
Design for Individuals, Design for Groups:

Tradeoffs Between Power and Workspace Awareness

Carl Gutwin
Department of Computer Science

University of Saskatchewan
Saskatoon, SK, S7N 5A9, Canada

+1 306 966-4886
gutwin@cs.usask.ca

www.cs.usask.ca/faculty/gutwin

Saul Greenberg
Department of Computer Science

University of Calgary
Calgary, AB, T2N 1N4, Canada

+1 403 220-6087
saul@cpsc.ucalgary.ca

www.cpsc.ucalgary.ca/~saul

ABSTRACT
Users of synchronous groupware systems act both as
individuals and as members of a group, and designers must
try to support both roles. However, the requirements of
individuals and groups often conflict, forcing designers to
support one at the expense of the other. The tradeoff is
particularly evident in the design of interaction techniques
for shared workspaces. Individuals demand powerful and
flexible means for interacting with the workspace and its
artifacts, while groups require information about each other
to maintain awareness. Although these conflicting
requirements present real problems to designers, the tension
can be reduced in some cases. We consider the tradeoff in
three areas of groupware design: workspace navigation,
artifact manipulation, and view representation. We show
techniques such as multiple viewports, process feedthrough,
action indicators, and view translations that support the
needs of both individuals and groups.

Keywords
Groupware design and usability, workspace awareness

INTRODUCTION
Many kinds of collaborative work involve both individual
and shared activity (eg. [6,8,20]). In these mixed-focus
situations, people frequently move back and forth between
individual tasks performed in relative isolation and shared
work undertaken with other members of the group. Even
when working apart, though, people maintain a sense of the
whereabouts and activities of the rest of the group. For
example, when a group of people get together to plan a
project, we might see people working individually on
different sections, but keeping an eye on what the rest of the
group is doing, and then joining one or more others to
confer, coordinate, or give feedback.

When mixed-focus collaboration is to happen through

synchronous distributed groupware, both the individual
tasks and the shared activity present design requirements to
the creator of the system. Unfortunately, these two sets of
requirements often contradict or compete with one another
[2,8,25]. Designs that are good for individual work often
hinder group work, and designs that support the group often
restrict the individual's interaction with the application.
Groupware designers are left with a tradeoff between
meeting the needs of individuals and meeting the needs of
the group as a whole.

This tradeoff becomes particularly apparent as designers try
to satisfy two design goals: support for individual control
over the application, and support for workspace
awareness—the up-to-the-moment understanding of how
other people are interacting with a shared workspace
[13,14,15]. Three situations illustrate the tension between
these goals and serve as case studies in design: workspace
navigation, artifact manipulation, and view representation.

Workspace navigation. Who should control where people
move, the individual or the group? In single-user software,
people move freely around the workspace to look at and
manipulate the work artifacts that they need for their tasks.
In group activity, however, collaboration is simplified when
people see the same artifacts at the same time. This is a
long-standing issue in groupware design: previous systems
have generally favoured either the group (through strict
WYSIWIS view sharing), or the individual (through
relaxed-WYSIWIS sharing).

Artifact manipulation. Should manipulation techniques be
designed to increase an individual’s power and capability,
or to provide the group with information about what is
happening? The powerful interaction techniques of single-
user systems often involve symbolic commands and indirect
manipulation, which give little information to others about
the author of the action, its occurrence, or its progress.

View representation. Should groupware systems allow each
person to change the way in which the workspace is
represented? Different representations can simplify
individual work, but can greatly complicate communication
between group members.

saul
Stamp

In each of these situations, designers can choose to favour
one side or the other. The ideal solution, however, would be
to find a way around the tradeoff, and support both the
needs of individuals and the needs of groups. Our goal in
this paper is to explore the tradeoff in each of these three
situations and present interface techniques that reduce the
tension between individuals and groups.

Although ideal solutions are difficult to achieve, we have
identified a set of techniques that provide individual users
with flexible control and powerful interaction, while at the
same time providing the rest of the group with workspace
awareness information. In the next few sections, we explore
the situations introduced above as case studies of design
tradeoffs. We discuss ways of negotiating the problem and
provide example solutions from systems we have built
using GroupKit [19]. Before turning to these case studies,
we look at the origins of the problem in more detail.

THE ROOTS OF THE PROBLEM
The tradeoff between individuals and groups is much more
of an issue in groupware environments than it is in the
physical world. In physical workspaces, the tradeoff is fixed
by the properties of the environment—and fixed in such a
way that groups can easily maintain awareness of one
another. People have become used to the constraints of
physical workspaces, and work practices have evolved to
take advantage of them. Groupware workspaces, in
contrast, are synthetic environments that do not have a fixed
set of constraints. Designers must make explicit decisions
about every aspect of the environment, from the way that
things will look to the ways that users will interact with
them. Because these decisions must be made, groupware
designers must consider who will benefit and who will
suffer from each choice.

