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Many information structures are represented as two-dimensional networks (connected graphs)
of links and nodes. Because these networks tend to be large and quite complex, people often
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prefer to view part or all of the network at varying levels of detail. Hierarchical clustering
provides a framework for viewing the network at different levels of detail by superimposing a
hierarchy on it. Nodes are grouped into clusters, and clusters are themselves placed into other
clusters. Users can then navigate these clusters until an appropriate level of detail is reached.
This article describes an experiment comparing two methods for viewing hierarchically
clustered networks. Traditional full-zoom techniques provide details of only the current level
of the hierarchy. In contrast, fisheye views, generated by the “variable-zoom” algorithm
described in this article, provide information about higher levels as well. Subjects using both
viewing methods were given problem-solving tasks requiring them to navigate a network, in
this case, a simulated telephone system, and to reroute links in it. Results suggest that the
greater context provided by fisheye views significantly improved user performance. Users
were quicker to complete their task and made fewer unnecessary navigational steps through
the hierarchy. This validation of fisheye views is important for designers of interfaces to
complicated monitoring systems, such as control rooms for supervisory control and data
acquisition systems, where efficient human performance is often critical. However, control
room operators remained concerned about the size and visibility tradeoffs between the fine
detail provided by full-zoom techniques and the global context supplied by fisheye views.
Specific interface features are required to reconcile the differences.

Categories and Subject Descriptors: H.5.2 [Information Interfaces and Presentation]:
User Interfaces—theory and methods; interaction styles; 1.3.6 [Computer Graphics]: Meth-
odology and Techniques—interaction techniques

General Terms: Human Factors

Additional Key Words and Phrases: Data acquisition, fisheye views, hierarchically clustered
graphs, information visualization, supervisory control

1. INTRODUCTION

People naturally perceive the world using both local detail and global
context. While we see visual detail for only small focused regions, we retain
global context through peripheral vision and by glancing around. We rely
heavily on global context to orient ourselves and to understand local detail,
indeed, tunnel vision is considered a serious handicap.

Unfortunately, today’s computers encourage “tunnel vision” interfaces,
for they supply users with very small screens to view large complex
information spaces (even a 19-inch display consumes only a fraction of our
normal field of view). Interface designers have developed several strategies
that minimize the tunnel vision effect. First, traditional graphical systems
often supply pan and zoom capabilities, where users can pan or scroll a
window across a virtual canvas, and they can adjust the scale of their view
(and the entire space) through zooming. The problem is that, when users
are zoomed out for orientation, there is not enough detail to do any real
work. When they are zoomed in sufficiently to see detail, context is lost.
Second, multiple windows may be provided, each with a pan and zoom
capability. Although this is reasonable for small information spaces, the
many windows required by large spaces often lead to usability problems
due to excessive screen clutter and window overlap. Third is the map-view
strategy, where one window contains a small overview, while a second
window shows a large more detailed view [Beard and Walker 1990; Smith
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et al. 1989]. The overview contains a rectangle that can be moved and
resized, and its contents are shown at a larger scale in the large view. Map
views suffer from the extra space required for the overview and from
forcing the viewer to integrate detail and context mentally.

Recent advances in computer-based information visualization have ac-
knowledged the importance of balancing local detail with global context
into a single view by providing fisheye views of the data space [Furnas
1986]. Analogous to a wide-angle camera lens, the idea is to show “local”
detail in full (the objects of interest to the user), while displaying succes-
sively less detail for information further from the focus of attention. This
can be done by three methods. First, we can graphically distort the view,
where items shrink as they move away from the focus point. Second, we can
present partial views through filtering, where a distance function deter-
mines whether or not items should appear on the display. Finally, we can
use simpler, smaller representations and abstractions, for example, repre-
senting a detailed circuit as an icon.

Particular fisheye strategies for viewing large information spaces have
been proposed and implemented by several researchers. Although most
overlap somewhat in principle, they differ considerably in the type of data
structure they can display, the visualization method used, and their
dependency on the semantics of the application. Thus, the best choice of
visualization strategy depends heavily on how the application’s information
is structured and on how well the visualization matches the end-user’s
conceptual model of the information. To get a feel for the diversity of
approaches, a variety of fisheye visualization systems are summarized in
Table I and discussed next.

Furnas [1986] pioneered the idea of fisheye views. He described a
generalized “degree-of-interest” function, where the interest value of a node
in the graph is a function of both its a priori importance and its distance
from the user’s current focus. He created systems for viewing and filtering
structured program code, biological taxonomies, and calendars. He then
verified that fisheye views were indeed superior to flat views by performing
a modest usability study. Remde et al. [1987] applied the fisheye idea to
SuperBook, a mostly text-based electronic book. SuperBook uses the now
familiar notion of a manually expandable table of contents. Depending on
how content headings are selected, subheadings are revealed or hidden.
When the reader specifies a search term, SuperBook posts the number of
search term hits in the free text against the headings that contain them. In
essence, the hits represent the degree of interest, while the expandable
contents implement the fisheye view. These ideas appear to work, as a
usability study of SuperBook found that students can answer search
questions with it better than with conventional text [Egan et al. 1989].
Sarkar and Brown [1992] pursued a mostly 2D graphical approach to
fisheye views that distorts the position and size of nodes within a connected
graph to reflect the importance of nodes. All nodes within the network are
shown unless a particular node’s “display” value fell below a threshold, in
which case it is removed from the graph’s view. Their algorithm handles
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Summary of Selected Information Visualization Systems

System

Data Structure

Visualization Method

SuperBook [Egan et al. 1989;
Remde et al. 1987]

Graphical fisheye views of
graphs [Sarkar and Brown
1992]

Layout-independent fisheye
views [Noik 1993]

IDG hypermedia system
[Feiner 1988; Feiner et al.
1982]

Variable zoom (this article)

Tree Maps [Johnson and
Shneiderman 1991;
Shneiderman 1991]

FlexView [Schaffer and
Greenberg 1993]

Table Lens [Rao and Card
1994]

Perspective Wall [Mackinlay
et al. 1991]

Cone and cam trees
[Robertson et al. 1991]

Hierarchical text-based
table of contents

Graphs

Hierarchically
clustered hypertext
graphs

Hierarchically

clustered hypertext
graphs

Hierarchically
clustered graphs

Strict hierarchies

Strict hierarchies
where nodes contain
several numeric
attributes

2-by-2 tables

Linear structures

Strict hierarchies

Expandable text-based contents
hierarchy; frequency of
search term hits are posted
next to the content headers.

