
Mega-widgets in Tcl/Tk:
Evaluation and Analysis

Shannon Jaeger

Department of Computer Science
University of Calgary

Calgary, Alberta, Canada T2N 1N4
jaeger@cpsc.ucalgary.ca

This paper presents a framework for evaluating Tk mega-widget extensions. This framework addresses how these
extensions perform, both from the application builder’s view of created widgets as well as from the viewpoint of the
mega-widget builder. Issues addressed include support for building Tk-like widgets, access to component widgets,
and reuse of previous widget implementations. Several existing mega-widget extensions are then evaluated using the
framework.

1 Introduction

McLennan defined a mega-widget as “a collection of
primitive widgets [packaged] together as a new widget”
[3]. Because mega-widgets are presented as single wid-
gets, they are far easier for Tk developers to use than hav-
ing to program many individual components. For exam-
ple, Figure 1 shows a viewport mega-widget, created
using the Wigwam mega-widget extension. It consists of
three component widgets: a horizontal scrollbar, a verti-
cal scrollbar and a viewing widget (any scrollable widget
containing text or graphics). This widget provides a great
deal of programming flexibility since the scrollbars may
or may not be shown, and their placement (top, bot-
tom, left or right) can be altered. The figure shows one
particular configuration, where the viewing widget is a
listbox with a grocery list and the scrollbars are placed
on the left and the bottom. Other common examples of
mega-widgets are combo boxes and file browsers.

Tk has no direct support for building mega-widgets. As
a result, a variety of people have developed extensions
for mega-widget construction. These extensions vary
greatly in the features they provide, as well as the ways
they allow mega-widgets to be constructed. Are all of
these features really needed? Are some features miss-
ing? Is the programming approach appropriate for the
widget creator? Clearly, it is time to consider what devel-
opers really require when constructing and using mega-
widgets.

This paper presents a framework that considers the needs

Figure 1: The Viewport Mega-widget

of developers, which can be used to evaluate existing
and future mega-widget systems. The framework con-
siders the different features a constructed mega-widget
should support, and the ways in which the programming
paradigm should ease a developer’s chores. For example,
like any widget, a mega-widget will need to worry about
handling configuration options such as -foreground.
A mega-widget, however, also needs to worry about how
to propagate this option down to its component widgets.
Thus, any mega-widget extension must at the very least
permit the widget builder to define how such an option
propagates.

The evaluation framework is then used to compare sev-

Saul
Cite as:
 Jaeger, S. (1995). Mega-widgets in Tcl/Tk: Evaluation and Analysis. Proceedings of the 1995 Tcl/Tk Workshop, Toronto,
 July 6-8, Usenix Press.

eral of the existing mega-widget extensions, as well as
more general object-oriented extensions which make
some claim to supporting mega-widget development.
Whenever possible, the evaluation is based on our ac-
tual experience with the extension, although we have
also relied on examination of the source code, examples
and written documentation.

The evaluation highlights the variety of options available
in current mega-widget extensions and common method-
ologies, as well as areas that remain poorly supported.
This information will be useful as the Tcl community
begins to converge on a “standard” mega-widget model,
as it not only addresses features of mega-widgets, but
identifies deficiencies in the Tk core.

2 Evaluation Framework

This section describes the evaluation framework, which
contains two parts: the application builder’s view and
the widget builder’s view.

The application builder is the person programming a
Tcl/Tk application that contains mega-widgets. They
view mega-widgets indirectly; their concern is whether
or not a mega-widget behaves “properly.” In contrast,
the widget builder is the person developing the mega-
widgets. The widget builder is directly concerned with
the facilities provided by the mega-widget extensions to
make building mega-widgets a reasonable chore. These
different perspectives are depicted in Figure 2.

Widget Builder View
Component
Widgets

Encompassing
Frame

Application Builder View

Figure 2: The different views of the Mega-widget

This section begins by reviewing the application

builder’sview of the essential components in Tk widgets,
as well as what mega-widgets should offer. It continues
by raising concerns from a widget developer’s point of
view, including issues such as reuse and namespace con-
flicts.

2.1 Application Builder View

Mega-widgets should behave like standard Tk widgets.
This is desirable to maintain consistency and decrease
learning time for the application builder. To make this
possible, the mega-widget extension should support the
ability to easily create widgets that look and feel “cor-
rect” to their users. A secondary consideration for the
application builder is the ability — under rare circum-
stances — to “get inside” the mega-widget to access
individual components.