There are three areas in particular where groupware
workspaces differ from their physical counterparts. These
differences stem both from the freedom described above
and from the limitations imposed by current groupware
input and display technology.

• Groupware systems show far less of the workspace
than what can be seen in a physical environment.

• Manipulation techniques in virtual workspaces are not
bound by the physical constraints that exist in physical
workspaces.

• Virtual workspaces can represent and display artifacts
in more ways than physical workspaces allow.

When a small group collaborates in a physical workspace,
such as a tabletop or a whiteboard, people can see the entire
workspace and everyone in it. Even when they are working
on individual tasks, people can see others as they move and
work. People interact with physical artifacts by directly
manipulating them, which provides others with a great deal
of information about the nature and progress of the activity.
Physical workspaces also present a consistent
representation of the artifacts to everyone in the group—

that is, although perspectives may differ, everyone sees the
same objects represented in the same way.

In computational workspaces, display resources are
markedly reduced, and the flexibility of input devices is
considerably less. However, there are fewer restrictions on
interaction than there are in the real world. In fact, many
single-user systems have mitigated the display and input
shortcomings of computer environments by providing a
wide range of powerful interaction techniques that would be
impossible in the real world.

Each of these differences between physical and virtual
environments creates tension between individual and group
needs. The next three sections describe our specific
encounters with the tradeoff in the areas mentioned above,
and some of our solutions.

WORKSPACE NAVIGATION: FREEDOM TO MOVE
Groupware display devices are much smaller and offer
much lower resolution than the normal human field of view.
As a result, only a small part of the workspace is visible at a
time, forcing people to look and work through a small
viewport. This display constraint raises the following
problem: when only a portion of the workspace can be seen
at once, whose needs (the individual’s or the group’s)
should be considered when deciding what to show?

There are two competing requirements. Group activity is
simplified when collaborators can see the same part of the
workspace, since they can see others’ actions and the
objects they are working on. Individuals, however, need to
move around the workspace independently to see and
manipulate the objects they need for their specific tasks.

In the past, synchronous groupware has favoured either
groups or individuals. Early systems imposed “what you see
is what I see” (WYSIWIS) view sharing (eg. [25]), where
all participants’ viewports looked at exactly the same part
of the workspace. This approach ensures that people can
stay aware of one another’s activities, but is too restrictive
for mixed-focus collaboration. Other systems implement
relaxed-WYSIWIS view sharing, allowing people to
navigate independently (eg. [26]). Unfortunately, when
people look at different areas of the workspace, they are
effectively blinded to the actions and events that go on
outside their viewport, making the maintenance of
awareness far more difficult.

The ideal solution would be to support both needs—show
everyone the same objects, as in WYSIWIS systems, but
also let people move freely around the workspace, as in
relaxed-WYSIWIS groupware. One approach that makes
this possible involves splitting the view of workspace into
two viewports. The main viewport is under the control of
the local user, and the smaller secondary viewport shows a
different perspective on the workspace and provides
workspace awareness information.

In earlier work (eg. [13,14,16]) we have introduced two
types of secondary displays, overviews and detail views,
that follow this approach. Overviews show the entire
workspace in miniature, and show objects as they move or
change. When the overview also displays each person’s
telepointer and the extents of their main view, it is called a
radar view [24] (Figure 1c). Radar views make people’s
presence, location, and activities visible, regardless of
where they are in the workspace. Detail views are
secondary viewports that show more detail of another
person’s activity, but show less of the workspace than an
overview. Detail views can show any part of the workspace,
but we consider two configurations to be most applicable:
the “over the shoulder view” (Figure 1d) and the “cursor’s-
eye view” (Figure 1e). These secondary views are described
below and are illustrated in Figure 1.

To begin with, Figure 1a shows the entire workspace of a
groupware concept-map editor. In this example, there are
two people in the workspace: Carl is working at the left side
of the workspace, and Saul is working at the right side.
Figure 1b shows the application interface on Saul’s screen,
containing a main view and a secondary view. The main
view shows the workspace at full size, and allows
independent navigation. In the top left corner of Saul’s

main view (Figure 1b) is an inset radar view. The radar
view is also shown separately in Figure 1c. The radar view
shows each person’s main view extents as a filled rectangle,
and shows a miniature telepointer for each person.
Although Saul can move freely, the radar view provides
him with immediate information about Carl’s location and
activities.

