
Managing Complexity in TeamRooms, a Tcl-Based
Internet Groupware Application

Mark Roseman
Dept. of Computer Science, University of Calgary

Calgary, Alta, Canada T2N 1N4
Tel: +1-403-220-3532

E-mail: roseman@cpsc.ucalgary.ca

Abstract

This paper describes TeamRooms, a Tcl-based real time
groupware application that provides “network places”
for users to collaborate. TeamRooms is significantly
more complex than previous groupware applications,
providing not only generic tools such as shared
whiteboards, but also custom groupware applets
running within an OpenDoc-style embedded window. As
well as describing TeamRooms itself, the paper relates
the use of several Tcl programming techniques — meta-
architectures, multiple interpreters, and embedded
windows — that are used to manage the resulting
complexity of the system.

Introduction

This paper describes a novel groupware application
called TeamRooms, written using Tcl/Tk. Groupware
systems provide a means for several users to work
together, even though they may be separated by
distance. TeamRooms approaches this problem by
providing “network places” on the Internet, where users
can gather to meet in real-time or can asynchronously
leave information for each other. The metaphor is based
on the physical team rooms used by many co-located
work groups [4].

Previously, we had developed a number of applications
in GroupKit, a Tcl/Tk extension or toolkit we had
developed for building groupware [7]. TeamRooms was
somewhat of a departure from these applications,
demanding a different network architecture, more
provisions for security and robustness, and needed to go
cross platform. The user interface was to move from the
relatively straightforward model of “one tool per
window” to a model where several tools could exist in a
single window, as found in compound document
architectures such as OpenDoc or OLE [5].

In developing TeamRooms, we were faced with the
following constraints: there was not enough time or
resources to just completely rewrite everything, and it
was important to keep the ease of building applications
found in the original GroupKit. Even though the entire
system was becoming much more complex, that added
complexity had to be carefully managed and controlled.

This paper consists of two parts. The first part provides
some background on real-time groupware and GroupKit,
and then carries on to describe TeamRooms and its user
interface. The discussion emphasizes the novel aspects
of TeamRooms as a Tcl/Tk program: it is multi-user,
multi-process, and an example of a highly-interactive
Internet application. Its combination of several smaller
Tcl programs with a compound document interface is
also new.

The second part of the paper describes how TeamRooms
was constructed, while still keeping our investment in
existing GroupKit code and its straightforward API. The
techniques used include meta-architectures, multiple
interpreters, and embedded windows. Because some of
these techniques may be applicable to managing the
complexity in other Tcl/Tk programs, some problems
that were faced along the way are also described.

About Groupware and GroupKit

Before delving into TeamRooms, some background is
necessary. For those unfamiliar with the domain, this
section first introduces real-time groupware applications.
It then describes our GroupKit extension, and in
particular the scope of applications which it has been
possible to create with GroupKit.

Real-Time Groupware

Groupware is software that helps two or more people
collaborate. It is a pretty general category that includes

Saul
Cite as:
Roseman, M. (1996). Managing Complexity in TeamRooms, a Tcl-Based Internet Groupware Application. Proceedings of the 1996 Tcl/Tk Workshop, Usenix Press.

applications like e-mail or Usenet bulletin boards.
Workflow and document management systems like
Lotus Notes are the most commonly known groupware
applications today.

Real-time groupware is groupware that lets people work
together at the same time. A common example is the
“talk” facility in Unix. Another example is a “shared
whiteboard” program, that let people across a network
draw together — any drawings marks made by one user
on their computer are seen by all other users working
on the shared drawing. Other examples are text editors
that allow editing the same document at the same time
(usually with some form of locking so users don’t
conflict), brainstorming or voting tools for distributed
meetings, card games, and so on.

GroupKit

Groupware can be both productive and fun to use. It is
not, however, much fun to write. Even ignoring the
considerable technical hurdles of network infrastructures
and concurrency, there are many human factors issues
that have to get worked out for anyone to be willing to
use it. We developed GroupKit to make it easier for
programmers to build real-time groupware applications.
GroupKit is a toolkit or extension that relies on lower
level support from Tcl, Tk, and Tcl-DP. Some of the
facilities it provides to groupware developers are
message passing, shared data structures, session
management, and high-level multi-user interface
widgets.