2D planar and polar
transformation of graphs
with filtering and multiple
focal points.

2D progressive exposure of
hierarchical detail combined
with fisheye space allocation
and multiple focal points.

2D progressive exposure of
hierarchical detail combined
with fisheye space allocation
and multiple focal points
using multiple windows.

2D progressive exposure of
hierarchical detail combined
with fisheye space allocation
and multiple focal points.

2D space filling by slice and
dice.

Fisheye and filtered view of
hierarchy; overview map
window relates fisheye to
global information space;
dynamic queries on
attributes alter the view.

Size and detail of a table’s rows
and columns matched to
degree of interest; data
summarized as dense bar
charts.

3D perspective projection and
animation.

3D visualization of tree and
animation.

planar and polar transformations of connected graphs and uses Euclidean
distance to calculate the degree of interest. Although the resulting images
are impressive, Sarkar and Brown note that users sometimes perceived the
resulting view as unnatural, particularly when a familiar object (such as a
map) is severely distorted. The technique was later extended via a “rubber
sheet” metaphor [Sarkar et al. 1993], which allows multiple foci and gives
the user direct control of how much screen space is used for objects in the
areas of interest. The rubber sheet approach was also adopted by Kalten-
bach et al. [1991] when dealing with the problems of managing screen
space in hypertext systems. Noik [1993] combined fisheye views and
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hierarchical nesting of graph nodes to hypertext. Nodes (documents) are
arranged and linked in a nested hierarchy (essentially a table of contents).
When a bounding box of a hierarchical component is displayed, its size and
detail are adjusted to reflect its degree of interest. The IDG hypermedia
system [Fiener 1988; Fiener et al. 1982] visualized hierarchical clusters,
allowing multiple areas of interest to be displayed at any desired level of
detail in multiple windows.

Tree Maps, developed by Johnson and Shneiderman [Shneiderman 1991;
Johnson and Shneiderman 1991], use a 2D-space-filling algorithm to fit a
complete strict hierarchy into a window. It is based on every node contain-
ing a value that is the sum of the node values of its children. This value
determines the node’s relative size on the screen. One use of Tree Maps was
to display a hierarchical file system, where the value shown is the size of
the directories and files. Tree Maps presents a very different way of
viewing information, and there are still outstanding questions on its
usability. Schaffer and Greenberg [1993] developed FlexView to visualize
strict hierarchies, where each node could contain a set of numeric at-
tributes. Through FlexView’s dynamic query controls, a user can select the
attributes of interest, as well as the numeric ranges. The visualization
shows only the subtrees that contain query hits, with hits emphasized in
both color and size to represent the number of attributes matched. An
overview map window provides a “gestalt” view: it contains a scaled-down
version of the uncollapsed tree, indicates the extent of the hierarchy shown
by the fisheye view, and displays the distribution of hits over the tree. Rao
and Card [1994] developed the Table Lens for visualizing large tables. It
works by adjusting the size and detail of a table’s rows and columns,
depending on their interest values, and by graphically summarizing its
data as dense bar charts. Three-dimensional fisheye visualization was
introduced by Mackinlay et al. [1991], who linearly transformed a 1D space
by projecting it on a 3D “perspective wall.” Robertson et al. [1991] then
combined 3D effects and animation for displaying 2D hierarchies in “cone
trees” and “cam trees.”

Although there is much interest and intuitive appeal in fisheye views,
there have been few quantitative studies evaluating its merits. Our own
work applies a particular kind of fisheye view, which we call “variable
zoom,” to hierarchically clustered networks (explained in Section 2). These
can be used to represent and view real environments—telephone systems,
oil pipelines, power grids—that are controlled by operators of supervisory
control and data acquisition (SCADA) systems, as well as other domains
amenable to hierarchical clustering, such as hypertext [Noik 1993]. Be-
cause our interests are in critical real-time control environments, we
wanted to see how well operators could navigate and manipulate a hierar-
chically clustered graph using either a traditional zoom method or fisheye
views.

We begin with a description of the Simon Fraser variable-zoom display
algorithm, which was used to provide a fisheye view interface to a simu-
lated telephone network. We then describe a controlled experiment con-
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Fig. 1. (a) An example network; (b) an example of how the network can be hierarchically
clustered.

trasting user performance using both a standard full-screen zoom view and
a fisheye view. As well, we discuss the comments and concerns raised by
highly experienced operators of very large control rooms. After presenting
the results, we reexamine the experiment and the system, outline how we
are now addressing the issues raised, and then suggest several implications
our research has to interface design of information visualization systems.

2. THE VARIABLE-ZOOM DISPLAY METHOD FOR 2D NETWORKS

Furnas’ [1986] fisheye approach was quite effective for tree structures; our
work extends his ideas to 2D connected graphs as the primary data
structure with superimposed hierarchical clustering [Fairchild et al. 1988].
Although superficially similar to Sarkar and Brown’s [1992] graph visual-
ization, it differs considerably because it visualizes hierarchical clusters in
progressive detail, as well as the nodes of the graph. Our approach is most
similar to Noik’s [1993] parallel work on hypertext visualization, except our
approach also allocates space to display the contents as well as the title of a
graph node and is not tied to a particular application. It also bears
similarities to Feiner’s IDG hypermedia system [Fiener 1988; Fiener et al.
1982], which visualized hierarchical clusters; however, our approach pro-
vides for multiple foci within a single window. Other researchers have
developed various kinds of hierarchical graph structures, such as Higraphs
[Harel 1988] and Hypergraphs [Berge 1973], to which the hierarchical
clusters used here bear a resemblance. However, our interests are in ways
to represent graphically the structure that is of help to a user and to
evaluate its effectiveness, rather than the underlying graph-structure
properties of the base network.