The radar view in Saul’s main view could be replaced by,
or used together with, one of two detail views. First, an
“over-the-shoulder” view shows a reduced version of
another person’s main view. The objects are shown smaller
than full size, but are considerably larger than they would
be in an overview. Figure 1d shows an over-the-shoulder
view of Carl’s work area. By adding this view to his
interface, Saul can keep track of exactly what Carl can see.
Second, a “cursor’s-eye” view shows a small area directly
around another person’s mouse cursor. Although its extents
are limited, the cursor’s-eye view shows objects and actions
in full size and full detail. A cursor’s-eye view of Carl’s
cursor is shown in Figure 1e.

Tradeoff issues in workspace navigation
The use of secondary viewports allows individuals to move
freely around the workspace, while still providing
information about others’ whereabouts and activities.

 a. The entire workspace b. Saul’s interface with main view and secondary view

 c. The radar view d. Over-the-shoulder view of Carl’s area e. Cursor’s-eye view around Carl’s cursor.

Figure 1. Secondary viewports on the workspace.

Carl’s work area

Saul’s work area

Overviews and detail views release designers from the bind
of having to give navigation control to either the group or
the individual. However, this approach does not make the
tradeoff go away, but simply shifts it to the window level
rather than the application level. Designers must now trade
off the amount of screen space allocated to the individual
and group windows.

Nevertheless, it is now at least possible to form a
compromise, and these compromises can be based on the
specific needs of the task. Designing a usable system thus
implies knowing what kinds of awareness information are
important to the group activity, and how much detail about
others’ actions is needed to maintain awareness.

For example, the radar view in Figure 1b shows general
locations and conveys basic actions and gestures, but takes
up only a small amount of screen space. In previous
evaluations of collaborative construction tasks (eg.
[12,17]), overviews that used about an eighth of the main
view were found to be valuable additions to the system, and
a good use of screen space.

We have not evaluated detail views to the same extent, but
it is clear that they would be used when awareness
requirements are much more specific. Since they can only
show information about one other person, multiple displays
would be required for groups larger than two. This requires
more screen space than an overview, reducing the
allocation to the local user’s individual tasks. Other
visualization techniques, such as transparent overlays, could
mitigate this problem (eg. [3]).

In sum, secondary views provide designers with finer-
grained control over the tradeoff between individuals and
groups. They translate the design question from ‘who
controls the whole interface’ to ‘how much of the interface
is controlled by each party.’ Knowledge of the awareness
requirements in the collaborative task can provide insight
into how to make a satisfactory compromise.

In the next section, we turn from the tradeoffs in navigation
to those that arise from the design of manipulation
techniques. At issue are the ways that people interact with
workspace artifacts, and the ways that others in the group
perceive those interactions.

SYMBOLIC MANIPULATION: MAKING ACTIONS MORE
PERCEIVABLE
The manipulation techniques that a designer puts into a
groupware system also introduce a tradeoff between
individuals and groups. Techniques for manipulating
objects often support either individual tasks or workspace
awareness, but not both. Two aspects of these techniques
are particularly important: the amount of power they
provide the user, and their degree of visibility to the rest of
the group. Unfortunately, these attributes are often
related—more power for the user often also means less
visual information about the action. Since the information
produced by an action greatly assists others in maintaining

workspace awareness, the groupware designer faces a
problem: should manipulation techniques be designed to aid
the individual or the group?

Before discussing solutions to the problem, we explain
further what it means for an action to generate information.
To begin with, consider manipulation in physical
workspaces. In this environment, people act on objects
through direct manipulation, which produces two kinds of
information: consequential communication and
feedthrough.

In consequential communication [22], the characteristic
movements of an action communicate its character and
content to others. For example, when a pilot reaches over
and lowers the landing-gear lever, the action “not only
controls the landing gear, but just as important, it acts as a
natural communication between the two pilots, letting both
know the action has been done.” ([18], p. 142)

In feedthrough [5], the feedback produced when artifacts
are manipulated provides others with clues about that
manipulation. For example, when one pilot sees the
landing-gear lever move, they can conclude that their
partner is moving it, even when they cannot see the other
pilot. Feedthrough is also commonly associated with
auditory feedback: the sound of the landing-gear lever
indicates what the other pilot is doing, just as the visual
information does.

Unlike the physical world, interaction with computational
environments is not limited to direct manipulation. In a
computational workspace, the visibility of an action and the
effort it requires depend entirely on the design of the
system. At one end of the spectrum, (virtual) direct
manipulation techniques simulate real-world interaction.
They emphasise visibility, incremental action, and
immediate and continuous feedback (eg. [23]). For
example, dragging a file across the screen in order to
change its parent directory is a direct-manipulation action.
As in the real world, these techniques produce
consequential communication and feedthrough, giving
others in the group information about the action.

