
TurboTurtle: A Collaborative Microworld for
Exploring Newtonian Physics

Andy Cockburn1 and Saul Greenberg2.

1 Department of Computer Science, University of Canterbury, Christchurch, New Zealand.
2 Department of Computer Science, University of Calgary, Calgary, Canada

Abstract
This paper describes TurboTurtle, a dynamic multi-user
microworld for the exploration of Newtonian physics.
With TurboTurtle, students can alter the attributes of
the simulation environment, such as gravity, friction,
and presence or absence of walls. They can also
manipulate the “turtle” (a movable ball) directly.
Students can adjust its position, velocity and mass;
change its kinetic and potential energy; and apply a
force to it by strapping a rocket to its back. Through
TurboTurtle’s “group-awareness,” several students, each
on their own computer, can simultaneous control the
microworld and gesture around the shared display.

This paper focuses on the rationale behind the
major “group-awareness” design decisions made during
our development of TurboTurtle.

Keywords — microworlds, groupware design, user
interface design.

1. Introduction
Microworlds, or computer simulations of restricted
environments, are an intuitively appealing way to
promote discovery and exploratory learning [4]. One
type of microworld, and the subject of this paper,
simulates an adjustable Newtonian universe. In it,
students can experiment with concepts such as gravity,
friction, force, velocity, and so on, and see how changes
in their value affect the objects moving within the
simulation.

Microworlds—Newtonian or otherwise—are not
new. They were first conceptualized by Papert in his
1980 book “Mindstorms,” but in that era they were
implemented as crude systems that required cryptic and
error-prone command line interfaces e.g., Logo. In the
80’s and early 90’s microworld simulations became
dynamic environments that students could alter on the
fly, allowing direct manipulation of microworld
objects. Smith’s Alternative Reality Kit is one such
example [5]. In this paper, we claim that another
evolutionary step is about to take place: microworlds
will become group-aware, actively allowing several
students to view and manipulate the simulation.

We are investigating the application of
collaboration-aware groupware technology and methods
to build microworlds that re-enforce discussion by
students around the learning tool. In TurboTurtle, each
student has their own computer screen and input
devices. They share the view of the simulation, have
telepointers to promote deictic references and gesturing,
and can simultaneously manipulate the microworld.
Since students do not have to be co-located, we assume
that they can talk to each other over an audio channel
such as a speaker-telephone.

This paper presents the user interface of
TurboTurtle, and discusses the design rationale that
governed the development of TurboTurtle’s group-aware
features.

2. TurboTurtle’s User Interface
To provide the context for our later discussion of
TurboTurtle’s collaboration-aware facilities, this section
presents the single-user interface to TurboTurtle.

We wanted to provide a seamless interface that
allowed all the student’s cognitive effort to be directed
at the contents of the microworld. Beyond the “see and
point” premise of modern graphical user interfaces [3],
we wanted TurboTurtle to make extensive use of sound,
colour, and animation to capture the interest of young
users.

What do students using TurboTurtle see and do?
Figure 1 is a snapshot of a student’s session. The
lower half displays the simulation with the turtle being
the ball at its centre. The turtle’s location can be
changed directly by dragging it with the mouse, and its
direction and velocity altered by “throwing” it. The top
of the figure shows a control panel, where tangible
properties are set through constantly visible graphical
sliders. These include the controls to change the
turtle’s size, mass, speed, the degree of friction and
gravity, and so on. Students use the pull-down menus
to access advanced features of TurboTurtle.

Within the simulation, the turtle’s trail, a line of
ink that follows the turtle’s movement, can be switched
on or off. The walls in the microworld can be changed
as well. The turtle bounces off “hard” walls and passes
through “transparent” ones (which causes it to wrap-
around the display). When only the ground is hard, the
relative location of the ground to the turtle is
remembered as it wraps through successive screens.
Students can also display a mountain scenery backdrop,
which provides additional visual cues to the altitude of
the turtle. As the turtle gains altitude the backdrop
changes to show smaller mountains, a row of
aeroplanes, and then satellites. Of course, the trails and
the mountain backdrop can be cleared at any point.

Figure 1 shows the turtle’s trail after a series of
user-driven changes to the microworld1. Starting in the
middle of the screen, the turtle moved down and to the
right with no mass or gravity. After seeing and hearing
it bounce off the walls four times, the student added
mass and positive gravity, causing the turtle to bounce
under gravity (the sin curve). She then changed gravity
to a small negative value, causing the turtle to bounce
off the roof of the microworld. Finally, she added
friction, causing the turtle to eventually slow to a stop.

