
Roseman and Greenberg Page 1 of 10

Registration for Real-Time Groupware

Mark Roseman Saul Greenberg

Integrated Systems Applications Corp. Department of Computer Science
Suite 835, 10040 – 104 Street University of Calgary
Edmonton, Alberta, Canada  T5J 0Z2 Calgary, Alberta, Canada   T2N 1N4
(403) 420-8081    roseman@edm.isac.ca (403) 220-6015    saul@cpsc.ucalgary.ca

ABSTRACT
This paper examines the groupware registration problems,
both social and technical, that occur as users select their
tools and the others who will share them.  We argue that
users require far better and more flexible registration than
is provided in today’s systems.  From our examination of
users’ needs we derive a set of requirements for groupware
registration tools.  We present a general registration
architecture for creating different registration scenarios, and
illustrate a number of the scenarios that we have created.

KEYWORDS
real-time groupware, registration, pre-meeting process,
flexibility, toolkits, architectures

INTRODUCTION
Collaborations exist well beyond the boundaries supported
by today’s real-time groupware systems.  In this paper, we
address one of the many activities peripheral to the main
groupware task, groupware registration.  Registration is
the process by which users of groupware select the tools
and other users they want to work with.  All real-time
groupware therefore supports some form of registration.
But is the level of support sufficient to satisfy the needs
of groupware users?  We would argue that it is not.

Our concern with registration has evolved out of work on
our groupware toolkit, GroupKit [18].  A main goal has
been to help developers build groupware applications
flexible enough to accommodate the varying working
styles of end user groups.  Registration is one area that is
highly sensitive to such variations.  Though difficult
enough for a single group using a single application, in
our toolkit we need to provide good registration support
for many groups across many applications.

This paper discusses the issues and problems that arise
when building a system to support registration in general,
not just for a particular group or system.  A general

registration system therefore allows constructing specific
systems to suit different registration styles or scenarios.
Though our motivation to study general registration
comes from building a toolkit, this discussion will benefit
developers of individual applications.  After all, even a
single application can be used by different groups and in
different ways, and so may need to deal with multiple
styles of registration.

The paper opens by investigating registration inside the
pre-meeting process.  We look at some related work on
registration issues, and build the case that registration
must be flexible enough to suit the social and work
context of users.  From there, we distill a set of
requirements for a general groupware registration system.
These requirements lead on to a discussion of the general
registration architecture we have built into GroupKit. We
then provide a number of examples of specific systems,
built using this architecture, that were designed for
particular registration scenarios.  The paper concludes by
raising a number of issues which need to be addressed to
further refine our general registration architecture.

THE PRE-MEETING PROCESS
Groupware should support rather than disrupt existing
social processes [9]. Consequently, software-based
registration systems must consider the real life processes
that people follow when getting together for a meeting.
This section reviews the human factors in the pre-meeting
process: what groups do when setting up meetings; how
contact between group members is made or, in the case of
ongoing work, re-established; and the inter-personal
nuances that occur when people actually meet. Later, we
will abstract these factors as a set of requirements for
registration design in groupware.

Bostrom et. al. [1] see the meeting as a process that cycles
through three phases: pre-meeting setup, during-meeting
activities, and post-meeting teardown (which could lead
into the next meeting). It is the pre-meeting phase that is
relevant to registration, and the variety of activities
occurring here are identified by Dubs and Hayne [7].
1. Setting goals:

• review previous meetings to understand the status of
the on-going process;

Saul
Roseman, M. and Greenberg, S. (1994). Registration for Real-Time Groupware. Research Report 94-533-02, Dept of Computer Science, University of Calgary.



Roseman and Greenberg Page 2 of 10

• describe meeting goals that establish a purpose to
the meeting.

2. Getting participants:
• develop roster of appropriate potential attendees;
• inform participants of the meeting.

3. Collecting materials:
• develop and gather necessary documents;
• select and book equipment, such as presentation

tools or process aids.
Points 2 and 3 together can be considered the key parts of
an active registration process. Lists of people, equipment,
tools, and documents are made; it is active because
registration gathers the items together for the actual
meeting.

The model above primarily addresses the planned meeting.
As elegantly stated elsewhere, many meetings are quite
informal and even spontaneous, the result of chance and
one-person initiated encounters [10]. Cockburn and
Greenberg [3] summarize two key factors that affects the
ways people and groups get together in these situations.
First, people must get in touch with the people they are
interested in. They require a sense of who is around and
how they can be reached, how particular people can be
found, the social status of others as well as their
willingness to be disturbed or interrupted. The second
factor is that people need to choose appropriate
communications channels. This is strongly influenced by
the task at hand, what channels and tools are available to
participants and what affordances they offer, the intended
time period of interaction, the inertia involved in
switching to a better communication channel, and how
conversations can migrate across time and space
boundaries. While people transparently handle these
matters as part of normal social conventions, Cockburn
and Greenberg argue that technology which is insensitive
to these concerns often creates barriers that hinder or block
our natural processes for handling them.