Figure 1 shows some typical applications constructed
with GroupKit. The session manager is used to start
each tool, which runs as its own process in its own
window. When several users join a groupware session
(for example, a shared whiteboard tool), each user’s
process makes a socket connection to every other user’s
process, which is known as a replicated architecture.
Though GroupKit supports many different tools and
even different session managers, the basic run-time
architecture is always the same.

Just as Tcl/Tk have made single-user applications easy
to build, GroupKit has made groupware applications
easy to build. The toolkit’s learning curve is quick to
climb, making it suitable when time is limited, such as
for university class projects. It has been used at a large
number of sites, and a number of substantial systems
have been built using it. Its design has also made it
easy to transform many existing single-user Tcl/Tk
programs into groupware. The toolkit has also served
well in supporting our own research interests of
exploring groupware user interface issues. The
combination of high-level programming constructs and
ease of learning have made GroupKit one of the most
popular groupware development platforms available
today.

Challenges

Still, there were areas we wanted to explore where we
were hindered, particularly as we started focusing more
on interesting applications. Besides running on Unix,

Figure 1. Some GroupKit applications, including (a) the open registration session manager,
(b) information on a user, (c) a brainstorming tool, (d) a shared whiteboard, and (e) a shared text editor.

(a)

(b)

(c)

(d)

(e)

we wanted to be able to deploy applications across
platforms like Macintosh and Windows. Our fully
replicated network architecture worked well in a world of
stable workstations and networks, but can be
problematic with unreliable machines and modem
connections. Finally, we wanted to explore richer, more
integrated environments, where several groupware tools
were closely tied together, for example embedded inside
other applications, documents or web pages.

TeamRooms

TeamRooms is our most ambitious groupware
application to date. Unlike most of our tools which
support isolated real-time meetings, the system provides
a fully persistent environment for collaboration,
whether in real-time or asynchronously. TeamRooms is
modelled after physical team rooms, which provide a
place for teams to meet, work, leave things for other
team members, add comments and changes to shared
documents, and so on. Our goal is to provide an
electronic equivalent for teams whose members may be
distributed. TeamRooms is a “network place” that hosts
a team’s collaborations.

This metaphor is not new; Multi-User Dungeons
(MUDs) also provide a persistent shared space, where
people can meet in rooms containing various objects
[3]. As with MUDs, TeamRooms uses a central server
to hold information on rooms and their objects, and a
separate client provides the user interface — but rather
than a telnet client, TeamRooms has a full graphical
interface (on Unix/X or Macintosh, with Windows
under development). We wanted to move beyond the
limited text-based interfaces of today’s MUDs, and
provide “useful” fully interactive groupware applications
as tools in the room. We stopped short of full
audio/video support to keep network requirements
reasonable, though an external system could be added.

User Interface

Figure 2 illustrates the user interface of the
TeamRooms client, where the user (Mark) is in a room
called “Mark Roseman’s Room” with two other users
(Carl and Saul). Along the bottom of the screen are a
text-based chat tool and different colored pens for
drawing on the “walls” of the room (a shared
whiteboard). User snapshots show who else is in the
current room or on the server, and if a video camera is
available, these pictures are periodically updated. Also
shown are six different applets: a URL reference, an
image, a concept map, a postit note, an outliner, and a
tetrominoes game.

Applets

Each applet is embedded in its own frame, in a similar
fashion as OpenDoc or OLE components. Users select
new applets from the Tools menu, as well as delete,
move and resize them. All changes are immediately
visible to all users in the room. TeamRooms also
allows users to retrieve earlier versions of applets, to
compare changes over time.

Applets can be practically any groupware application,
such as meeting tools (e.g. for brainstorming ideas or
voting), shared document editors, drawing tools, or
games. Some specific examples we built include:

PostIt. The ubiquitous yellow sticky note allows users
to leave text messages in the room for other users, as
reminders, or to comment on other room objects.

Outliner. A hierarchical outline tool lets users organize a
set of notes or ideas. Users can add or delete ideas, drag
existing ideas to rearrange them in the outline, and
collapse or expand portions of the outline.