1Naturally, the figure fails to show the turtle's movement, the
dynamically changing slider values, the colour, and the audio output that
are fundamental to the student’s sense of fun.

Saul
Cockburn, A. and Greenberg, S. (1995). TurboTurtle: A Collaborative Microworld for Exploring Newtonian Physics, Proc1st CSCL Conference on Computer Supported Collaborative Learning, pp. 62-66, Bloomington, Indiana, October 17-20, LEA Press.

Figure 1: The main window to TurboTurtle.

The microworld clock (set by the time button) lets
the student freeze the microworld. This allows specific
values to be set prior to running a new experiment.
Time can run smoothly, giving a continuous real-time
simulation, or discretely which allows students to
scrutinise the change in variable values at critical
instants. For example, the student could investigate
changes in potential and kinetic energy by discretely
stepping through the turtle’s motion as it hits the floor
and as it reaches the apex of its motion under gravity.

TurboTurtle is intended for students ranging from
7–17 years in age, and for peer groups where individuals
have different knowledge and talents. TurboTurtle
supports this wide range of abilities through two sets of
controls: concrete and abstract. Concrete controls,
which are continuously visible, present concepts that
are familiar and frequently accessed by the youngest
students (as shown in Figure 1). Abstract controls for
more sophisticated manipulations are revealed on
demand by mature users. For example, TurboTurtle
lets advanced users view and manipulate values in
Kinematic equations, which are selected as menu
options in the “Laws” pulldown menu (figure 2).
Choosing the first “Energy” equation creates a window
into the microworld that dynamically displays the
turtle’s potential and kinetic energy. The second
“Rocket” equation creates a control panel that allows
students to attach rockets of varying force and fuel-time
to the turtle, which lets them examine the inter-relation
between force, acceleration, mass, gravity and friction.
Other kinematic equation options provide dynamic
simulations of the behaviour of a user-specified set of
formula values: essentially they provide an animated
calculator.

Recoverability in TurboTurtle allows users to
experiment with features, safe in the knowledge that
they can get back to their starting state. Exploring a
dynamic microworld is risky because it can change
rapidly. In TurboTurtle, for instance, a student may
arrange a group of slider values to simulate a rocket

working against a certain friction, gravity, and mass.
When the rocket is launched, the simulation runs and
slider values will change to reflect the dynamically
changing environment. In early trials of the system, we
noted that students frequently forgot or mistook one or
more slider values. When they ran the simulations, they
were often immediately aware of their error, and found it
annoying to have to reset the values that the system had
changed. Similarly, students may be reluctant to change
system parameters away from an interesting state for
fear of corrupting them. TurboTurtle lets students
recover from their ventures by allowing them to save
and reload named states of the microworld. Of course,
this is an explicit action that students must take, and
they will likely do this for only highly interesting
states. Allowing time to run backwards is also a type of
undo, and is a high priority in our further work.

3. The Communal Microworld
TurboTurtle’s group-awareness allows small groups of
students (diads or triads) to simultaneously manipulate
and talk about the simulation. This section is
primarily concerned with the design decisions that
governed the development of TurboTurtle’s multi-user
features. It begins with an overview of the system’s
group-awareness, and continues with the design
decisions made2.

In static images, such as the screen snapshot in
this paper, collaborative use of TurboTurtle appears to
be almost identical to single user usage. Group
awareness, however, makes its style of use significantly
different. In the description below we focus on these
differences by assuming that two or three distance-
separated students, each with their own computer, are
looking at the screen and are talking to each other by a
speaker-phone.

2TurboTurtle’s collaborative features are supported by GroupKit, a

toolkit for groupware.

Figure 2: Selecting and using “formal” experiments in
TurboTurtle. The ‘Laws’ menu, and ‘Rocket’
configuration options.

Each student sees exactly the same running
simulation on their display. The turtles are in the same
position and move at the same speed, the trails are in
the same place, and the background scenery is identical.
Similarly, the controls are mostly identical. They are
in the same window location and have the same setting.
However, students can decide to change their view of
some of the controls. For instance, one could be
examining turtle speed by its x-y components, and the
other by speed and direction (Turtle meets Pythagoras!)
Similarly, one could display independently some of the
advanced control panels, such as the Energy panel.

All students can work simultaneously doing
anything they want at any time. For example, one
student might move the turtle, while another adjusts its
speed, and another alters the world’s gravity. As in real
life, they could even try to adjust the same control,
which would cause it to “bounce” back and forth as they
fight over its position! As any control is being
adjusted, the new position is immediately reflected on
all displays.