2.1.1 Standard Tk Widget Behaviour

Tk widgets are a set of ready-made controls with a Motif
look and feel [5] . Some examples include the button,
listbox, text, scrollbar and menu widgets. Application
builders access these widgets through a set of proper-
ties, described below from a functional point of view.
They include the widget creation command, configura-
tion options, the widget command and usage by other Tk
commands.

Widget Creation Command. The widget creation
command defines new widgets of a given type or wid-
get class. It also creates the widget command and ap-
plies the initial set of configuration options. For exam-
ple, button .b -foreground red uses the wid-
get creation command button which will create the
widget, the command.b, and set the button’s foreground
colour to red.

Widget Command. This command has the same name
as the widget’s path name, and is created by the widget
creation command. It is the main communication link
between the Tcl/Tk script and the widget itself. Config-
urable options and subcommands are changed and exe-
cuted, respectively, via the widget command procedure.
The behaviour of the widget command is dictated by the
type of widget.

Configuration Options. All widgets of the same class
support the same configurable options. They typically

are used to view or change parts of the widget’s state
information, such as the foreground colour, width, and
border type. Another common use for the configurable
options is to establish event handlers. Two examples
are the listbox yview option and the button command
option.

Widget Subcommands. Widgets may have several
subcommands that invoke operations on the widget. For
example, all button widgets can process a flash sub-
command which makes the button flash. Another exam-
ple is the configure subcommand which is responsi-
ble for listing and changing the configurable options for
each Tk widget.

Bindings. Many widgets have default reactions to spe-
cific input events. Application builders can change a
widget’s behaviour by specifying event bindings with
the bind command. An example of a default binding
occurs when mouse button 1 is pressed and later released
over a button widget, causing a command (the value of
the command option) to be invoked.

Usage with Other Tk Commands. Several Tk com-
mands take widgets as their arguments; they should be-
have “correctly”, yielding similar results when standard
Tk widgets and mega-widgets are used with the com-
mand. These commands include bind, destroy,
focus, grab, lower, pack, place, raise and
winfo.

2.1.2 Mega-Widget Components

Ideally, a good mega-widget will directly supply all the
functionality and flexibility needed by its users. We
realize this is difficult, and that occasionally users will
have needs not met directly by the mega-widget. In these
cases it would be useful to allow the application builders
to “get inside” the mega-widget, and perform operations
(invoke commands, change bindings, etc.) directly on a
mega-widget’s components.

Thus, we believe it would be useful for a mega-widget to
provide access to its components, albeit in a controlled
way. Ideally a mechanism (e.g. a component sub-
command) would be provided which takes an “abstract”
name and returns the corresponding window path name.
For example, a file browser may map the abstract name
filelist to the path name of a listbox containing

the files in the current directory. Using abstract names
serves to hide implementation details that are likely to
change, while partially exposing relatively static parts of
the implementation.

Exposing components in this way is a necessary tradeoff
between reuse and the application builder’s frustration
at not being able to make small but necessary changes
in exceptional circumstances. However, a mega-widget
whose users are forced to rely frequently on this facility
shows evidence of poor design.

2.2 Widget Builder View

The widget builder is responsible for constructing a
mega-widget, requiring a view of the extension that is
different from that of the user of a mega-widget. Of
course, the widget builder needs to consider how well the
mega-widget extension supports the application builder’s
view. Additional concerns are how widgets can be re-
used, namespace conflicts, creation of top-level widgets
and how the extension is actually installed. These issues
are discussed below.

2.2.1 Supporting the Application Builder View

The most important offering of a mega-widget devel-
opment environment is how well it helps the developer
construct a widget that supports the application builder’s
view. To truly support mega-widgets, we feel it is essen-
tial to supply all of the standard Tk properties: widget
creation command, widget command, options, and sub-
commands. It would be ideal for the widget builder if
many of these were created automatically by the exten-
sion and if some of the basics were defined, such as
parsing of configuration options. An extension taking
care of such “housekeeping chores” can make the job of
the widget builder considerably easier.