Image Tool. As a way to decorate rooms, we created the
image applet, which displays a GIF image fetched from
an HTTP server.

Games. The tetrominoes applet is one simple groupware
game; others could include card games, chess or
checkers, and so on.

URL References. To help tie in external information,
this applet lets users leave pointers in the form of a
URL for others. Clicking on the applet loads the
requested URL into their web browser. Another applet
uses Stephen Uhler’s infamous HTML parsing library to
display a web page inside TeamRooms for discussion.

Applets differentiate TeamRooms from most groupware
tools that provide only simple facilities such as chat
rooms or shared whiteboards. Applets allow the
environment to be customized to suit the team’s specific
needs. Because we expected many users to want custom
applets, we needed to make it easy to construct new
ones, ideally as easy as constructing normal GroupKit
applications.

Summary

TeamRooms provides a shared “network place” on the
Internet where team members can collaborate, either in
real-time or asynchronously. As a Tcl/Tk based Internet
application, it is novel because of its multi-user, highly
interactive nature, and its use of OpenDoc-style custom
applets embedded inside the application.

serve
r
room
s

server
users

Figure 2. TeamRooms user interface, showing (a) available rooms; (b) connected users;
(c) business card; (d) radar overview of room; (e) URL reference applet; (f) users in room;
(g) concept map applet; (h) outliner applet; (i) whiteboard pens; (j) text chat area; (k) image applet;
(l) telepointer; (m) postit applet; (n) tetrominoes applet.

(a) (b) (c)

(d)

(e)

(f)

(g)

(h)

(l)

(n)

(m)

(i)

(j)

(k)

Strategies for Managing Complexity

TeamRooms represents a rather significant challenge for
a GroupKit application. Its architecture is centralized,
not replicated; it requires user authentication; it demands
a very robust, multi-versioned persistence facility; it
needs to be multi-platform; and several groupware
applications need to be embedded in the same toplevel
window.

This section describes three techniques that were used to
build TeamRooms while still leveraging the existing
GroupKit code base and API where possible: meta-
architectures, multiple interpreters, and embedded
windows. After a description of these techniques, some
of the particular issues that were encountered in building
TeamRooms are addressed.

Meta-Architectures

Meta-architectures provide a way to change the
underlying behavior of a software system while still
retaining an existing interface or API. For example, we
wanted to provide a centralized network architecture
(new behavior), though still allowing developers to
view the system as having direct connections to other
processes for passing messages (a key component of the
API).

In a meta-architecture, the user level API calls a small
number of well-defined underlying primitives. The
meta-architecture provides hooks to allow replacing
those primitives. In GroupKit, we had primitives for
opening, accepting and closing sockets, and passing
messages. The existing primitives supporting a
replicated architecture were replaced with new ones for a
centralized architecture, and the user level routines
continued to do the right thing. When it came time to
add authentication (i.e. logins), we could again use the
hooks to add the new behavior.

Building good meta-architectures comes down to good
software design. It happens that highly dynamic
languages like Tcl make them easy to implement. A
more in-depth discussion on meta-architectures in Tcl is
provided in [6].

Multiple Interpreters

The main problem for TeamRooms is dealing with all
the different pieces: locating and navigating rooms,
tools such as the shared whiteboard in the room itself,
and then the numerous applets. Everything needs to be
kept fairly separate and modular, while still being
bundled together in the same application process.

Our first approach was to use an object system. A
prototype of TeamRooms was built using [incr Tcl],
where each applet was a mega-widget with groupware
facilities added. While this worked, for this particular
application it was not the ideal solution for two main
reasons.

New Programming Model . Using an object system
introduced a new programming model, where each
groupware tool was an object. This added an extra level
of complexity that we thought would be an obstacle to
our target audience, most of whom are not experienced
programmers or familiar with languages like C++.
GroupKit’s existing message passing paradigm was hard
to resolve with objects, and imposing a particular
structure on applications would impede the ability to
adapt single-user applications.

