure 5): curved lines which show the precise path the object took,
or straight lines which show only the difference between starting and ending positions. Successive moves of the same
object were concatenated together to produce one contiguous line in either case. The start position of a move action
also has a faded imprint of the object, making a move action much like an object deletion and re-creation tied together
with a line.

One of the positive features of the sandtrails mechanism is the ability to continue working when the changes
are being displayed (in essence, the user sees what trails he or she is leaving for the next user to see). To take
advantage of this feature even more, it seems necessary to make the change symbols less obvious, such as varying the
colour of move trails from the background colour only slightly, or by using bitmapped techniques. An idea along these
lines was indeed attempted; Figure 6 shows the preliminary version of the sandtrails techniques used in conjunction
with a semi-transparent screen that was intended to visually separate the change information from the current state of
the environment. It was not successful: the screen was too obvious to the user and (at least in this case) distracted her
from the application itself as well as the change information. It was therefore rejected.

Replay

The replay mechanism represents a more literal display of change information than does sandtrails (Table 3).
Like the name suggests, the mechanism, when requested, replays all of the change actions that have occurred since the
last time the user was in the system. Firstly, the environment is reset to the state as the user last saw it. Then each
action is replayed in order of occurrence and eventually brings the environment to its current state.

Object creation:

In the first implementation, the new object simply appears in the location it was created. Because the
quickness of this action is hard to notice, a better idea would be to make use of process feedthrough, as discussed by

11

GARAGE
18 =20

&
Y

GARAGE
18" 20

&

\/

GARAGE
18 =20

&
Y

CARAGE
18 = 20

v/

CGARAGE
18 =20

\

Figure 7 — “Supernova” animation of a delete action

Gutwin (1997). Such techniques would involve showing all intermediate steps of a past operation, including the user
selecting creation commands from menus, filling in dialog boxes, etc, which aid an observer to piece together the
actions that lead to the result (as well as call more attention to an otherwise instantaneous action). Indeed, this is what
eventually was added. See the description of the ‘supernova effect’ used for object deletion (below) and the discussion
of test results in section 4.

Object deletion:

When dealing with object deletion we once again often suffer from the fact that deletion of an object may not
be entirely obvious to an observer since it occurs quickly and produces no action feedback except that of the object
disappearing. As quoted by Gutwin (1997), Ellis, Gibbs, and Rein (1991) observed that “other’s actions are inherently
more difficult to interpret than your own, and that smooth animation of changes can aid interpretation.” To remedy this
situation, an animated ‘supernova effect” was built into the object deletion event. Now, when an object is deleted, “it
does not simply disappear, but swells up for a moment before gradually fading away” (Gutwin, 1997). Figure 7 shows
how this technique has been applied here.

Object movement:
This is the most literal of all events: the object simply retraces the path of movement as if the user was
dragging it.

One of the problems with this implementation of a replay feature is caused by the fact that we are working in a
groupware environment. In this context, it is entirely possible that two users move about two objects at the same time.
As discussed in section 3.2 above, our testbed does not timestamp intermediate steps of a move operation, and so
during the replay, what were once simultaneous operations would instead appear one after another. Also, the current
implementation does not allow partial replays; there is no way to ask the mechanism to show only the last few changes
for example. This could be remedied by the use of a slidebar indexing the replay, such as those seen in many sound
and video computer applications, or with the help of a textual index, such as the one discussed in the following section.

The Change Index

The change index is a separate window that summarizes for the user the changes that have occurred. Each
change occupies one row in the index and is represented (at least in the first implementation) by an english sentence,
making it a play list in chronological order. The summarized and detached nature of the change index places it in the
symbolic, separate category as shown by Table 3. The first version of the change index can be seen in Figure 8. As
shown in the figure, the only difference between the display of any of the different changes is the wording of the
sentence.

The length of the index (i.e. how many entries it contains) gives a good indication of how many changes have
occurred since the user was last in the environment. However, it was known from the outset that the change index used
by itself would not be very useful for answering many of the other questions a user might ask, due to the effort it would
take a him to connect change information to it’s respective object in the main screen. It was decided, therefore, to link
the change index with the replay mechanism: clicking on any entry in the change index causes the selected change to be
replayed in the main screen.