Widget Creation Command. As described earlier,
this command is responsible for creating the widget, cre-
ating the widget command, and parsing initial configura-
tion options. We believe that the mega-widget extension
should automatically create this command. This requires
defining a procedure (whose name is the same as the wid-
get type) that processes configuration options, creates the
widget command, and creates the encompassing window
which will contain the mega-widget’s components. The

widget builder then creates and places the individual
components and performs any other initializations.

� Encompassing Window. The encompassing window
is the widget that all of the component widgets are placed
in. This window should be automatically created and the
widget builder should be able to specify what type of
widget it is. However, the class of the window must be
defined properly; its class must be the “mega-widget”
class being created, not the type of the window.

Widget Command. This command is responsible for
parsing and evaluating widget subcommands. An ex-
tension could aid the mega-widget builder by automati-
cally creating such a procedure with some well-defined
handling of subcommands and configuration options, al-
though the widget builder should be able to override it if
necessary.

� Automatically Creating the Widget Command. The
widget builder needs to create the widget command for
each and every widget, making it a prime candidate for
automation. The command should have the same name
as the path name of the mega-widget it is being created
for. For example, if the request is to make a combo box
widget with the path name .combo1 then the proce-
dure’s name is .combo1. It should also provide some
high-level mechanism for handling subcommands and
options.

Subcommands. Subcommands are operations that can
be applied to a particular widget or mega-widget. Some
examples are the canvas’s create command and the
button’sactivate and deactivate commands. All
widgets of the same type have the same subcommands.

� Defining New Subcommands. An important prop-
erty is the ability to redefine new subcommands for a
widget. Ideally, defining the subcommand name and its
behaviour should be no more difficult than defining an
ordinary Tcl proc.

� Automatically Parsing Subcommands. When a wid-
get command is invoked, the correct subcommand must
be applied. This is achieved by parsing the arguments
to determine what subcommand, if any, is actually be-
ing requested. For example, .listbox insert 0

fHello Worldg inserts the text “Hello World” into a
listbox. Here the arguments are insert 0 fHello

Worldg and the subcommand is insert. Since this
parsing is required for every mega-widget, automatic
parsing of subcommands is an ideal candidate for au-
tomation by the extension.

� Fallback Behaviour. This is some sort of well-defined
behaviour that the widget command implements if noth-
ing is specified by the widget builder. For example,
mega-widgets created by an extension may, by default,
implement the same standard Tk configuration options
and subcommands as the frame widget. The fallback
behaviour should also control some of the error detec-
tion and notification. One such possible error is using an
invalid subcommand with a particular widget.

Configuration Options. Configuration options are
part of the widget’s state information, such as the fore-
ground colour, width, and border width. Each widget
of a particular type has the same options, but widgets of
different types may have different options. We’ve found
that dealing with configuration options correctly can be
very time consuming for widget builders.

� Defining New Configurable Options. The widget
builder should be able to define new configurable op-
tions for a particular mega-widget. This allows mega-
widgets to be extended by increasing the state informa-
tion, thus adding more functionality. The viewport wid-
get described earlier has an additional option, scroll,
which defines where the scrollbars are to be placed. An-
other example would be areverseoption which would
reverse the foreground and background colours.

� Defining Option Handlers. This is necessary if new
configurable options are allowed. It allows specified
handlers for a given option(s). One approach is to allow
the widget builder to define a configuration routine that
handles all of the options. This technique is useful when
a number of options are to be treated in a similar manner.
The second method is to define a separate handler for
each option. This is also useful,especially when there are
only a few options that require “exceptional” handling.
Ideally some combination of both methods should be
available.

� Automatically Parsing Options. As with subcom-
mands, an extension may eliminate much “housekeep-
ing work” for the mega-widget builder by automatically

parsing configuration options. Ideally, configuration op-
tions could be “registered” with the mega-widget exten-
sion along with code to invoke when the option changes,
and the extension would take care of the rest.

� Propagation of Option Changes. A common oper-
ation on mega-widgets is to propagate option changes
down to the component widgets. An extension can help
by allowing a widget builder to specify how changes
propagate. For instance, if the background colour is
changed for the mega-widget, the builder could specify
what component widgets will change their background
colour. There are three useful ways that a mega-widget
extension can support this:

1. Manual propagation is the simplest approach, re-
quiring the widget builder to deal with the prop-
agation. The option handler manually applies the
option to component widgets.