Our variable-zoom method works on a 2D network of nodes and links,
such as the one shown in Figure 1(a). It assumes that a hierarchical
clustering of nodes has been superimposed on the network. Figure 1(b), for
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Fig. 2. Example of basic operation; (a) network before zooming; (b) nodes a and d have been
zoomed to show the subnetworks; other parts are shrunk as context.

example, shows how nodes in the network of Figure 1(a) have been
clustered into three hierarchical levels. The largest rectangle is the “root”
cluster of the hierarchy and contains five smaller clusters a—e (the second
level of the hierarchy). These, in turn, may or may not contain other
clusters, nodes, or combinations thereof. The bottom of the hierarchy is
reached when a cluster contains only network nodes. As long as a strict
hierarchy is maintained, nodes can be clustered in any way the designer
wishes, e.g., by using geographical distance, by task-specific relationships
of nodes, and so on. For example, consider how this scheme could visualize
the workings of an electric utility company. The “network” is the actual
connection of power stations (nodes) by power lines (arcs). The superim-
posed clusters may represent the hierarchical geographic regions that
contain the power stations, such as states or provinces, regional districts,
towns and cities, and city neighborhoods, down to the power station and its
subcomponents.

The hierarchy is then used by the visualization algorithm to allow
clusters of the network to be viewed at different levels of hierarchical
detail. At each level above the network node level, we represent the
clusters as icons that may be “opened” to show the next level down. In
Figure 2(a), for example, clusters a—e are drawn as icons; the links indicate
that clusters are connected by at least one path in their respective subnets.
Figure 2(b) shows the operation of opening (zooming into) two higher-level
icons (a and d). The key to obtaining the fisheye effect is to magnify
appropriate parts of lower levels uniformly so as to show detail, while
embedding this detail in the remaining, uniformly scaled down network. An
advantage of this method is that multiple areas of focus (detail) are
allowed.
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The basic variable-zoom algorithm described in Sections 2.1-2.4 assumes
that all nodes (leaf and cluster) are square and do not overlap. That is,
projections of nodes on x- and y-axes do not overlap. It works by applying
the same method in horizontal (x) and vertical (y) directions; the descrip-
tion below applies to both. Nodes are in either a zoomed or unzoomed state:
zoomed nodes are opened like windows, displaying their immediate subnet-
work. Unzoomed nodes are closed as icons; their subnetworks are not
shown. Cluster links are simply straight lines joining clusters.

In the implementation, both network nodes (leaves) and cluster nodes are
represented as squares. Texturing is used to distinguish the two visually.
Texturing is also used to differentiate lines representing two or more real
links in the network from those representing single links. Texture is
displayed using white, vertical stripes on the background color node color.

The algorithm is described for a single node, assumed to be in a zoomed
state, and its subnetwork. The display size of each node or cluster in the
subnetwork is calculated. Nodes and clusters to be magnified are zoomed
by a magnification factor, F,, and others are reduced in size by a shrink
factor, F,. Finally, placement of all nodes and clusters is calculated. The
resulting procedure is then applied recursively to each cluster. Section 2.4
describes how to extend the algorithm to handle rectangles and overlaps,
but it is not used for the system described in this article.

2.1 Magnification Factors

We first calculate F',, the magnification factor to be applied to nodes to be
zoomed, and F, the shrink factor to be applied to the remaining spaces. We
do this by considering two ratios: R, is the ratio of nodes to be zoomed with
respect to their environment (length of parent node, L), and r is the ratio of
nodes to be zoomed to the total length of all nodes, before the zoom
operation is applied.

R,=F,S,/L, 0<R,=1, (1)

r=85,/S., 0<r=1,

where S, = sum of lengths of all nodes to be zoomed, and S, = sum of
lengths of all nodes. The use of ratios keeps the development independent
of the particular level in the overall network.

To make the subnetwork detail visible, R, should never be smaller than
some threshold value. Since a node may be arbitrarily small (and since the
user may wish to zoom just one node), r can be arbitrarily small, and we
need R, = threshold as r — 0. If all nodes are zoomed (r = 1), no context
needs to be retained, and R, = 1 when r = 1.

As the number of nodes increases from one to the total number (in
general, as r increases from zero to one), R, should increase from the
threshold to one smoothly and monotonically. A simple relationship meet-

ing all of these requirements is R, = kir + ko, where k; and k, are
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constants. Because R, = 1 whenr = 1, k; = 1 — k,; renaming k, as K, (a
balance factor, discussed below), we have

Rz= (1_Kb)r+Kb’ (2)
and substituting into (1),
F,=K,(L/S,)(1/K, — 1+ 1/r). (3)

To use space effectively, the sum of magnified and demagnified segments
should equal the length of the containing node after the operation, so that

FS, +F,(L-S,)=L and F,=1-F,S,/L)(1—-S,/L). 4)

The expressions for F, and F, indicate that both are dependent on the
environment and on the user’s request (i.e., on the number of nodes to
examine in detail). For this reason, we refer to the algorithm as a
variable-zoom type of fisheye method.

2.2 Basic Operation

The operation applied to each node recursively simply calculates the new
sizes and locations. The sizes are just the original sizes multiplied by F, or
F_, as appropriate. To calculate the positions, the x-axis is divided into
segments by the boundaries of nodes to be zoomed (an identical procedure
is used on the y-axis). Segments corresponding to nodes to be zoomed are
enlarging segments; the others are shrinking segments (Figure 2(a)). Let x;
and x; be the positions before and after, [, the length of the segment, and d,
the distance from x; to the left boundary of the segment containing x;. The
x; are calculated by first sorting the segment list from left to right and then
performing the following for each node (the result is shown in Figure 2(b)):

initialize x! to the left boundary of parent node
for each segment to the left of x;

if enlarging, x. = x. + F I,

else x; = x + Fl,
for the segment containing x;

if enlarging, x; = x; + F.d;

else x; = x; + Fd,.

2.3 Balance Factor

The constant K, in the expressions for F, and F, is a “balance” factor that
controls the ratio of detail area to parent area, i.e., the ratio of detail to
context. A larger K, gives a larger proportion of detail. To see this, we
rearrange (2) as R, = r + (1 — r)K, so that, for a constant number of
nodes to be zoomed (r is constant), R, grows with K,. Figure 3 illustrates
the visual effects of varying K,. When users are allowed to adjust K,, they
can control the relative emphasis on detail and context.
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(a)Kp=02 (b) Kp=0.5

Fig. 3. The visual effects of varying the balance factor.