Modularity Concerns. Surprisingly, modularity was also
a concern. The burden was on the object’s developer to
ensure it did not use globals or otherwise interfere with
other objects running in the application (despite
interacting with its equivalent objects in other users’
processes). This also had implications for security;
though we were not immediately concerned with applets
being downloaded over the network, the need to “trust”
each object to interact nicely with the system seemed to
preclude the possibility.

For the final version of TeamRooms, we abandoned
objects and implemented the system with multiple
interpreters, using the “stcl” extension that was added to
the core in Tcl 7.5. Multiple interpreters allow us to
view each piece as a completely separate groupware
application that looks almost exactly like standard
GroupKit code.

The TeamRooms client application consists of several
GroupKit interpreters, as shown in Figure 3. The overall
application interpreter is logically connected (via the
central server) to all other users on the server, and deals
with navigating between rooms, finding who is logged
in to the server, and what rooms are available. When the
user enters a room, a room interpreter is created to
manage the overall room. Logically connected to all
users in the room, this interpreter manages the chat tool,
shared whiteboard, creates and resizes applets, etc.
Finally, each applet runs in its own applet interpreter.
Some advantages of this technique are noted below.

Standard Tcl Programs. The main advantage is that each
component looks just like a standard “run-on-its-own”
Tcl application (or in this case, GroupKit application).
There are no extra constructs, and no special
considerations to worry about. This perfectly addressed

our concerns with learning curve, and preserved our
investment in existing applications.

Modularity and Security. Unlike with objects,
programmers using multiple interpreters must explicitly
go out of their way to access code out of the program’s
scope. This meant no accidental interference between
applications. By providing a clear dividing line between
pieces, it also makes it easy to replace pieces, such as
the program for the room interpreter. Finally, this left
open the possibility to enforce security restrictions on
applets, using the model supported in Safe Tcl [2].

Shared Resources . Multiple interpreters were used to
share resources across the entire application. For
example, a single socket connection is shared between
all interpreters. When an applet sends a message to its
counterpart running in another user’s client, the
message is first routed to the application interpreter. It
is then sent over the network to the server, which relays
it to the application interpreter of the other user’s client.
From there, it is routed to the interpreter managing the
specific applet. The actual mechanism was implemented
by having the application interpreter set up an alias in
the applet interpreter to intercept communications. Of
course, the flexible routing scheme was specified using
GroupKit’s meta-architecture.

Embedded Windows

Though multiple interpreters give TeamRooms the
needed lower level functionality, all those interpreters
still had to be able to share the screen somehow.

Luckily, Steve Ball had already done most of the work
for us in his SurfIt! web browser [1], which features Tcl
applets running in their own subinterpreters and having
access to Tk features. The basic approach is to carve off
a piece of the Tk window hierarchy for the application
interpreter, alias that to “.” in the applet interpreter, and
use aliases to redefine all Tk commands in the applet to
run in the application interpreter, with appropriate
changes to window names, etc.

We made several changes to this code. First, we allowed
the window hierarchy of child interpreters to be rooted at
an internal frame widget rather than only at a toplevel,
so that interpreters could share the same toplevel
window. We removed many of the security limitations
enforced by SurfIt!, since at this point we wanted full
access to Tk facilities. Finally, we moved several pieces
of the code from Tcl into C to improve performance in
critical areas.

The frame surrounding each applet is constructed as a
standard Tk mega-widget (itself containing 20 small
frames for the different pieces of the border), whose
inside frame is the root of the applet’s window
hierarchy. We followed the practice found in the
OpenDoc compound document framework [5] that the
parent determines the layout of the child, so all resize
decisions etc. are managed by the parent.

Issues

The previous section describes some of the techniques
that we used in building TeamRooms. Because these
may be applied to managing complexity in other Tcl/Tk
applications, we now look at some of the obstacles that
were faced in applying these techniques in TeamRooms,
as well as the solutions we found.

Startup Time

The first difficulty had to do with startup time. Because
each interpreter acts like its own application, starting up
several different interpreters is like starting up several
applications. While a two second initial application
startup time may be reasonable, if it takes two seconds
for every single applet to be created, the time it takes to
enter a room in TeamRooms holding five or ten applets
can seem like an eternity.