Students can see the other person’s location on the
screen by a telepointer, shown as the multiple cursors
in Figure 1 (the dots by the ball). Not only is a
student’s own cursor continuously drawn and updated
on the display, but so are the cursor’s of their partners.
A special menu option called “collaborators,” presents a
dynamic list of all the students in the learning session
(Figure 1, top right). Pressing a student’s name will
raise an information window describing that student.

3.1 Design decisions
In spite of the conceptual simplicity of collaborative
interface, many groupware design decisions had to be
made. These included how students viewed the
simulation, how they would control it, and how they
could share their deictic references.
Viewing the s imula t ion . What does it mean to
have several students view the simulation? We
considered four alternative approaches to view sharing.

1. Strict WYSIWIS views3. Every student would
view exactly the same thing on their display: the
ball as it was bouncing, the changes in
background scenery; the ball’s location in the
scene; the tracing of ball movements; and so on.

2. Relaxed WYSIWIS views. While the state of the

3What-you-see-is-what-I-see, or WYSIWIS was coined by Stefik et

al., (1987) in a discussion about a shared whiteboard system.

simulation would be the same, every student
could have different viewports on it. That is, one
student could be looking at (say) a zoomed out
view, while the other could be zoomed in on a
particular scene.

3. Unconnected views, same simulation parameters.
The parameters of the simulation would be the
same across all systems, but the effects of the
parameters on the ball would be local. This could
simply be a matter of each student’s computer
moving the ball at its own speed, but since
performance of the computers would differ
slightly, so would the position of the ball.
Alternatively, a student could create a smaller
simulation room by shrinking the window, which
means that the ball would be bouncing off the
walls at different places and frequencies. In either
case, the ball position in the simulation would
differ across the views.

4. Unconnected views, different simulation
parameters. The parameters of each student’s
simulation would differ, thus affecting not only
the position of the ball on a local display, but its
overall behaviour as well.

We wanted the view to act as a conversational prop
providing a focus for the students discussion [2]. We
thought the strict WYSIWIS view would be the best
choice to encourage this. The display becomes a shared
cognitive artifact, and speech references would remain
within the context of the shared image. Strict-
WYSIWIS would allow students to pose questions and
comments to each other such as “why did the ball
bounce that way?” or “the ball just moved into outer
space” or “look at the shape of the trace.”

In contrast, views 2 through 4 would cause
progressively greater breakdown in the discussion,
probably resulting in greater confusion and ultimately
less interaction between students (a similar observation
was made by Tatar et al., [8]). Relaxed WYSIWIS
causes people to ask “can you see this” or respond
“which one?” Students using the unconnected view
with the same parameters would have to explain what
their ball is doing on their display. With different
parameters, they would also have to explain the
settings.

Although the relaxed and unconnected approach
does give the student the ability to customise their
view, the strict WYSIWIS view seems preferable as it
reinforces the microworld’s role as a conversational
prop.
Controlling the s imula t ion . The simulation is
directed by manipulating the controls on the control
panel: sliders, buttons, menu selections; and by directly
moving the ball position in the view. Given a strict
WYSIWIS view and identical simulation parameters
across the system, there remain several options for
presenting the controls and for having students interact
with them.

First, how do students view the controls? Controls
could be identical on all displays (strict WYSIWIS), or
different students may see different controls in their
view (relaxed WYSIWIS). The choice is not as clear
here. In a complex simulation system such as
TurboTurtle, the number of controls, including the
pull-down menus and the pop-up panels, are huge and
can clutter the display quickly. It seems reasonable to
have a strict WYSIWIS view of the primary controls,

while having a relaxed WYSIWIS view of advanced
controls.

Second, how do students see the setting of a
changed control? In a “parcel post” model [8], the
changed value of the control would be delayed until the
student had completed their action. For example, if one
student adjusted the gravity slider from 0 to 20, the
other student would only see the slider jump instantly
to 20. In contrast, the “interactive” model causes the
control’s state to be transmitted as it is being
manipulated. Sliders move, buttons get pressed,
pulldowns selected. Clearly, the interactive model is
preferable, as students will be able to see the changes as
they are made, and are less likely to miss the actions of
the others.