At the other extreme, symbolic manipulation techniques are
commands that let users specify actions in powerful and
flexible ways. They are shortcuts that emphasize rapid
invocation and minimal feedback. Menu commands,
buttons, toolbars, and keyboard shortcuts are examples of
symbolic manipulation techniques. Symbolic manipulation
lets users interact with artifacts in ways that are often not
possible in the real world. While a good idea in single user
systems, they produce almost no consequential
communication, and their minimal feedback can drastically
reduce people’s ability to maintain awareness. Therein lies
the designer’s problem.

In addressing this situation, we start from the assumption
that symbolic manipulation is here to stay—it is simply too
useful to the individual. People who are used to these

techniques would be unlikely to accept an increase in effort
just to benefit the group. Our efforts, therefore, have been
in considering how symbolic commands and indirect
manipulation might be augmented to provide more
information to the group.

Symbolic manipulation techniques have four drawbacks for
group members trying to stay aware of one another.

• Symbolic actions may use interfaces like buttons and
menus that are not a natural part of the shared
workspace. Interaction with these interface objects
happens outside the workspace, and so cannot be seen
by others.

• Symbolic actions such as key commands have little or
no visible representation in the workspace, and have
few if any characteristic movements. Actions are
therefore harder to see in the workspace, and are more
likely to go unnoticed by others.

• Many symbolic actions are performed in similar ways
(eg. select an object and execute a command), and so
they are difficult to distinguish from one another.

• Symbolic actions can happen almost instantaneously,
providing little warning of their occurrence and
allowing little time for others to see and interpret them.

The problems can be addressed, however, by transforming
the minimal information provided by these actions to a
more visible form. This is the approach suggested by Segal
[22]: “compensate for consequential information that is
lost…by providing enhanced feedback from the system
indicating what specific actions each operator is
performing” (p. 411). Below, we discuss two approaches—
process feedthrough and action indicators—that can make
symbolic manipulation more obvious, more distinguishable,
and more interpretable to others.

Process feedthrough
Some symbolic commands are invoked through interface
widgets such as buttons, menus, or dialog boxes. These
interfaces provide the local user with visual reminders of
what can be done, as well as feedback indicating the action
that is being composed. For example, buttons depress under
a mouse click, and menus highlight the command currently
underneath the cursor. Other users in a groupware system
rarely see this feedback, for two reasons: first, it is
considered to be part of the application rather than part of
the workspace, and second, it is considered to be distracting
to other users. Feedback from these interfaces, however,
can help the group to determine what actions people are
composing. When other people receive this information, it
becomes process feedthrough.

As a simple example of process feedthrough, consider a
button in the interface of a groupware application. When a
person’s cursor moves over the button, it becomes
highlighted on all user’s screens; when a person presses the
button, it is shown being pressed on all screens. The

highlight and the press give people a chance to interpret the
action and determine what the other person is doing. If the
button represents a particularly important action, the natural
feedthrough can even be augmented to make it more
visible. For example, the button could make a clicking
sound when it is pressed, or use a more obvious highlight
colour [11].

A second example involves process feedthrough for menus.
Menus are a more complicated case than buttons, since they
carry a greater risk of distracting others or even obscuring
their work. To reduce this risk, we display only a portion of
the feedback information that is visible to the local user.
Figure 2 shows a group-visible popup menu as it appears on
a local and a remote display. The menu can be shown in
several different ways on other user’s screens, each
providing a different amount of process feedthrough. The
first variant (Figure 2, right) shows the extents of the menu
as an empty rectangle, and shows only the item that the
remote user’s mouse is currently over. This version is useful
when a large menu would hide too much of the local user’s
view. The second variant (not shown) provides only
minimal information. It does not show intermediate
selections, but only the menu outline, and once the user has
made a choice, what item was chosen.

�

Figure 2. A remotely visible popup menu, as it is seen
locally (left) and remotely (right).

This technique can also be used with other kinds of
symbolic commands. Figure 3 illustrates a group-visible
dialog box used to change the properties of a workspace
artifact. Again, reproducing the entire dialog on all screens
would cause too much disruption, but we can provide a
summary representation (Figure 3 right) that conveys the
current state of activity.

Figure 3. A group-visible dialog box, as seen locally (left)
and remotely (right).

Providing process feedthrough shows how actions are being
composed and invoked, but does not make the action itself
more noticeable. When actions are hard to see, they can be

augmented with artificial indicators, an approach we
discuss next.

Action indicators and animations
Symbolic actions happen quickly and abruptly, making
them hard to see and hard to interpret. For example, when
someone presses the ‘delete’ key to remove a selected
object, the operation is nearly instantaneous. In addition,
since a keypress provides no process feedthrough, other
users have little warning that the deletion is about to
happen. When actions are invisible, our approach is to
create an artificial signal for them; these signals (called
action indicators) can be given a more perceivable
workspace representation. Action indicators differ from
process feedthrough in that they are tied to the action itself
rather than to the process of selecting a command.