Louie, Mantei and Sellen [11] also present a model of
communication activity that occurs when one person
meets with another. Before a meeting begins, one finds
participants in the pre-communication phase, attracts their
attention in the attention phase, and then uses the greeting
phase as a ritual for negotiating how communication will
proceed. The main meetings communication occurs in the
maintenance phase, followed by a highly structured
agreement to end the session through a closing phase. The
final fade-out ends the communication, and as the name
implies, is rarely abrupt.

Is it worth pursuing a model for a “standard” pre-meeting
procedure? While he doesn’t address meeting phases
explicitly, Grudin [9] argues that work processes can be
described as “... the way things are supposed to work, and
the way they do work.” He highlights that fundamental
components of most people’s work activities are error and
exception handling, personal improvisation to fit
contextual considerations, shortcutting and modifying
standard procedures. As both Suchman [22] and Grudin

have pointed out, procedures are often post hoc
rationalizations of ad hoc  activities. In this light, we see
the registration process as a highly variable and dynamic
set of activities, influenced by personal desires, inter-
personal relationships, and the situation at hand.

Registration is a very important part of the pre-meeting
process, for it captures the essence of how people and their
artifacts are brought together. Because groupware users are
separated by distance, it is exactly this part of the pre-
meeting process that must be handled by groupware. If the
technology does not support a realistic registration
process, then the entire meeting can be disrupted. To
illustrate, consider any of the following pre-meeting
situations. While laughable from a human point of view,
poorly designed registration technology could make these
very real in groupware.
 • Strategic, highly political meetings of a large company

are operated under an open door policy where
absolutely any person could walk in and participate.

 • A “town hall” meeting keeps its participants hidden, so
no one really knows who is present.

 • Casual hallway conversations cannot occur unless they
are “authorized” by a company administrator.

 • A pre-meeting process demands that people  answer
numerous questions, fill out long forms, and
exhaustively state all meeting needs before they are
actually allowed to get together.

In real life, collaborations take place within a variety of
social and work contexts, highly dependent on the group
and its situation.  The registration process, whereby these
collaborations are formed or reestablished, is very
sensitive to these variations, and an inappropriate context
can impede or disrupt the resulting collaboration.  To cope
with this, the real-life registration process is necessarily
diverse, and accommodating to the situation at hand.

WHAT REGISTRATION MUST PROVIDE TO
GROUPWARE USERS
We now turn our attention to how people’s registration
needs can be supported in groupware. Because of the
inherent variability of the pre-meeting process, we firmly
believe that registration must be tailored to the group, its
needs, and its particular situation.  Thus our view is not
of a single registration process, but of one offering a
spectrum of capabilities — perhaps through a suite of
tools — that users can choose from.

This section describes the capabilities that a general
groupware registration architecture should provide its
users. The first point below addresses the fundamental role
of registration. The second considers the information
people generally need to support their own social roles in
the registration process. The remaining points consider the
nuances of how registration systems are matched to
people, their working contexts, and the actual groupware
applications.



Roseman and Greenberg Page 3 of 10

Support registration of both people and their artifacts.
Two key activities of the pre-meeting phase are selecting
and collecting participants, equipment and meeting
artifacts. In groupware, “collecting participants” involves
helping people find who is available and what meetings
they can join, and to establish appropriate communication
channels between them. The “equipment” is the groupware
applications people use, while the “artifacts” are usually
the documents and other items manipulated through the
application programs.

Support the distribution and access of registration
information.  Registration is not just a technical process of
connecting software, but part of a rich social activity. For
people to fill their personal roles and make registration
decisions, they require cues about their environment.
These cues include such things as who is around, their
current activities, and whether or not they can be
interrupted.  This information should be accessible
through the system in a variety of ways, and its
distribution — depending on the context — may be
controlled or limited by the group (e.g. issues of privacy
or secrecy). The information should help participants
answer a host of questions particular to their pre-meeting
needs.

Support a spectrum of group involvement in registration
decisions.  Different situations demand different amounts
of group involvement in registration.  The issue of who
can join an existing group may be decided in a number of
ways: a single group member such as a facilitator may
decide, the group as a whole may vote, come to a
consensus decision, or even ignore the issue entirely, by
letting all newcomers join. For informal interaction,
control over accessibility, privacy and interruptability is
the issue. Groupware registration should give groups the
means to make their own registration decisions.