2.4 Extensions for Nonsquare and Overlapping Nodes

The above development assumes that all nodes are square and that their
projections onto the x or y do not overlap each other. Real networks do have
such overlaps, and it is often either difficult or disadvantageous from a
human factors point of view to rearrange a network to avoid overlaps.
Furthermore, supporting nonsquare node shapes, particularly rectangles,
is desirable and sometimes necessary. This is certainly the case in most
process control environments. For example, a utility company’s network
has bottom nodes that are essentially substation circuit diagrams. Repre-
senting these diagrams clearly while making effective use of screen space
requires rectangular-shaped nodes.

Although the system described in this article uses only nonoverlapping
squares, dealing with rectangles is fairly straightforward. We simply keep
individual node lengths and widths, and allow for S, and S, being different
in x and y. Handling overlap requires some additional work. The key is in
the definition of S, and S,, as well as in allowing different values for each
axis. First, a separate calculation is performed for each axis. Second, before
this calculation, all nodes are projected onto the x- and y-axes, and
overlapping segments are merged:

—any segment entirely within another is dropped from the calculation and
—partially overlapping segments are merged into a single segment.

Separate magnification factors are then computed for each axis (F,,, F,,)
according to Eq. (3), and we set the final value to the minimum, F, =
min(F,,, F,,).

Computing F, is not quite as straightforward. We first calculate F, and
F., by substituting the new value of F, into Eq. (4). Observe that even
though the “common” F, is used, because of the dependency on S, and
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a] a]

(a) (b)

Fig. 4. Result of setting F; = min(F,, F,) when zoomed nodes include all unzoomed nodes;
(a) before zooming node a. Note that since node a includes all unzoomed nodes (b and ¢) in
their x direction F; = min(F,, F,,) = 0; (b) after zooming, nodes a, b, and ¢ reduce to points
since F'; = 0.

because S,, may be different from S,,, we end up with two shrink factors,
F, and F,. However, we cannot simply set F; = min(F,, F ), as we did
for F,, because either or both F,, and F,, may be zero. This condition
occurs if, in the relevant axis, the nodes to be zoomed “include” all
unzoomed nodes, as illustrated in Figure 4. The F, = 0 result is easily
derived by noting that the “zoomed-in nodes including all unzoomed nodes”
condition is equivalent to S, = S, and by substituting this result into (3)
and (4). Neither can we set F; = max(F,, F,,), since both F;, and F,, may
be zero. To bypass these difficulties, we add the not unreasonable require-
ments that F; must be greater than zero and less than one, and calculate a
common F_, as shown in Table II.

The basic operation described in Section 2.2 must also be slightly revised.
Although node sizes are calculated as before (using the common values of
F, and F,), computing the position differs in that we must use the (possibly
different) values of F, and F,. The reasons for this are the axis depen-
dence in Eq. (4) for F, and the requirement to use screen space fully. F', and
(the common value of) F will not, in general, satisfy (4) in both the x and y
directions. Thus, we use the algorithm of Section 2.2, but with a separate
calculation for each axis, with the common F, and axis-dependent F (F,
and F ).

3. DESCRIPTION OF THE LABORATORY EXPERIMENT

This experiment compared the performance of subjects navigating and
repairing a simulated telephone network, represented as a hierarchically
clustered graph. Subjects used either a full-zoom or a fisheye view method
to navigate the clusters.

ACM Transactions on Computer-Human Interaction, Vol. 3, No. 2, June 1996.
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Table II. Calculation of Common Shrink Factor F

F, and F, F,
both >0 min (F_,, F )
one = 0 max (F,, F)
both = 0 constant between 0 and 1

A value of 0.2 for the constant yields reasonable results.

Hypothesis. Our null hypothesis was that there is no difference in
performance (p = 0.05) between subjects traversing a hierarchically
clustered network using a fisheye view or a full-zoom view. Since this is a
within-subject experiment where each person uses both viewing methods,
we counterbalance-ordered the methods and proposed a secondary hypoth-
esis that order (and learning) has no effect on the outcome. A subject’s
performance was measured in terms of the total time taken to complete the
task, number of zooms performed, and their success at performing an
assigned task.

Subjects. Twenty subjects were selected from a pool of volunteers. All
were senior undergraduate students, graduate students, or faculty in
computer science and were familiar with graphical user interfaces and
general data structures. None were familiar with the Simon Fraser fisheye
view system.

In addition, two highly experienced control room operators informally
evaluated the two viewing approaches under similar experimental condi-
tions as the other subjects. Because their performance was not measured
rigorously, their comments will be reported separately in the discussion
section.

Materials. The experiment was performed at the University of Calgary
on Sun workstations and used an implementation of the variable-zoom
algorithm developed in the Computer Graphics Laboratory at Simon Fraser
University. The same software could be set to display either a full-zoom or
a fisheye view of a simulated telephone network. The system allowed
subjects to navigate through the graphs and to change the status of links.
Timing information and user events were automatically recorded.

The fisheye view used the variable-zoom method described in Section 2,
with the balance factor, K, set to 0.5. Subjects could not adjust the balance
factor. The full-zoom method followed a more traditional approach, where a
selected node was enlarged to occupy the entire screen. From the users’
point of view, the only differences encountered during the experiment were
in the visualization method. The system interface and the hierarchically
clustered graph were otherwise identical.

Both systems illustrated a hierarchically clustered simulated telephone
network with four levels of substations (nodes and clusters) represented by
boxes and connected by lines (Figure 5). The entire network contained 154
nodes and 39 clusters. Each node was labeled to provide a reference to the
node, as well as contextual information. Figure 5(a) illustrates the root
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These representations are adapted from the color screen image.
000000000 represents the (green) colored, selected path.
Key XXXXXXXXX represents the (red) broken line.
Shading represent textured nodes which are not selectable.
Solid lines are selectable and striped lines are not.