5 User testing and design iterations

The problem of displaying change histories in object-oriented groupware spans many applications and
domains. The generalist approach I am taking to the design and testing of change display mechanisms will not be

12

sandM ain MA=]E angeinde - by
DB LT Joe moved a palmtree ﬂ
1= Sandy created a pichic table
DECK, anc F
. SCRE'ESJ'E:D]%?RCH 200 % 10 Sandy deleted a picnic table
¥ e
|
| LIVIMG ROOMM
| 23 % 19 e
MASTER BEDROOM |
158"« 14" |
e — — —
o GARAGE e |
[i N
18w 20 [— — D]
= KITCHEM
ll Ll = (IRT Y
’ | 0s l
BATH |
o) '
y
COVERED PORCH
AQ x &'
] | | | | ||]
=
4 I | _'I

Figure 8 — The first version of the change index

useful in proving their suitability for any one application. Therefore, a formal testing procedure in which a mechanism
can pass or fail is not terribly useful. Instead, I chose to follow a somewhat more informal method whereby the
mechanism(s) could be improved between trials, thus incrementally fixing the problems detected by the usability tests.
What follows is a summary of test results and improvements made to each of the change mechanisms that were
introduced in the previous section.

Testing of the change display mechanisms was accomplished with the help of four volunteer subjects. Each
subject was introduced to the landscaping program (the testbed application) and shown how to add, move, and delete
objects from it. They were then asked to plan the landscaping of a home, by placing at least 8 objects onscreen and
moving them to their desired locations. The subject then left the room while the experimenter, acting as another user in
a groupware environment, changed the layout that the subject has completed by adding and deleting objects as well as
moving existing ones. The subject returned, received some training about how to interact with the change display
system being tested, and was then asked the questions listed under the Who, What, When, Where, Why, and How
headings in section 4.1. The subject was encouraged to make use of the display mechanism to help answer the
questions. The number of questions the user could answer about past events in the environment and the apparent ease
of these answers were taken to be an indication of the success of the change mechanism. The user’s memory plays a
part in answering some questions (for example, Where did the person make a change?) but not in others (Who was
here, and when?). This mixture will be present in any real-world applications as well.

In addition to the experimental sessions with subjects, general opinions about the look and feel of the display
mechanisms were elicited from several colleagues and this provided many additional ideas and improvements.

Sandtrails

This testing procedure pointed out some flaws in the sandtrails mechanism. Firstly, the symbols were
unproportioned in the amount of attention they attracted from the user. For example, the symbols for object creation (a
shiny star) and for object deletion (a gray shadow of the original object) were sometimes overlooked, while the trails

13

caused by object movement were far too distracting. Secondly, neither straight-line nor curved line move
representations seemed to get their point fully across. Some users have commented that the curved line display makes
it more obvious that it is the path a previous user took to move an object, as the irregular curves don’t look computer
generated. However, the curved line is hard for the user to trace and produces too much screen clutter. No test subjects
switched the line styles during questioning without some prompting from the experimenter, even though they all knew
that it was possible. Thirdly, this mechanism does not communicate any information pertaining to the order in which
the changes were produced. This is fine for a task such as moving furniture around a floorplan, but may be a critical
oversight in other problem domains. Fourthly, the system performs much better when there are few changes than when
there are many. The resulting number of symbols displayed when many changes have occurred is simply too much to
handle.

Some modifications were made to the sandtrails mechanism to fix some of these problems as testing
proceeded. The thick, gray lines used to display object movement were made to better follow the sand metaphor by
bitmapping them and turning them yellow. Unfortunately, while indeed making long trails less overpowering, this
change caused its own problems, namely that small movements were no longer noticed at all. Another change was the
removal the shadowed object found at the start of a sandtrail due to comments that it was redundant (the confusion
caused by this object is seen in Figure 9).

On the positive side, sandtrails gives a good overview of activity. It was very easy for test subjects to identify
which areas of the environment had experienced the greatest activity. Support for multiple groupware users (the Who
question) could be included by color-coding the symbols or by using textual or pictorial annotations (see Gutwin, 1997,
pp. 111-124).

Replay

One of the replay’s strong points is its literal nature, because it shows the user the same information that was
available when the action was originally performed. Attention-getting devices such as the supernova effect also proved
to be a good way to accommodate for the user not observing the correct area of the workspace to see the information
she asked for. In fact, the supernova deletion effect worked so well it was decided to add a similar, but opposite, effect
to the object creation action.

While sandtrails gave a good overview of activity, this is one of the replay’s weakest spots. My first version
of the replay mechanism would play changes from start to finish in the order that they were performed, which very
often did not match the user’s desire, for example to see all changes pertaining to one object. Some sort of organization
was needed to help the user filter the changes in order to answer questions. This organization eventually came in the
form of the change index.