2. Automatic propagation is a more sophisticated ap-
proach, allowing the widget builder to specify a
list of component widgets an option applies to.
Alternatively, a list of options can be specified for
each component widget. Then, when a configura-
tionoption is changed, the extension automatically
propagates the change to the appropriate compo-
nent widgets.

3. Renaming options when propagating is the abil-
ity to map one option to another during propaga-
tion, offering fine-grained control. For example,
this allows a filebrowser mega-widget to specify a
-listbg option that is automatically propagated
to its listbox component as a -bg option.

2.2.2 Reuse

Being able to reuse previously defined widgets promises
the benefits of easier debugging, reduced programming
time, and more easily maintained programs. Reuse
means being able to specify a new mega-widget in terms
of existing widgets or mega-widgets.

By definition, mega-widgets support one form of reuse:
composition. That is, mega-widgets are created by com-
posing (reusing) other widgets. This is different from
the type of reuse where a mega-widget is created by
changing or extending an existing widget.

Reuse in the composition sense is usually specified as
an extension of the object-oriented metaphor that defines
Tk commands. Mega-widget types are analogous to ob-
ject classes, and changing or extending a widget without
composing it into another widget is analogous to creat-
ing a subclass of the original widget that inherits all the
original’s behaviours.

Although a recent discussion on comp.lang.tcl

about the merits of object-oriented inheritance for build-
ing mega-widgets reminds us that the debate is far from
resolved, we use the terminology of inheritance here.

Reuse of Existing Tk Widgets. One consideration is
the type of widgets that can be reused. One set of widgets
that would be useful to reuse are the core Tk widgets.
An extension will be more valuable if it allows reuse of
these widgets, and not just mega-widgets created with
the extension.

Inheriting Subcommands. The ability to inherit sub-
commands saves the widget builder from redefining
them. However, the builder should be able to redefine
subcommands as well as access the original ones. For
instance, the builder may want to display a message on
the screen when a particular subcommand is invoked —
this would require redefining the subcommand to first
display the message and then invoke the original.

Inheriting Configuration Options. The ability to in-
herit options saves the builder from redefining these op-
tions over and over again. As with subcommands, the
builder should be free to redefine, yet have access to the
original options and their handlers.

Reuse With Any Encompassing Widget. Several of
the extensions automatically create an encompassing
frame for the mega-widget. This does not lend itself
well to reuse in the form of extending or changing an
existing widget; it encourages the placement of a base-
level widget within a number of frame widgets due to
multiple redefinitions and/or extensions to a base-level
widget. The encompassing widget should be allowed to
be any valid widget type, since this allows changes to the
base-level widget rather than composing it.

2.2.3 Miscellaneous

Other considerations are the creation of top-level wid-
gets, how the extension deals with the namespace prob-

lem, automatic option database handling, and if the ex-
tension is installed in a standard manner.

Top-Level Widget Support. It is definitely useful to
allow the creation of top-level mega-widgets, rather than
creating a “normal” widget and then composing it inside
of a top-level window. This allows a mega-widget to
be a top-level, separate window, rather than something
inside of a top-level widget. This is an important feature
that shouldn’t be overlooked by extensions.

Namespace Support. Mega-widgets contain internal
state, both in terms of configuration options as well as
code written to support the mega-widget. Extensions can
help reduce the conflicts between names used for inter-
nal state information and the global information space
via some sort of namespace mechanism to provide ap-
propriate scoping [2].

Automatic Database Handling. This is an important
feature since it allows a quick method of changing default
values for a particular widget type. For example, op-
tion add Viewport*bg red should set the back-
ground colour of all viewport widgets to red. This is sim-
ilar to, but not the same as, reuse of widgets by changing
base-widgets.

“Standard” Installation. Mega-widget extensions
(like other Tcl extensions) should be installable in a stan-
dard way (e.g. using GNU autoconf), and not require
complex installation, modifications to core facilities, or
make assumptions on where the installation will be.

3 Extension Evaluation

The above criteria were used to evaluate six Tcl/Tk ex-
tensions. The results from the evaluation highlight their
successes and failures. In order to aid in this assessment
a brief description of the extensions is given, followed
by tables that rate the various mega-widget extensions.