Finally, who has permission to use what controls?
Several choices are possible. Students could be
assigned to a mutually exclusive subset of controls. A
turn-taking model could be enforced, where only one
student at a time can manipulate the controls. Or
students may be allowed simultaneous access to all
controls, constrained perhaps by some mechanism to
minimise confusion if two people try to manipulate the
exact same control. We have opted for simultaneous
access because we believe it will encourage each student
to explore and control the simulation. Anyone is
allowed to do anything at any time. The key to making
this work is to provide rich dynamic feedback between
students that leaves them constantly aware of each
other’s actions, and encourages them to talk.

In summary, students have mostly the same image
of the core controls, with advanced controls being
optional to avoid screen clutter. Anyone can
manipulate any control at any time, and all user’s
manipulations are constantly visible.
Deictic references allow people to point to things
and refer to them using words such as “there,” “this
one,” and “that” [8]. A strict WYSIWIS view by itself
does not provide enough information to let students
understand each other’s deictic references, for they
cannot tell what part of the screen they are attending.
Breakdown of deixis has been a common failing of
groupware [8].

The easiest way to support deictic reference is
through telepointers [1,7], which are cursors, one for
each student, that are continuously visible on all
displays (as in Figure 1). Telepointers are useful in
microworlds for deictic and other types of references.
First, they act as a locus of attention; one student can
assume that the other is directing their gaze at their
cursor. Second, they become an artifact that they can
talk around e.g., the phrase “look at this” is tied to the
spot on the screen that the person is pointing to.
Third, their animation becomes a gesture. For
example, a student circling an area of the screen tells
others to attend to all of the items in that area. Finally,
they provide a cue of someone’s intent. If the
telepointer is moving towards a slider, then one expects
that the next action could be to change the setting of
the slider. This helps mediate who is doing what on
the display.

Telepointers were included in all parts of
TurboTurtle. People can gesture around the shared view,
focus attention to settings on the control panels, and
implicitly indicate both their intent and their action
when manipulating a control.

4. Summary
There are many directions for further work in
TurboTurtle. With respect to refinements of the
microworld, the world’s our oyster: there is no obvious
end to the types of domain that can be covered by a
group-aware simulation. There is, of course, much to
be done investigating the nuances of adding
collaboration to CSCL. To date, our design of
TurboTurtle has been primarily motivated by technical
interests. Although we have run ad-hoc usability
studies that detect the “large grain” usability flaws, we
have yet to take TurboTurtle to the battlefield. We are
very aware of the disparity between a designer’s
expectations of use and the end-users’ behaviour.
Extensive observation of TurboTurtle in use is required.

Acknowledgments
The collaboration between the two authors was made
possible by the University of Canterbury’s Erskine
Fellowship.

Availability
TurboTurtle is available directly from the first author of
this paper.

References
1. Greenberg, S, Roseman, M, Webster, D, &

Bohnet, R. 1992. Issues and Experiences
Designing and Implementing Two Group
Drawing Tools. Pages 139--150 of:
Proceedings of the 25th Annual Hawaii
International Conference on the System Sciences,
Hawaii, January, vol. 4.

2. Hill, RD, Brinck, T, Patterson, JF, Rohall, SL,
& Wilner, WT. 1993. The Rendezvous
Language and Architecture. Communications of
the ACM, 36(1), 62–67.

3. Shneiderman, B. 1987. Direct Manipulation : A
Step Beyond Programming Languages (excerpt).
Pages 461–467 of: Baecker, RM, & Buxton,
WAS (eds), Readings in Human-Computer
Interaction: A Multidisciplinary Approach.
Morgan Kaufmann.

4. Smith, DC, Cypher, A, & Spohrer, J. 1994.
KIDSIM: Programming Agents Without a
Programming Language. Communications of
the ACM, 37(7), 55–67.

5. Smith, RB. 1987. Experiences with the
Alternate Reality Kit: An Example of the
Tension between Literalism and Magic. Pages
61--67 of: Proceedings of ACM CHI+GI’87
Conference on Human Factors in Computing
Systems and Graphics Interface.

6. Stefik, M, Bobrow, DG, Foster, G, Lanning, S,
& Tatar, D. 1987. WYSIWIS Revised: Early
Experiences with Multiuser Interfaces. ACM
Transactions on Office Information Systems,
5(2), 147–167.

7. Tang, JC. 1991. Findings from Observational
Studies of Collaborative Work. International
Journal of Man-Machine Studies, 34, 143–160.

8. Tatar, DG, Foster, G, & Bobrow, DG. 1991.
Designing for Conversation: Lessons from
Cognoter. International Journal of Man-Machine
Studies, 34(2), 185–209.