Change Index

Originally designed as a method of overview and organization to be used with the replay mechanism, user
testing revealed that the change index had much more promise. Clicking on entries within the change index window
caused the selected change to be played out in the main window, and some summarization of changes was provided
(for example, a creation followed by a move was classified under a single ‘creation’ entry in the index). It was noticed,
however, that the subjects were performing mental sorting and filtering in order to use it as more than just an index.
Often, for example, users would search down the list and click on each entry dealing with a certain named object in
order to see the modifications made to it. Sometimes, they would click on an entry just to see which object it referred
to on the main screen. All this clicking and filtering, however, seemed to be quite laborious and it was evident that the
change information required a fair amount of time to absorb using this method. There was some question as to how
much information should be collapsed into one index entry as well. This was evident when many test subjects would
replay and be confused by an almost imperceptible move action in which the previous user had only adjusted the
object’s location by a few pixels. Also, having to split your attention between two windows was somewhat distracting.

14

MASTER BEDROOM
159" x 14°

Mew. . Changes...
SCREENED PORCH DECK
20" % 10° 2010 QQ
i ECK
SRR r— LIVING ROOM 10" = 30"
23 %19
SASTER BEDROOM
[ERZPAPE
&
| el 3
porE ; = £ i [
@ BATH | i <i 1l
] |
| o< ,,uqﬁ% ______] @l
B
1]
i
1
i
L]
7
< I
Figure 9 — This test subject was confused about the symbolism presented in areas where slight
adjustments were made (see arrows). Eventually, the grayed ‘source’ objects were removed
completely.
= changaindexwin =
time | user | action | ohject conment |
230953037 Lorin move palmtree #15
290968042 Lorin nove hottub #3
290963045 Lorin create stonepath #35
8390963052 Lorin create stonepath #36
= - 290968057 Lorin nove hottub #3
oLy =5l e el 830363086 |Lorin [move |birdbath B
Mew... Changes... 290963066 Lorin delete birdbath #5 I don’t want the k
290968068 Lorin move hedge2 #25
SCREENED PORCH DECK 290368069 Lorin move hedge2 #16
20 %107 20 10" 330968071 Lorin mave hedge2 H26
290968074 Lorin move hedge2 #31
. 3390963085 Lorin move perenial #13
\/ \\/ RAMARANAT larin create |nerenial #32 |Flowers are nice t
} DECK Replay selected action(s)} |
LIVING ROOM 10" = 30"
| 237 %19
|
|

GARAGE
18"« 200

==
0
i

1 WLLC,
—— 1
<
aty @
- G Al
Vrﬁé
@l EmreYes
Mo] = . o

RSN, neeee posar nosoe ||

(=]

T

Figure 10 — This test subject had some help from the comment fields and understood why the last

user had created so many flowers.

15

tine | user | act10n| object | conment |

891299664 Larin move picnictable #
|891299855 Lorin nave treel #4
I Feplav—w-inc 891299667 Lorin ||move ||palmtree #2
. 891299672 Lorin nove treel #4
Mew... Changes... 891299672 Larin delete |treel fi4
891299882 [[Lorin | |move |lpalntree #2
SCREENED PORCH
200 100
Replay selected action(s) |
r'y —
|
| LVING RCOM
| 23 % 19"
MASTER BEDROOM |
155" = 14' |
F——————— — —
£ GARMGE = _ = — — — — — -
m 18" = 200 —_]
* r] 3
KITCHEM
| W.I.C. i '[él % 12'
G
BATH
|
[O =
- e |
CONERED PORCH
[AQ x &
[-] -]
I | b=

Figure 11 — Passing the mouse over objects highlights the corresponding changes in the change index.

Out of all the change display mechanisms, the change index experienced the most modification between
testing situations. The english sentences were split up into columns and the columns were made sortable, giving the
user the ability to sort the index on attributes such as type of change, user who made the change, object the change was
performed upon, or the time of the change (see Figure 8). As well, the user could select and replay ranges of changes
by dragging the mouse overtop of the desired range. These two features combined allowed the user to answer many
more questions than before. For example, it was now easy to replay only the changes that had occurred to a particular
object by first sorting on the object column and then replaying a range of entries.

The addition of a comment field now enables a user to annotate the changes he was making. This enables
subsequent users to answer the Why question (see Section 4.1). As well, to reduce the amount of mental work the user
must do to associate entries in the change index with their respective objects in the main window, the entries in the
index now highlight themselves when the mouse is passed over objects in the main window (as seen in Figure 8), and
conversely, the objects are annotated (currently with a shiny star) when the mouse is passed over any index entry that
refers to it.