3.1 Extension Description

The six extensions evaluated are [incr Tcl], Wigwam,
[incr Tk], Tix, TkMegaWidget, and theObjects. Table 1
provides detailed information on these extensions includ-
ing the version examined, the implementation language,
the designer(s) and the basis for evaluation. The Y/N

Version Language Paper Tested Code

[incr Tcl] 1.5 C Y Y Y
M. McLennan

Wigwam 1.5b [incr Tcl] N Y Y
J. Wight
L. Marshall

[incr Tk] ? ? Y N N
M. McLennan

Tix 3.6d Tcl/Tk N Y Y
I. K. Lam

TkMegaWidget 3.6 C Y Y Y
S. Delmas

theObjects 3.1 C N N Y
J. Wagner

Table 1: Summary of Extension Languages

values in the Paper, Tested, and Code fields indicate if a
paper was read, if widgets were designed in it, and if the
code was examined, respectively.

The focus of some of the extensions is not the support
of mega-widgets. For instance, [incr Tcl] is intended
as a general-purpose object-oriented extension of Tcl.
Wigwam extends [incr Tcl] by adding a set of inherita-
ble classes for the standard Tk widgets. [incr Tk] also
extends [incr Tcl], by adding support for building mega-
widgets. Tix is designed more from a procedural point
of view, and its main purpose is to provide complex wid-
gets. Tix is also the only extension written entirely in
Tcl/Tk. The latest version of Tix, which was not ex-
amined here, has eliminated some of its shortcomings
and is now written in C. TkMegaWidget is designed to
make building mega-widgets easier and allows modify-
ing subcommands and options on a per-widget basis [1].
theObjects is a prototype-based object extension, which
has been used to create a number of mega-widgets.

3.2 Evaluation Summary

The evaluation summary is presented in two tables: Table
2 details the application builder’s view and Table 3, the
widget builder’s view.

Application Builder View [incr Tcl] Wigwam [incr Tk] Tix TkMegaWidget theObjects

Standard Tk widget behaviour
Widget creation command S S S S S S
Widget command S S S S S S
Configuration options S S S S S S
Widget subcommands S S S S S S
Bindings P P P P P P
Usage with other Tk commands P P P P P P

Mega-widget behaviour
Access to component widgets S S S S P P

S supports
D doesn’t support
P possibly supports

Table 2: Application Builder View

Widget Builder View [incr Tcl] Wigwam [incr Tk] Tix TkMegaWidget theObjects

Supporting the application builder view
Widget creation command + + + + + +

encompassing window � � � + + �

Widget command
automatically creating the widget command ++ ++ ++ ++ + +

Subcommands
defining new subcommands ++ ++ ++ + + +
automatically parsing subcommands ++ ++ ++ � + +
fallback behaviour + + + + + ?

Configuration options
defining new configurable options + + + + + �

defining option handlers + + + + + �

add option handlers without parsing + + + � � �

automatically parsing options + + + � � ?
manual propagation of options � � � � � �

automatic propagation of options � � + � � �

renaming options when propagating � � + � � �

Access to component widgets
abstract names for components � � ++ � � �

hiding some abstract names from user + + ? � � �

providing procedure to return path name � � ++ � � �

Reuse of widgets
Reuse existing Tk widgets � + + + — ?
Inheriting subcommands + + ++ + � —

redefining subcommands + + ++ � � —
access to original + + + � � —

Inheriting configuration options + + + + � —
redefining configuration handlers + + + � � —
access to original + + + � � —

Reuse with any encompassing widget � � � — — �

Miscellaneous
Top-level widget support � � � + + �

Namespace support ++ ++ ++ — + —
Automatic database handling � � + + + —
Standard installation ++ ++ ++ ++ + +

++ supports very well
+ supports
� doesn’t support but possible

— doesn’t support
? don’t know

Table 3: Widget Builder View

4 Discussion

The previous evaluation tables guide this discussion on
the various extensions. While our criteria are not the
only ones that may be used, our experience with mega-
widgets indicates that having these features in an exten-
sion makes programming easier for both the application
and the mega-widget builders.

4.1 Application Builder View

The application builder’sview is fairly well supported by
most of the extensions. For instance, all of the extensions
support standard Tk widget behaviour well since they all
have a widget creation command, widget command, con-
figurable options and widget subcommands. However,
keep in mind that a “S” in the table only means that it
is possible to create widgets satisfying this aspect of the
application builder’s view and it may depend on what
the widget builder provides. For example, many exten-
sions were given a “S” for “access to component wid-
get” because it was possible, but only [incr Tk] defines
a standard mechanism (the component subcommand)
for doing so.