It took a lot of profiling (mostly using Tcl’s “time”
command) and subsequent performance tuning to get the
time it took to create an applet interpreter and its frame
down from about 2.5 seconds to a more reasonable .2
seconds. Some of the changes we made are described
below. Note that most are common sense optimizations

Figure 3. Structure of TeamRooms client,
showing use of multiple interpreters.

Application
Interpreter
(communications,
who is around, room
navigation, …)

Room
Interpreter
(whiteboard,
applet sizes, …)

Applet
Interpreter

Applet
Interpreter

socket to
server…

that were just never an issue before, and that the typical
“if its slow, recode it in C” would only address a small
number of the problems in this case.

Do the minimum amount of work. Our subinterpreters
took a lot of time initializing code they didn’t need. For
example, we’d originally initialized Tcl-DP even though
the applets used the application interpreter’s socket
facilities (removing this saved about .15 seconds). We
used to read one large Tcl configuration file, which
included much information used only by other parts of
TeamRooms; this was moved into a different file
(saving about .2 seconds). Obviously, minimizing work
is especially important if the work is done at the slower
Tcl level, rather than C.

Avoid autoloading. While autoloading is a very
convenient way to load Tcl source code, it is extremely
slow! We explicitly sourced all scripts rather than
relying on unknown handlers and auto-loading (total
saving around .5 seconds, depending on the applet).

Identify special cases. One data structure we use is
created and maintained mostly through Tcl code. When
creating a new instance, the programmer may specify a
number of different options, which requires a lot of
slow Tcl code to parse. We identified a frequently-used
special case and handled that separately. These types of
optimizations saved about .2 seconds.

Use smarter Tcl constructs . We found many
improvements here. Our best example is a construct
like “lsearch [info commands] foo” rather than “info
commands foo” which runs about forty times faster.
While Tcl is great to “glue” primitives together, its
worth checking the manual pages to see if your
favourite Tcl command will do the work for you itself.

Embedded Window Issues

Most of the embedded window issues we faced were
performance issues, not surprising given that the code
to do the embedding was written in Tcl. In this case,
profiling identified some special cases which were
rewritten (e.g. there is no need to search through a
command using an expensive regular expression search
to find window pathnames if the character “.” doesn’t
appear anywhere in the command), or some general
routines which were used everywhere where it was
worth it to rewrite just those routines in C.

Using mega-widgets was another issue. Both the mega-
widget framework we used and the mega-widgets
themselves were written in Tcl. Given the overhead of
the window embedding code, both creating and using
mega-widgets that run in the child interpreter was very

slow. Moving them into the parent interpreter (and
making them available in the child interpreter with an
alias, as is done with the built-in Tk widgets) improved
that situation considerably (creating the mega-widget for
the applet’s object frame took .5 seconds when run in
the child interpreter, and just under .1 seconds when run
in the parent interpreter).

There were a few other difficulties, such as not being
able to access the “-variable” associated with some
widgets in a subinterpreter (which was resolved by a set
of variable traces). Deciding how images were shared
between interpreters is also an issue (we let child
interpreters have full access to the parent’s images,
though this decision may have to be revised if we allow
untrusted applets). These will need to be resolved as the
“safe Tk” code is redone and integrated into the Tk core.

Interactions Between Interpreters

Interpreters need to communicate with each other to
share facilities, such as sockets, information on users,
and so on. The multiple interpreter package in Tcl uses a
“parent/child” paradigm for interpreters, which we
followed closely. Shared facilities were always supplied
by the parent (the application interpreter) to the child
(the room or applet interpreters), using interpreter
aliases. This resulted in the application interpreter
program needing extra code, while the code used in the
room and applet stayed quite simple, which worked well
for our need of simplifying applets.

Though it is possible to use hierarchical interpreters,
after some brief experimentation we rejected them. With
the applet interpreters being a child of the room
interpreter (rather than the application interpreter), and
even at one point with applets as children of other
applets, things got out of control quickly. Speed was an
issue (mainly in the interface code), and responsibilities
were spread over many pieces. When possible, a shallow
hierarchy of interpreters seems to be more effective.