Fig. 5. Snapshots at each level in the hierarchy for the fisheye (left column) and full-zoom
(right column) views. Levels are (a) root view; (b) north cluster; (c) Edmonton cluster; (d)
Edmonton register 1 cluster.
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view of the network, comprised of four network nodes (the phones and east
and west boxes) and three expandable clusters (north, central, south). The
left column shows the fisheye view and the right the full-zoom view; in the
case of Figure 5(a) both views are identical, since this is the root view.
When a user clicks the left mouse button on the North cluster, that cluster
is exploded to the next level of hierarchical detail (Figure 5(b)). In this case,
the fisheye view in the left column shows the contextual detail around the
exploded cluster, while the right shows only the cluster and its entry/exit
links (but it is shown larger on the display). Similarly, expanding the
“Edmonton” node and then the “Edm Reg 1” node will produce the displays
seen in Figure 5(c) and (d).

Color was used to provide information about telephone lines (the links),
while texturing indicated user selectability of nodes and lines. Only nonleaf
nodes could be selected for zooming or unzooming, and lines could only be
selected if both ends were connected to leaf nodes. Selection of a line
resulted in its color changing. Rerouting of telephone lines was performed
by selecting or deselecting connection lines, i.e., by coloring or uncoloring
the links between nodes (links between clusters were not selectable).

Task Description. Subjects were asked to act as telephone technicians.
They were given a hierarchically clustered telephone network and asked to
navigate through the network by zooming and unzooming nodes using the
mouse.

Subjects were first asked to find a broken telephone line in the network.
Breaks were displayed visually as red lines, with line texture (solid or
dashed) indicating whether they connected leaf or nonleaf nodes (Figure 5).
After finding the break, subjects clicked on a button labeled “Break Found.”
They were then asked to “repair” the network by rerouting a connection
between two endpoints of the network that contained the break. Subjects
then clicked on a button labeled “Reroute Done,” which ended the task.

Methods. Subjects were first given a short training task to perform,
where they were expected to achieve some competency with the task and
the software. Subjects then performed two similar navigational tasks:
“Task A,” followed by “Task B.” Half of the subjects performed the first
task, Task A, with the full-zoom view and the second task, Task B, with the
fisheye view. The remaining subjects employed the same views in the
reverse order. The training task was repeated using the second view before
performing Task B.

The experimental design was a 2 X 2 factorial design, where the two
factors (the independent variables) were the view and the order in which
the views were performed. Each factor had two levels: the view factor
having levels “fisheye” and “full-zoom” and order having levels “fisheye-
first” and “fisheye-second.” The order factor is strictly an experimental
artifact of within-subject design; we used it only to check for transfer
effects and task differences.

The dependent variables were the time to complete the task, the number
of zooms of network nodes that occurred during the task, and whether or
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Table III. Means and Standard Deviations of Dependent Variables at the Statistically
Significant Treatment Levels

View Mean Std Dev

(a) Running Time (seconds)

Fisheye 101.9 59.5

Full-zoom 161.2 71.6
(b) Number of Zooms

Fisheye 6.3 2.7

Full-zoom 10.9 4.3
(¢ Successful completion of task as a ratio

Both 0.7 0.5

not the task was successfully completed (if subjects did not correctly repair
the break, the task was considered unsuccessful). Data collection was
mostly automated. The software timestamped and recorded every user
event within the task (user selections, zooms, and unzooms). However, the
experimenters could only determine the existence of an error by retracing
each subject’s actions through the hierarchy.

Qualitative comparisons between the two types of views were also
gathered from subjects. We recorded their comments while they performed
the experiment, and we administered a questionnaire after each task was
completed. On each questionnaire subjects were asked to describe their
strategy for solving the task, how they oriented themselves within the
hierarchy, and what they liked and disliked about the system. After both
tasks were completed, a final question asked each subject which view
method they preferred using.

4. RESULTS

We analyzed the subject’s running times for completing each task. An
analysis of variance revealed that running time was significantly affected
by the view factor used in the task (F = 9.91, p = 0.01), with people
completing the task much faster when using fisheye views (102 seconds
versus 161 seconds). Order did not have a statistically significant effect on
the running times (F = 3.42, p = 0.62). The means and standard deviations
of the running times are shown in Table III.

We also analyzed each subject’s number of zooms on network nodes per
task, which provides a quantitative measure of the amount of navigation
required to complete the task. Note that “unzoom” actions were not
analyzed, because nodes in the fisheye graph did not need to be unzoomed
(since everything can remain visible on the screen). The analysis of vari-
ance revealed that the number of zooms was significantly affected by the
view factor used (F = 18.29, p = 0.00), where subjects using the full zoom
required almost double the number of zooms than when using the fisheye
view (11 versus 6 zooms). Differences due to ordering were not significant
(F = 1.13, p = 0.30). The means and standard deviations of the number of
zooms are shown in Table III.
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Finally, we analyzed the number of correct solutions as a percentage of
the whole. This was done by simply grading each task as correct (1) or
incorrect (0); other than this, we did not attempt to assign a “value” of
correctness for each solution. Neither view level (FF = 2.32, p = 0.15) nor
order (F = 1.12, p = 0.30) had a statistically significant effect. Although
most subjects did complete the task successfully, 30% of them did not
(Table III, part (c)). We believe that software enhancements, such as
automatic checks for completion, would have improved all correctness
values.

Some other effects beyond those analyzed statistically are worth noting.
First, there was little difference in the performance of subjects when
locating the broken telephone line within the hierarchy using either the
full-zoom or fisheye system. This is because the display, independent of the
views, clearly showed which of the lowest-level clusters visible on the
display contained the break (the one containing the red line). With a
minimum of 4 operations required, the average of subjects using either
view was 4.5 operations, with a standard deviation of 1.1.

Second, the ability of people to complete a task successfully deserves
revisiting. No feedback on the condition of a path internal to a node was
given—i.e., nodes only showed that paths entered into it, but did not say if
the paths were connected internally. Unconnected internal paths were
usually the cause of an incomplete reroute. Eight of the 20 full-zoom
reroutes attempted were not successful, whereas only four of the fisheye
reroutes were incorrect. Incomplete paths were lacking connections, and so
the number of operations (zooms, unzooms, selections, and deselections)
was artificially low. Although this suggests that running time in the
full-zoom case would be artificially lowered (since there were more tasks
that were not completed), we did not find much difference in practice.