A common area where all of the extensions are ques-
tionable is Tk command support for mega-widgets and
proper bindings for mega-widgets. For example, the
bind command does not scale to mega-widgets; it is
not clear which component widget (if any) should receive
an event. Similarly, focus returns one of the compo-
nent widgets rather then the mega-widget itself. An-
other command that poses a problem is winfo. Specif-
ically, winfo children returns the components of
the mega-widget instead of an empty string.

4.2 Widget Builder View

In contrast to the application builder’s view, there is very
little support for the widget builder. A number of the
extensions come close to providing all that is needed,
but some really miss the mark. One issue that arises
is the tradeoff between flexibility and ease of use. For
instance, the extensions that automatically create the en-
compassing frame do not provide a mechanism to not do
this. The only extension that manages to retain flexibil-
ity while still automatically doing a large portion of the
widget builder’s work is [incr Tk].

4.2.1 Supporting the Application Builder View

Almost none of the extensions help the widget builder
with the various components required for supporting the
application builder’s view. The extension that does it
best is [incr Tk]. All of the extensions create the widget
creation command, have support for subcommand im-
plementation, and have the basic support for implement-
ing configurable options. All of the extensions (except
[incr Tk]) need to add support for the various methods
of propagating options. This is a very useful feature,
allowing the widget builder to list what is to be propa-
gated to a component widget instead of having to define
procedures to handle this. The extensions also need to
provide a better means for accessing the component wid-
gets. Four of the extensions have used common methods
from object-oriented programming to hide options by al-
lowing the widget builder to declare options as public or
private.

4.2.2 Reuse of the Widgets

There are two different methodologies used to meet the
requirements for reuse. [incr Tcl]-based systems achieve
reuse by using class-based inheritance which handles
subcommand reuse very well, but by itself does not
handle the configurable options properly. The second
method, used by TkMegaWidget, is an instance-based
customization which only handles reuse moderately well.
The current trend in the extensions appears to be a class-
based inheritance method. However, it still remains an
open issue as to which is better.

4.2.3 Miscellaneous

In order to maintain consistency with Tk, top-level wid-
get creation is a necessity and should be a part of the
extensions. Automatic option database handling and
namespace support are not necessary but very useful
in mega-widget applications, although they have their
own set of problems. For instance, namespaces avoid
name clashing but exhibit similar problem with bind

not unlike those experienced with mega-widgets. Fi-
nally, extensions must install in standard ways, as those
that do prevent many hours of frustration!

5 Conclusion

This paper has developed a framework for evaluating
mega-widget extensions to Tcl/Tk. The framework was
divided into two parts: the needs of the mega-widget user
and the needs of the mega-widget builder. This evalu-
ation framework was then used to evaluate six Tcl/Tk
extensions.

From the evaluation we have identified four important
issues for mega-widget extensions. First, the tradeoff
between ease of use and flexibility; extensions that are
easy to use often restrict their flexibility. Second, many
of the “housekeeping” chores such as automatic parsing
are very useful to provide, but care must be taken to
maintain flexibility. Third, some of the Tk commands,
such as focus and winfo, need to be extended in order
to support mega-widgets. Fourth, there is the open ques-
tion regarding reuse: whether class-based inheritance or
instance-based customization is better.

6 Acknowledgements

I would like to thank Mark Roseman for all his patience
and guidance, Saul Greenberg for providing me the op-
portunity to do this work, and John Aycock for his proof
reading and technical advice. Ioi Lam, Steve Uhler and
Greg McFarlane provided valuable commentary.

7 References

[1] S. Delmas, “Writing Tk Widgets with the MegaWid-
get.” (included in distribution of TkMegaWidget)

[2] G. Howlett, “Packages: Adding Namespaces to Tcl,”
Proceedings of Tcl/Tk Workshop, 1994.

[3] M. J. McLennan, “ [incr Tcl]: Object-Oriented
Programming in Tcl,” Proceedings of the Tcl/Tk
Workshop, University of California at Berkeley,
June 10-11, 1994.

[4] M. J. McLennan, “ [incr Tk]: Building Extensi-
ble Widgets with [incr Tcl],” Proceedings of the
Tcl/Tk Workshop, 1994.

[5] J. Ousterhout, Tcl and the Tk toolkit, Addison-
Wesley, 1994.