Another decision we had to make was about menu
sharing, so that applets could have access to the main
menubar. We chose to add a single menu to the menubar
for each applet (available via an alias), and the
application interpreter packed and unpacked the menu as
the focus changes. An alternative would be to clone the
entire menubar for each applet.

Packaging

Because our audience is not only developers but also
people who just want to use the system, we needed to
package a binary that would not require users to compile

their own Tcl, Tk, GroupKit, etc. Existing solutions
need some changes to work for applications using
multiple interpreters. Typically these systems
“compile” Tcl code into arrays of C strings, and load
them via Tcl_Eval() at the start of the program. But
multiple interpreters are not always created at the
program’s start, and interpreters may use different files.

The solution we used in TeamRooms was to use an
existing package (Joe Touch’s “tcl2array” package) to
generate C arrays of the Tcl code. We then created a
hash table containing pointers to these arrays, indexed
by their original Tcl filename. We replaced Tcl’s
standard “source” command with a new version that first
checks if the requested filename is in the table. If so, the
code is read from the array, otherwise the file is read
from disk.

Cross Platform Issues

While TeamRooms now runs on several flavours of
Unix, Macintosh, and Windows, at the time of writing
we have little to report in terms of cross platform issues
that were difficult to resolve. Most difficulties have to
do with missing native functionality (e.g. proper menus
and dialog boxes), differences with fonts (which are
important if we want identical views of the room across
platforms), and so on. Other common cross-platform
issues such as layout, naming conventions and so on
have not been significant issues with TeamRooms.
This is likely because the system relies on a very
customized, direct-manipulation interface built using
Tk’s canvas widget, rather than using a more
conventional forms based interface.

Conclusions

This paper has described TeamRooms, a Tcl/Tk
groupware application built with our GroupKit toolkit.
TeamRooms provides “network places” on the Internet
for collaborators, who can interact with generic tools
like shared whiteboards. They can also customize their
electronic rooms by using applets, which are full
groupware applications that run embedded in the room’s
window, OpenDoc style. TeamRooms is a good
illustration of a highly interactive Tcl-based Internet
environment.

To accomplish this while still keeping the application’s
complexity reasonable, TeamRooms relies heavily on a
number of techniques. Meta-architectures provide the
flexibility to support new run-time architectures.
Multiple interpreters allow us to structure the system so
that each component acts as its own self-contained
application, without requiring extra knowledge about

the overall environment. Finally, embedded windows
extend the power of multiple interpreters to Tk. Our
experiences with these techniques should prove useful as
other Tcl/Tk applications begin to use these newer
features.

Acknowledgements

Thanks go to early users, in particular Saul Greenberg,
Carl Gutwin, Gordon Paynter and Simon Gianoutsos,
who braved early versions of the system, and offered
many useful suggestions and improvements. Various
bits of code have been borrowed from Steve Ball (applet
embedding), Stephen Uhler (HTML library), and
Shannon Jaeger (megawidget framework). The financial
support provided by Intel Corporation and NSERC is
gratefully appreciated.

More information about TeamRooms, including
software availability, related projects, and publications,
can be obtained on the World Wide Web at:

 http://www.cpsc.ucalgary.ca/projects/grouplab/
teamrooms/

References

1. Ball, S. SurfIt! A WWW Browser. In Proc. of
Tcl/Tk Workshop. 1996..

2. Borenstein, N. EMail with a Mind of its Own: The
Safe-Tcl Language for Enabled Mail. In Proc. of
ULPAA. 1994.

3. Curtis, P. and Nichols, D. MUDs Grow Up: Social
Virtual Reality in the Real World. In Proc. of the
Third International Conference on Cyberspace.
May 1993.

4. Johansen, R., Sibbet, D., Benson, S., Martin, A.,
Mittman, R. & Saffo, P. Leading Business
Teams. Addison-Wesley. 1991.

5. Orfali, R., Harkey, D. and Edwards, J. The
Essential Distributed Objects Survival Guide. John
Wiley and Sons. 1996.

6. Roseman, M. When is an object not an object? In
Proc. of Tcl/Tk Workshop. 1995.

7. Roseman, M. and Greenberg, S. Building Real
Time Groupware with GroupKit, a Groupware
Toolkit. ACM TOCHI . March 1996.