A deletion operation can be indicated in several ways. A
simple solution is shown in Figure 4. When a node in this
concept-map application is deleted using a keyboard
command, the application draws a text flag on remote
screens and displays it for a moment before removing the
object. This technique gives the rest of the group
information and time to interpret the sudden disappearance
of the object from the workspace.

�

Figure 4. Symbolic delete indicator, during and after delete.

Although this solution is an improvement over no action
representation, it still has a fairly high interpretation cost. A
remote user has to see and read the indicator, and if several
actions are represented the same way, distinguishing
between them may still be a problem.

An alternate approach that can mitigate these problems is to
have the artifact itself animate the action. When actions
cause a visible change in the artifact, these changes can be
made more perceptible even if the action is invisible. Figure
5 shows this approach in a concept-map system. When a
node is deleted, it does not simply disappear, but swells up
for a moment before gradually fading away (the supernova
effect). Although the original delete action is still invisible,
the effects of that action have been drawn out and made
more noticeable.

Figure 5. “Supernova” animation of a delete action.

The idea of animating actions builds on the observation of
Ellis, Gibbs, and Rein [7] that others’ actions are inherently
more difficult to interpret than your own, so smooth
animation of changes can aid interpretation. The extra step
that we take is in inventing characteristic behaviours for the
purpose of indicating action.

A final indication technique uses sound cues to indicate
actions. Sound has the advantage of being perceptible even
when the object is off-screen, and can be combined with the
visual approaches described above. Different sounds can
indicate different types of action, and can even convey the
characteristics, progress, and location of the action (eg.
[1,8,9]). For example, the system shown in Figure 5 plays a
descending “whoosh” sound that fades away along with the
visual representation of the deleted node.

Tradeoff issues in making actions perceivable
Process feedback shows people’s actions as they invoke a
symbolic command, and action indicators emphasize or
embellish what happens after a command is executed.
Either way, the idea is to draw out the action, make it more
perceivable, and differentiate it from other actions. This
approach allows the designer to provide symbolic
manipulation techniques while still helping groups maintain
awareness. However, as in the previous situation, these
techniques introduce new decisions that the designer must
balance in order to create a usable system.

Making actions more perceivable aids the maintenance of
awareness, but as more visual information is displayed on
the screen and more auditory information is played, the risk
of distracting the individual increases. The question for the
designer becomes one of making demands on people’s
attention: how much attention should people pay to the
activities of the group, and how much should they pay to
their individual activities? In past systems, the balance has
been in favour of the individual, but it could clearly be
swung too far to the side of the group as well.

As the above techniques show, the designer can control the
way process and action are presented, and they can tailor
this presentation to the demands of the task. It is clear that
not all events can be shown just as they appear on the local
user’s screen; some large actions must be made smaller, and
some small actions must be made larger. It may also be
wise to give the user some control over these presentations,
so that they can in essence say: “leave me alone, I’m trying
to concentrate.”

VIEW REPRESENTATION: POINTING AT THINGS
A third example of the tradeoff between individual and
group needs involves the way the workspace and its
artifacts are displayed on each person’s screen. Groupware
systems can display objects in different ways: for example,
Figure 6 shows how a system might represent a hierarchy of
objects as a tree or as an outline. Providing different
representations can make individual tasks easier, but can
also greatly restrict communication about the objects in the

workspace. The designer must decide whether to assist
individuals by allowing multiple representations, or to assist
groups by restricting the workspace to a single consistent
representation.

Figure 6. Representational differences in views

This problem does not occur in physical workspaces, where
the appearance of an object is determined by its physical
properties. In a groupware workspace, however, each
person could change the way things look to suit their
individual tasks and tastes. Individual tasks may benefit
from different representations of the workspace that
highlight particular aspects of the data or allow certain
kinds of operations. Workspace awareness, however, is
easier to maintain when people have a common
representation.

We focus on two kinds of activity that are particularly
important in collaboration: gestural communication and
deictic reference. Both of these activities are ubiquitous in
shared workspaces (eg. [22,27,28]). Deixis and gesture can
only be interpreted correctly when they are seen in
context—that is, when their relationships to the surrounding
area of the workspace and nearby objects can be
determined. With only one common representation of the
workspace, this context is preserved for all the members of
the group. As representations diverge, however, the
surrounding context is quickly lost.

For example, consider the system shown above in Figure 6,
where one person views a hierarchy as an indented text
outline, and another person views it as a graphical tree. If
one user circles a leaf node in the text view with their
cursor, the gesture will be impossible to interpret in the tree
view, since the corresponding leaves are different sizes and
shapes, and are in different screen locations [11]. Similarly,
the path along which the cursor is moved in the tree view
has no meaningful analogue in the text view. Before
considering whether these problems can be solved, we look
at two simpler cases where representational differences are
smaller.