Third, people who successfully completed the task produced far better
reroutes through the network when using fisheye views. The raw data show
that one-third of the correct reroutes using fisheye views were near the
minimum possible number of operations; only a single subject had an
extremely poor reroute. In contrast, no one using full zooms came close to
the optimum reroute; performance was generally poorer, and a full third of
the solutions were extremely poor. There was a high degree of variance
among subjects in the operations performed to complete a reroute. This is
discussed further in Section 5.1.

5. DISCUSSION

5.1 Examination of Results

Subjects using the fisheye view were more efficient at performing the task
than when they used the full-zoom technique. In particular, they took less
time to complete the task, and the amount of navigation (indicated by the
number of “zoom” actions) was reduced. This corresponded well to our
subjective observations during the experiment: we saw that subjects using
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the fisheye view were able to focus directly on the task and were not as
distracted by the need to visualize the network mentally. In the question-
naires most subjects also stated that they found the context provided by the
fisheye view a valuable resource for completing the task.

The tasks consisted of two parts: finding the broken telephone line and
then rerouting the connection around that line. For both systems, subjects
used the same strategy—a deterministic depth-first search—for finding the
broken line. However, rerouting was performed using several different
strategies. Most subjects attempted to use as much of the original connec-
tion path as possible, having the reroute path be as close as possible to the
original path (we call this local rerouting). This explains why people
produced better reroutes in fisheye views, for the surrounding context
easily showed them how nearby nodes were connected to each other. In
contrast, subjects using full zoom had great difficulty doing local rerouting,
for they became confused about their current position in the network and
could not remember what nodes they had already examined. Several
subjects, after attempting local rerouting, instead chose to reroute along a
completely different path, starting from the top down. Although this
reduced their confusion, it also required more selection of lines, which was
very inefficient.

From their comments and responses to the questionnaires, most subjects
greatly preferred the extra context provided by the fisheye view. It allowed
them to concentrate directly on the task and reduced their cognitive burden
of trying to remember the structure of the entire network. But the choice is
not clear. Two of the subjects, for example, preferred the full-zoom system
and said that fisheye views presented a cluttered display that was difficult
to work with. Two others qualified their preference of fisheye views by
saying that their choice would depend on the task complexity and the size
of the network. Although these comments could arise from individual
differences in visualization, all subjects did say that they had more diffi-
culty using the full-zoom view after using the fisheye view.

5.2 Verification: What Control Room Operators Have to Say

We took the entire experimental setup to a large utility company that
controlled its province-wide equipment through a central supervisory con-
trol and data acquisition system. Four to five highly experienced operators
per shift run the control room, and each person is responsible for a different
part of the system. Two operators agreed to participate in the experiment.
However, instead of being strictly concerned with running the tasks as
other subjects did, the operators were more interested in trying out the
fisheye and full-zoom methods and discussing its ramifications in light of
their experiences. Note that the experimental setup was not connected, or
in any way related, to the normal system used by the operators.

Although we did not collect enough data to warrant a statistical study,
the measured responses of the operators were in line with what we had
seen in our inexperienced subjects. Both the amount of time taken and the
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number of zooms required were less for the fisheye condition than for the
full-zoom condition. The operators also preferred fisheye views. They said
they found the variable-zoom (fisheye) technique easier to use for the task,
especially because it provided an overview. They did not have difficulty
keeping track of where they were in the network because, as one operator
mentioned, “when you zoomed in you saw the connections.” In contrast, the
full-zoom technique was castigated. One operator said, “it was really
confusing; I couldn’t find my way. I thought it would be easy, but I had to
start thinking about what was inside where.” The confusion of where one
was in the network, as well as the constant need to zoom in and out of
layers, made it difficult for the operators to use.

However, the operators still had some concerns about fisheye views,
especially because the prototype we used did not display the customary
gauges and information that they expected to see (Figure 5(d)). As one
person stated,

The variable zoom was really easy to use, but the full zoom provided a lot more
information. Depending on what you needed to do, the [full zoom may bel]
better. On grid, we could probably get by with the variable zoom. If you had to
go into a sub and close a line, you’d need the [full zoom].

The “grid” refers to looking at the entire network, while the “sub” is a
reference to a particular station circuit diagram (equivalent to a bottom-
level node). What makes this comment interesting is that bottom-level
nodes in both the fisheye and full-zoom techniques show exactly the same
information, except that they are scaled differently (Figure 5(d)). The real
problem is that, although this operator found the variable zoom better for
navigating, he wanted to have the familiar larger-size diagrams at the
bottom-level nodes, which would allow him to see clearly the essential
detail in the circuit diagram. Another operator had a similar comment:

The variable zoom lets you look into a station as well as see the big picture.
However, I am not sure if it would be useful in our system because we need to
get to the level of seeing analogs [actual control gauges].

In the real environment of these operators, all control situations occur
within the bottom nodes. When a bottom node is reached, they require both
the detail of the information presented in their schematics and the ability
to manipulate the controls. In their system (and as with the full-zoom
approach), these bottom nodes occupy the entire screen. Since a fisheye
view sacrifices some screen space for context over detail, the operator’s
concern about losing space to display the essential controls is perhaps
justified.

However, a few interface “tricks” can give operators the best of both
worlds. Some methods for adding node detail to fisheye systems could
include
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—a second display for showing a selected node in full,;

—a toggle for going between the fisheye view and full zoom on a single
display;

—a dynamic balance factor, so that operators can adjust (perhaps with a
scroll bar) the balance between overview and detail; and

—pop-up controls attached to gauges for doing detailed work.

The next section describes the specific ways we have addressed the opera-
tors’ concerns in a new prototype.

5.3 Toward a Real System for Control Rooms: Work in Progress

The bottom-level nodes in the operators’ utility network are substation
circuit diagrams, and as noted in their comments, these must be large
enough to be understood. Furthermore, the operators use these displays to
issue control commands (e.g., open or close a circuit breaker) and to obtain
detailed information, such as the status of breakers, switches, and trans-
formers, and voltage levels.

In the new prototype being developed for a utility company, we support
this requirement for a large bottom-level node. To each node representing a
single substation, we added a single child node containing the circuit
diagram for that substation—an active display that shows all required
status values and supports operator interaction to enact control commands.
Zooming into the next-to-bottom node produces a readable substation
schematic (Figure 6). With our current display size and layout, up to two or
three substation circuit diagrams can be shown, in context, in readable
form. Although the algorithm does not limit the number of circuit-level
nodes, attempting to show more than a few results in displays too small to
show discernible detail easily. However, since many real problem situations
encountered by operators involve three or fewer stations, this does not
seem a severe limitation.