These improvements to the change index made it fairly versatile. As discussed by Neuwerth et al. (1992), the
best change display mechanisms are the ones that let the user customize it for his or her needs at any time. The
coupling of the change index with the replay mechanism seemed natural, but there is also no reason why it could not be
combined with the sandtrails mechanism, although this was not attempted here.

16

curved movement paths

+ exaggerated creation
and deletion (supernova)

Sandtrails Replay Change Index Change Index + Replay
Who? Color coding or other None User column in index User column in index
annotations
What? | Different symbol for each | Literal replay of changes | Textual description of Textual description,
change change optional replay
When? | None Sequence of changes Timestamp column in Timestamp column in
only index index
Where? | Locations of symbols Location of replayed None Location of replayed
actions actions
Why? None None Comment column Comment column
How? Some support, such as Literal replay of changes | None Literal replay of changes

+ exaggerated creation
and deletion (supernova)

Table 4 - How the change display mechanisms answer the S W’s and 1 H.

6 Conclusion

The three display mechanisms discussed here have benefits and drawbacks that should be considered when
designing similar systems for groupware applications. The sandtrails mechanism gave a good overview of changes but
failed to be useful when the number of changes grew, or when the sequence of changes was important. The replay
mechanism was not useful on its own since no method of selective replay was available. It was, however, the most
literal presentation and, coupled with attention-attracting devices such as the supernova effect, the easiest to interpret.
The change index could indeed be used by its self, but was most useful when coupled with another mechanism. The
ability to sort by attribute and the collapsing of information into single entries are useful features. Mouse-over
highlighting helps associate index entries with the corresponding objects in the main window and vice-versa. Extra
columns on the index allow the addition of goodies like comment fields.

There are, however, some identifiable problems with the procedure used in this project that may have some
impact on the reliability of the results. For instance, the sole use of the ‘landscaping’ testbed application for testing
calls into question the generalizability of the results to other, more complicated situations. Although every effort was
made to have the landscaping program be representative of any object-oriented environment, it would have been better
to incorporate the same mechanisms into several other applications (especially true groupware) to see how they
perform there. Time restraints prevented me from accomplishing this. Also, because the needs of the user will
probably change over time as Neuwirth (1992) pointed out, the mechanism should have some user controllable
flexibility to be the most useful. The mechanisms introduced here have limited flexibility from the user’s point of
view, but can be used as a starting point for more advanced schemes. The area of alternative visual organizations of
change information (building on the success of the change index) seems an especially promising area that deserves
more research.

It is important to remember that any one mechanism will not be valid across all domains. The goal here was
to generate and test ideas about displaying changes in groupware applications, but it is doubtful that the same display
methods will work equally well for a concept map editor as for a drawing package. Nonetheless, the more ideas
available to the groupware designer, the more likely they will be to chance upon one that matches their application, and
the people who use it will benefit as a result.

17

7 References

AT&T Bell Laboratories. 1993. Video. High Interaction Data Visualization - using Seesoft to Visualize Program
Change History. In Computer Graphics, issue 88: Interchi '93 Technical Video Program.

Gutwin, C. 1997. Workspace Awareness in Real-Time Distributed Groupware. Ph.D. thesis, The University of Calgary

Gutwin, C. & Greenberg, S. Personal Interview. October 1%, 1997.

Gutwin, C., Greenberg, S. and Roseman, M. 1996. “Workspace Awareness in Real-Time Distributed Groupware:
Framework, Widgets, and Evaluation.” Proc. CHI'96 People and Computers XI, pages 281-298.

Hill, W.C. & Hollan, J.D. 1992. “Edit Ware & Read Ware”. Proceedings of CHI '92, pages 3-9.
Kurlander, D. & Feiner, S. 1998. “Editable Graphical Histories”. [EEE Visual Languages Workshop.

Neisser, U. 1976. Cognition and Reality, W.H. Freeman, San Fransisco.

Neuwirth, C.M., et al. 1992. “Flexible Diff-ing In a Collaborative Writing System.” Proc. ACM 1992 Conference on
Computer-Supported Cooperative Work, pages 147-154.

Ousterhout, J. 1996. Tcl and the Tk Toolkit, Addison-Wesley.
Roseman, M. 1998. TeamWave (Version 3.1b2) [Computer program]. Calgary:TeamWave Software Ltd.

Roseman, M. and Greenberg, S., 1992. “GROUPKIT: A groupware Toolkit for Building Real-Time Conferencing
Applications”, Proc. of the Conference on Computer-Supported Cooperative Work (CSCW’92), pages 43-50.

18