The first case involves a concept-map editor that uses a
fisheye view to represent the workspace (Figure 7). The
fisheye distorts the spatial representation based on a focus
point and a distortion factor [21]. However, in a relaxed-
representation groupware system, each user can set their
own focus point and level of distortion. When two fisheye

views differ, telepointers no longer map to the correct
locations in others’ windows.

�

Figure 7. Different fisheye representations of a concept-
map workspace.

This problem can be solved easily, since the two
representations are related by a mathematical
transformation. Telepointers can be placed in the correct
location relative to the underlying workspace objects by
determining the transformation from one fisheye function to
the other [11]. In Figure 7, each cursor and its
corresponding telepointer are in different screen locations,
but in the same workspace location.

The second case introduces a larger disparity between
views. Figure 8 shows two people’s views of a shared web
browser, where each person is using a different font. The
font sizes cause lines to wrap differently on the two
displays. Once again, if a telepointer simply tracks the
screen location of a remote user’s cursor, it will point at the
wrong part of the text. In this case, there is no mathematical
transformation relating the two views.

Figure 8. Two representations of a document in a shared
web browser.

However, gestures can be put into their proper context by
attaching the telepointer to the text location of the cursor
rather than the screen location [4,10,11]. Movement is thus
tied to the underlying representation, which is structurally
equivalent in both views. These two cases provide
strategies for conveying workspace awareness information
(gestures and deictic references) even when representations
differ. However, both cases involve relatively minor
differences, and neither of the solutions work particularly
well in the initial scenario of the system with a tree view
and a text view (Figure 6). Cursor movement in this system
could be tied to the common underlying structure, as
described above. However, the granularity of the objects in
the workspace is much coarser than in the web browser, and
therefore only a broad indication of motion could be
conveyed. This strategy would allow rudimentary pointing
and deictic reference, but would not show gestures in
enough detail. In addition, people would have to learn how
to point ‘properly’ in this system, so that their actions could
be correctly interpreted by others [11].

Tradeoff issues in view representation
View representation presents designers with more problems
than do either of the previous two situations. Although we
have found techniques for translating gestures across small
differences in representation, larger disparities allow only
crude solutions. It may be that meaningful discussions
about objects in the workspace will require users to
converge their views on a single common representation.

If this is the case, then knowing what representation others
are using becomes useful knowledge, since initiating a
conversation may only prove successful when views are
similar. The over-the-shoulder display illustrated above in
Figure 1d, which shows exactly what another person can
see and how they see it, could be valuable for keeping track
of view differences.

Finally, we have focused on gestural communication, but
divergent representations also affect other kinds of activity.
In particular, direct manipulation techniques lose their
ability to convey information when representations diverge,
since both feedthrough and consequential communication
depend on workspace context for interpretation. Oddly,
symbolic manipulation can provide better support for

workspace awareness than direct manipulation in these
cases, since the techniques introduced in the previous
section (process feedthrough and action indicators) can be
used regardless of representation.

DISCUSSION
The main conclusion of this research is that the needs of
both individuals and groups can be met in groupware
interfaces. In the three situations we considered
(summarized in Table 1), we found that:

• control over workspace navigation can be tailored
through multiple workspace viewports,

• manipulation techniques can provide both power and
awareness information, and

• gestural communication can be preserved across some
kinds of representational differences.

This success, however, must be received with two caveats.
First, avoiding the tradeoff at one level often just moves it
to a different level, albeit one that is more manageable.
Second, the tradeoff appears in many guises in a groupware
interface, and different situations allow different amounts of
success in supporting both roles.

There are several other general issues underlying the
tradeoff that require further thought. We consider four of
these here: the importance of understanding the
collaborative situation, the ways in which new technology
can mitigate the tradeoff, the extra demands placed on the
designer, and the difficulty of removing the tradeoff
entirely.