It is not uncommon for real problems to arise involving two directly
connected substations. With their current system, operators must flip back
and forth between displays, trying to form a mental image of the problem,
as well as of the context. To help with this, we have added a feature where
selecting a line connecting two substations will zoom both substations to
the circuit diagram level. Thus, operators immediately see both substations
at the desired level, as well as the surrounding context. We believed that
this would significantly improve their ability to diagnose and correct
network problems. Operators have tried this and have commented favor-
ably on this feature.

Two additional features were added to our algorithm to adapt it to the
power utility’s use. First, we added the ability to deal with multiple lines
between a single pair of substations, since this occurs in several cases. To
avoid lines falling on top of one another, we specify connection points where
a line attaches to a node. In the current implementation, all lines are single
straight line segments from node to node. This results occasionally in
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portions of lines being covered by one or more nodes, which can cause
confusion (i.e., does the line enter the node or pass underneath it?). To
alleviate this, a small disk shows connection points. While this works, there
are other approaches. For example, conventional circuit diagrams solve this
problem nicely by using multisegment lines, usually with “Manhattan”
geometry (all segments are horizontal or vertical). However, maintaining
Manhattan geometry links while dynamically changing node size and
location is an extremely difficult and computationally demanding problem.
We are working on ways of maintaining sufficiently simple link paths to
meet operators’ needs, while avoiding the time-consuming search space of a
complete solution.

We believe that the initial concerns of the operators, whose prior experi-
ences were with equivalencies of full-zoom systems, arose from them being
unaware of the many ways detail can be brought out in fisheye views. We
later showed operators the newer prototype fisheye view system that had
bottom-level nodes that displayed the kind of controls they expected to see,
as described above. They said that this was exactly what they wanted.

5.4 Limitations of the Experimental System

Several problems and limitations became evident during the design and
execution of this experiment. These included software maturity, design of a
suitable telephone network, naming problems (i.e., creating a short but
mnemonically useful name for a cluster), and problems with deciding how
to represent “composite” edges in the graphs. Although none are serious
enough to compromise the experiment, they do indicate areas for improve-
ment.

The software we used in the experiment was still under development;
Simon Fraser University had created a special version to accommodate
scheduling constraints at the University of Calgary. Thus, the software had
several limitations that we expect to be repaired in future versions. One
minor distraction was the unnecessary accuracy required to operate the
system: mouse clicks had to be exact, and accidental double-clicks occasion-
ally resulted in errors. A more serious distraction to subjects concerned
how screens were redrawn after an interaction request. When subjects
clicked on any edge to change its color, or on any node to expand or contract
it, the entire screen was redrawn with the new image. Some users com-
mented on the abruptness and sense of discontinuity in the response to a
zoom request; the simultaneous jump in position and change in size of
many nodes can be disconcerting. A better approach would be to smooth the
visual changes to the displayed network through continuous animation, as
done in cone trees or the perspective wall [Mackinlay et al. 1991; Robertson
et al. 1991]. Although the usefulness of animation in these systems has not
been formally evaluated, it has intuitive appeal, and we believe this may
alleviate a user’s disorientation when zooming and unzooming nodes. We
are now incorporating animation into a new version of variable zoom called
“continuous zoom” [Bartram et al. 1994].
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A secondary problem is how to label nodes and cluster icons in the
network. We first tried a scheme that provided a single-letter descriptor for
every node/icon that indicated its position in the hierarchy. For example, a
node at level four had a four-character name plus an extension giving the
type of node. This proved too cryptic, and we then tried to use longer and
more meaningful labels. The tradeoff is that, while the longer labels were
easier to recognize and remember, they took up too much space on the
display. We finally used a compromise scheme, where longer names were
used, but with the number of characters displayed proportional to the
screen area occupied by the node. This approach has also been used by
Feiner [1988]. We do not know how good this solution really is. Although
not critical to this experiment, we expect node labeling to be important in
some application domains.

Another design issue was the distinction between selectability and “com-
positeness.” Texturing indicated that a line or node was not selectable
(Figure 5). However, this meant that both leaf nodes and “composite” lines
(those with one or both ends at nonleaf nodes) were textured. Some
confusion resulted when subjects correlated texturing not with selectabil-
ity, but with whether the object was composite or not.

All of these limitations were present in both the fisheye and full-zoom
tasks. We would not expect their disappearance in future systems to
change the results described in this article.

5.5 Impact for Practitioners

Our results have implications for interface designers of large information
systems that are structured as connected graphs. We suggest that the
designer should consider if the information can be naturally represented to
the user as a clustered hierarchy. If so, we believe that users are better
able to manage the information space when the display provides both local
detail and global context, as is done through fisheye views.

There are surprisingly many real-world situations meeting these criteria.
The particular telephone network and task used in our experiment are just
one instance of the tasks generally found in many control rooms. Operators
of real-time supervisory control and data acquisition systems often deal
with hierarchically clustered networks such as power grids (mentioned in
this article), machine plants, telephone systems, and gas pipelines. Opera-
tors must monitor the network operation. When something goes wrong with
the network operation, alarms are sounded. Operators must then quickly
isolate and repair problems; these are sometimes due to isolated failures of
network components or could result from an interrelated breakdown of
many components. Failure of these systems can affect large numbers of
people, use expensive resources, and even be life critical (e.g., a nuclear
power plant operation). The operator must be able to navigate through
these structures quickly and accurately.

Of course, the hierarchical clustering superimposed on the network
should present a good conceptual model to the user/operator. If nodes
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represent, say, machinery scattered across a country, then geography could
describe the hierarchical clusters—country, provinces, regions, districts,
and so on. Whatever the representation chosen, it should be understand-
able to the people who use it, preferably in their own language and
constructs.

Other situations where local detail and global context are important can
be found in our daily computer usage. Much of the information we store in
computers is hierarchical, such as computer file systems. Many graphical
user interfaces to our file systems permit users to view several directories
at once. However, these are often an all-or-nothing affair. Views do not
show relations between directories (e.g., when links are allowed), and all
information is shown at full size. Fisheye views could show these relations
and could give more visual emphasis to user’s current items of interest
(e.g., Egan et al. [1989] and Schaffer and Greenberg [1993]).

5.6 Critical Reflection

Our experimental results have shown that fisheye views provide a signifi-
cant advantage over conventional full-zoom views. Although the results are
dramatic, some questions still remain that could be addressed in further
studies; these would give us more certainty on how well we could generalize
our results. In this section we consider whether our results have been
compromised by the choice of subjects, choice of tasks, training time, and
the “degree” of the fisheye view.

The subjects were drawn from a pool of senior undergraduate and
graduate students, as well as faculty in an academic computer science
environment. This group had a great degree of familiarity with both
graphical interfaces and complex data structures (but not to control rooms).
These traits do not necessarily generalize to other populations. Whereas
the mapping of the task to an abstract network representation presented
little difficulty to our subjects, other groups may find the mapping some-
what unnatural or confusing. It is possible that using a fisheye view—
providing more information—may increase this confusion, especially if the
hierarchical model is unfamiliar to the user. This could be important when
fisheye views are incorporated into rarely used programs and when the
hierarchy chosen is obtuse. However, we believe this problem could be
mitigated and even eliminated if the hierarchical model matches the user’s
conceptual model of the system. As well, training time for users of fre-
quently used systems (such as control room operators) would likely famil-
iarize them with the general ideas. We have already seen that the two
experienced operators did not have any problem navigating the telephone
system network, even though the task and domain were unfamiliar to
them.

The two tasks used in the experiment, both involving maintenance of a
telephone network represented as a hierarchical graph, arguably general-
ize to other situations and domains. We did ensure that the tasks involved
navigation both from the root of the graph and from deep within the graph.
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We believe this to be a typical problem and suggest that a large class of
tasks could benefit from fisheye techniques. However (as noted by the
operators), we did not include a problem on managing controls within a
bottom node, a typical control room task. Still, we have shown that this
class of problems could be handled by the fisheye view technique at least as
well as in a full-zoom system, as long as suitable interface strategies are
incorporated to show detail at bottom levels (Sections 5.2 and 5.3). Al-
though operator reaction is positive, further testing is required.

Training time in our experiment was minimal. Although we do expect
situations where users must be able to use a system with minimal training,
there are also cases where significant training is the norm (as with the
control room operators). There is, of course, a possibility that the user
performance differences between fisheye and full-zoom views may be re-
duced (or increased!) after significant training time.

Not all fisheye systems will give the same view. In this experiment we
used the variable-zoom method, a particular style of fisheye views. How-
ever, there are many different fisheye views possible, even within the same
system, by varying the degree-of-interest [Furnas 1986] function to empha-
size or deemphasize the full-zoom or fisheye quality of the display. Here,
this was determined ahead of time by the experimenters on an arbitrary
basis. Fisheye views present a tradeoff—global context versus local detail.
Also, the balance factor mentioned in Section 2 may be varied as well.
While we believe fisheye views are superior to full zooming, it is unclear
exactly which fisheye view is appropriate for a given task. By incorporating
different degree-of-interest functions and balance factors as further vari-
ables in future experiments, an optimal tradeoff may be determined.

5.7 Research Agenda

The data gathered here provide encouraging results toward the use of
fisheye views for navigational tasks. Research, however, is far from com-
plete. For example, how large can the network be before information
overload becomes a problem, even using fisheye views? Will increased
clutter undermine the benefits fisheye views provide? Is there an optimum
number of hierarchical levels for a given network size and structure?

A few subjects expressed a preference for the simplicity of full-zoom
views, because the amount of information presented on-screen was always
small. At the other extreme, the entire fisheye view network could be
viewed on-screen simultaneously (i.e., all clusters are expanded). The 154
nodes and 39 clusters in the simulated telephone network are near the
limit of what could effectively be presented at once! Consider a cluster that
has been expanded. Of the nodes and icons now visible, only a few may be
truly useful to the task at hand. Perhaps information filtering, an exten-
sion of Furnas’ [1986] degree-of-interest function, might make fisheye
views more effective by pruning the “less-useful” information from the
display. Indeed, filtering is used heavily by many of the fisheye systems
summarized in Table I.
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We have already mentioned that the fisheye view may require alternate
interface strategies to show detail at bottom levels. An interesting experi-
ment would contrast techniques such as dynamic balance factors, pop-up
windows, pop-up controls, alternate screens, and so on.

Multiple foci (independently zoomed nodes) were allowed by the software
in this experiment, though their use was not examined. The potential
benefits and/or problems of multiple foci are unclear and need to be
examined.

In terms of the tasks being tested, improvements to the system might
include an unobtrusive “spontaneous-interest” indicator. The motivation
for this comes from human visual perception, where motion, even far from
the focal point, is a key determiner of interest. A gentle but persistent
motion (e.g., vibration) might be used to indicate a problem that may
otherwise be hidden in a reduced path or node. Motion would tend to stand
out well in an otherwise static display and would highlight trouble spots
needing attention. Motion might better attract an operator’s attention
than, say, a color change.

Finally, network diagrams currently used by the operators (as well as
most circuit and wiring diagrams) follow a Manhattan geometry, as men-
tioned in Section 5.3. We feel it may therefore be desirable to follow this
convention for showing leaf node schematics in the variable-zoom algo-
rithm, and we are currently attempting to develop such a method.

6. CONCLUSIONS

We described the variable-zoom algorithm for generating fisheye views of
hierarchically clustered networks. We then outlined our experiment, con-
trasting fisheye views with traditional full-zoom views. Results suggest
that the greater context provided by fisheye views significantly improves a
user’s performance of the tasks. Using the fisheye view, subjects are able to
concentrate directly on the task itself, resulting in quicker navigation and
less unnecessary exploration. Although real control room operators were
concerned about seeing and manipulating detailed schematics in the
smaller leaf nodes displayed by fisheye views, we have described several
ways this can be ameliorated. We suggest that fisheye viewing interfaces
should be favored over traditional viewing approaches for displaying large
information spaces. Further work remains to determine how the significant
advantages of fisheye views reported here will generalize across different
levels of task complexity and to other data structures.
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