Issue 1: Understanding collaboration
The designer’s goal is to provide appropriate techniques for
navigating, manipulating, and viewing the workspace. As
the solutions above indicate, this goal is aided by knowing
what information people require for effective collaboration,
and how they gather that information from the environment.
Unfortunately, there is not a great deal known about how
people use environmental information when they work
together. Furthermore, this knowledge is difficult to obtain.
As Norman [18] says, “natural interaction is often invisible,
unnoticed interaction…the problem is, it isn’t always
obvious just which parts [of the environment] are critical to

Situation Tradeoff Techniques

Workspace navigation Individual freedom to move around the workspace
vs. Consistent visual focus for the group

Split workspace views (radar, over-the-
shoulder, cursor’s-eye view)

Artifact manipulation Individual power through symbolic actions vs.
Awareness information produced through
consequential communication and feedthrough

Process feedthrough, Action indicators
and animations, Sound cues

View representation Individual flexibility to tailor representations to
individual tasks vs. The ability to point to and
communicate about artifacts

Location transformations based on
underlying representation

Table 1. Summary of tradeoffs and techniques

the social, distributed nature of the task, [and] which are
irrelevant or detrimental” (p. 145). In our work,
concentrating on the information that people need to
maintain awareness has provided insight into new designs
for interaction techniques [13]. Other analyses of
collaborative situations will undoubtedly provide additional
kinds of useful design knowledge.

Issue 2: The mixed blessing of improved technology
New and improved input and display devices will help
designers avoid the tradeoff in some situations, but not in
others. This is because only some of the design tensions
between individuals and groups are caused by the limits of
groupware technology—others are caused by the freedom
designers have to invent interaction techniques that are
impossible in the real world. For example, a system with a
table-sized display would better approximate the large
visual field of a physical workspace, and would reduce the
problem of navigation control. However, large displays will
do nothing to improve the perceptibility of actions, and will
not help in translating between view representations. In
fact, new technology will likely lead to even more powerful
symbolic manipulation techniques and more flexible ways
of changing representations. These new techniques will
further complicate the designer’s task of providing
awareness information to the group.

Issue 3: Extra demands on the designer
Management of the tradeoff requires considerable
additional work for the groupware designer. To produce an
application that supports people both as individual users
and as a group, the designer must investigate awareness
requirements of the work situation, assess the capacities for
feedthrough and consequential communication of each
interaction technique and artifact representation, and
augment the system using approaches like those described
above. These tasks add to the complexity of a groupware
system and to the time needed to design and build one. To
mitigate this problem, software components should be made
available to designers that support these groupware-specific
needs. For example, we have added devices such as the
radar view and the group-visible menu to the GroupKit
toolkit [19], but much more could be done.

Issue 4: The difficulty of removing the tradeoff entirely
Although the solutions described above do successfully
manage the tradeoff, they are imperfect in many ways. For
example, radar views are small and provide limited
resolution for perceiving actions and events; animations
occur after the action itself has happened; and
transformations of actions from one representation to
another can end up looking clumsy. In some cases, further
design and evaluation work on these devices will improve
their usability, but in others we are left with few options,
forcing us to accept an information environment that is
better than the status quo but not as good as we would like.

CONCLUSION
We have explored a persistent problem in the design of
synchronous groupware systems—the competing
requirements of users as individuals and as members of a
group. We examined the tradeoff as it applies to individual
power and to the maintenance of workspace awareness. In
three kinds of situations (workspace navigation, interaction
with artifacts, and view representation), we described
approaches that let a designer manage the tradeoff and
support both individuals and groups. These approaches
provide designers with an initial set of tools, but additional
work on the issues underlying the tradeoff remains to be
done. These efforts will move us closer to the goal of
groupware that is flexible and powerful for the individual,
and that also allows groups to interact smoothly and
efficiently.

ACKNOWLEDGMENTS
Thanks to Steve Jones, Mark Apperley, and Mark Roseman
for comments and discussions on these ideas. Thanks also
to Intel Corporation and the National Science and
Engineering Research Council of Canada (NSERC) for
support in carrying out this research.

REFERENCES
1. Beaudoin-Lafon, M., and Karsenty, A., Transparency

and Awareness in a Real-Time Groupware System.
Proceedings of UIST’92, ACM Press, 1992.

2. Bellotti, V., Dourish, P., and MacLean, A. From users'
themes to designers' DReams: Developing a design
space for shared interactive technologies. Rank XEROX
EuroPARC/AMODEUS Working Paper RP6-WP7,
1991. (Quoted in [6]).

3. Cox, D., Chugh, J., Gutwin, C., and Greenberg, S. The
usability of transparent overview layers. Companion
Proceedings of the CHI'98 Conference on Human
Factors in Computing Systems, 301-302, ACM Press,
1998.

4. Dewan, P., and Choudhary, R., Flexible User Interface
Coupling in Collaborative Systems. Proceedings of the
CHI '91 Conference on Human Factors in Computing
Systems, ACM Press, 1991.

5. Dix, A., Finlay, J., Abowd, G., and Beale, R., Human-
Computer Interaction, Prentice Hall, 1993.

6. Dourish, P., and Bellotti, V., Awareness and
Coordination in Shared Workspaces, Proceedings of the
Conference on Computer-Supported Cooperative Work,
Toronto, 107-114, ACM Press, 1992.

7. Ellis, C., Gibbs, S., and Rein, G., Groupware: Some
Issues and Experiences, Communications of the ACM,
34(1), 38-58, 1991.

8. Gaver, W., Sound Support for Collaboration,
Proceedings of the Second European Conference on
Computer Supported Cooperative Work, 293-308, 1991.

9. Gaver, W., Smith, R., and O'Shea, T., Effective Sounds
in Complex Systems: The ARKola Simulation,
Proceedings of the CHI'91 Conference on Human
Factors in Computing Systems, New Orleans, 85-90,
ACM Press, 1991.

10. Greenberg, S. Collaborative Interfaces for the Web. In
C. Forsythe, E. Grose and J. Ratner eds., Human
Factors and Web Development, 241-254, LEA Press,
1997.

11. Greenberg, S., Gutwin, C., and Roseman, M. (1996).
Semantic Telepointers for Groupware. Proceedings of
the OzCHI '96 Sixth Australian Conference on
Computer-Human Interaction, Hamilton, New Zealand,
November 24-27.

12. Gutwin, C. and Greenberg, S. Effects of Awareness
Support on Groupware Usability. Proceedings of the
CHI’98 Conference on Human Factors in Computing
Systems. Los Angeles, ACM Press, 1998.

13. Gutwin, C. Workspace Awareness in Real-Time
Distributed Groupware. Ph.D. Dissertation, University
of Calgary, Calgary. 1997. Available from
www.cs.usask.ca/faculty/gutwin/publications/

14. Gutwin, C., Greenberg, S. and Roseman, M. (1996).
Workspace Awareness in Real-Time Distributed
Groupware: Framework, Widgets, and Evaluation.
People and Computers XI (Proceedings of BCSHCI'96),
Eds. A. Sasse and R. Cunningham. August, London,
281-298, Springer-Verlag, 1996.

15. Gutwin, C., and Greenberg, S., Workspace Awareness
for Groupware, Companion Proceedings of the CHI'96
Conference on Human Factors in Computing Systems,
Vancouver, 208-209, ACM Press,1996.

16. Gutwin, C., and Greenberg, S., Workspace Awareness
Support with Radar Views, Companion Proceedings of
the CHI'96 Conference on Human Factors in
Computing Systems, Vancouver, 210-211, ACM Press,
1996.

17. Gutwin, C., Roseman, M., and Greenberg, S., A
Usability Study of Awareness Widgets in a Shared
Workspace Groupware System, Proceedings of the
Conference on Computer-Supported Cooperative Work,
Boston, 258-267, ACM Press, 1996.

18. Norman, D., Things That Make Us Smart, Addison-
Wesley, Reading, Mass., 1993.

19. Roseman, M., and Greenberg, S., Building Real-Time
Groupware with GroupKit, a Groupware Toolkit, ACM
Transactions on Computer-Human Interaction, 3(1),
66-106, ACM Press, 1996.

20. Salvador, T., Scholtz, J., and Larson, J., The Denver
Model for Groupware Design, SIGCHI Bulletin, 28(1),
52-58, ACM Press, 1996.

21. Sarkar, M., and Brown, M., Graphical Fisheye Views of
Graphs, Proceedings of the CHI'92 Conference on
Human Factors in Computing Systems, 83-91, ACM
Press, 1992.

22. Segal, L., Designing Team Workstations: The
Choreography of Teamwork, in Local Applications of
the Ecological Approach to Human-Machine Systems,
P. Hancock, J. Flach, J. Caird and K. Vicente ed., 392-
415, Lawrence Erlbaum, Hillsdale, NJ, 1995.

23. Shneiderman, B. The Future of Interactive Systems and
the Emergence of Direct Manipulation Behaviour and
Information Technology 1 (3): 237-256, 1982.

24. Smith, R., What You See Is What I Think You See,
ACM SIGCUE Outlook, 21(3), 18-23, ACM Press,
1992.

25. Stefik, M., Foster, G., Bobrow, D., Kahn, K., Lanning,
S., and Suchman, L., Beyond the Chalkboard: Computer
Support for Collaboration and Problem Solving in
Meetings, Communications of the ACM, 30(1), 32-47,
1987.

26. Stefik, M., Bobrow, D., Foster, G., Lanning, S., and
Tatar, D., WYSIWIS Revised: Early Experiences with
Multiuser Interfaces, ACM Transactions on Office
Information Systems, 5(2), 147-167, 1987.

27. Tang, J., Findings from Observational Studies of
Collaborative Work, International Journal of Man-
Machine Studies, 34(2), 143-160, 1991.

28. Tatar, D., Foster, G., and Bobrow, D., Design for
Conversation: Lessons from Cognoter, International
Journal of Man-Machine Studies, 34(2), 185-210, 1991.