Support users’ individual needs for registration.  People
may have different roles and preferences in meetings.
Registration can acknowledge this “individual context” by
having providing components tailored to the needs of its
participants. Differences may be relatively cosmetic, such
as the same registration policy presented with a different
interface style. Perhaps the components vary the detail of
information presented to match what a participant wants
to know. Deep differences occur when people assume roles
with special capabilities, such as when one person holds
control over who can actually join a meeting.

The same registration style should be usable with different
groupware tools.  Registration sets the tone and context in
which people gather and tools are used.  Several
groupware applications often exist within this same
context.  As we do with real world counterparts, we
should be able to use the same registration policies and
conventions to access a wide variety of meeting tools such
as whiteboards and flip charts. Allowing the use of the
same registration style across groupware applications also
makes it easier for users to leverage their knowledge when
learning new tools.

Different registration styles should be usable with the
same groupware tool.  Conversely, the same groupware
tool can be used in a variety of ways, such as a drawing
tool being used for brainstorming, engineering designs,
leaving notes for people, or more frivolous pursuits. Each
of these suggests a different usage context for the tool, and
a different way of gathering people together to use it. As
we have argued, different registration styles can either aid
or hinder the effective use of a tool in a given context.
People should be able to access tools with the appropriate
registration style.

Support dynamic registration, so that people and artifacts
can be added or removed at any time.  In real life, people
enter meetings at quite different times. For stereotypical
structured meetings, we imagine that the list of
participants and resources is known ahead of time, and all
attendees arrive on time and leave when the meeting is
formally closed. In practice, people drop in uninvited (but
may be welcome anyway), arrive late, and leave early.  In
informal interaction, the “list” of attendees is defined by
the actual encounter. Artifacts can be brought in at various
stages of the meeting.  Registration schemes must be
flexible enough to allow people to enter meetings, and
bring in new resources, at any time. As a result,
registration is actually an on-going process, continuing
from the pre-meeting setup to the during-meeting
activities and post-meeting teardown.

REGISTRATION IN CURRENT SYSTEMS
This section briefly reviews the state of registration in
today’s groupware applications.  To date, most groupware
has focused on supporting the group’s needs only within
the confines of an established groupware session.
Registration, though necessary to establish these sessions,
has played a minor part in today’s systems, providing
only the minimal capabilities needed to create
communications channels. Registration has generally not
received the attention we argue it deserves. Still, several
good examples do exist, particularly for specific
registration scenarios. By surveying implementations
within the context of the previous requirements, we can
identify common strategies, suggesting reasons why some
work, and why others fail.

At the CompCon conference in the late 1960’s, Doug
Engelbart revolutionized people’s conceptions of
computers when he presented his Augment system [8].
One of its capabilities was shared view conferencing, and
during his presentation we saw him initialize the session
by asking his partner (over a voice/video link) the
physical number of his terminal. Registration was the act
of supplying the magic number to the system. Twenty-
five years later, many systems still provide only the most
rudimentary support for registration and connectivity
between groupware users. Instead of terminal numbers,
systems now often require users to identify groupware
sessions by low-level addressing such as the Internet host
name and TCP/IP port number. An example is NCSA’s
Collage illustrated in Figure 1 [12]. Slightly higher level



Roseman and Greenberg Page 4 of 10

Figure 1.  Registration in Collage.

point-to-point call

impromptu hallway meeting

architecture design review

classroom

panel discussion

seminar

lecture

pay-per-view

TV broadcast

more coordination
more rigid
more overhead
smaller sessions
more static

less coordination
fewer policies
less overhead
larger sessions
more dynamic

Figure 2.  Usage scenarios investigated in mmusic.
Reproduced from Schooler and Weinrib [21].

are services where one supplies their partner’s userid and
host name. For example, the Unix text-based chat facility
is initiated with the command

talk  <userid>@<machine name>.
Low level registration fails to pass many of the criteria
listed above. It is inflexible, and the information required
by the system may not be readily available to the user.

Some systems do not allow latecomers to sessions,
insisting instead that all users are identified at startup, e.g.
versions of Rendezvous [16] and MMConf [4]. This
restriction greatly simplifies the construction of systems.
Designers do not have to worry about the mechanism for
bringing the displays of new users up to date, and
handling of communication links is easier. However, this
restriction is at odds with the way people actually join
meetings.

This is not to say that all systems that are simple to
implement are inappropriate or unusable. For example,
common rendezvous points allow users  to register simply
by establishing a communication connection to a central
location. To illustrate, users of text-based Multi-User
Dungeon (MUD) systems join an on-going chat and game
session by connecting to a well-known Internet address via
telnet [5]. The prevailing policy of any user being allowed
to enter the MUD is compatible with their essentially
recreational nature. The connection interface is
straightforward and understandable to MUD users, and the
address of the particular MUD site reasonably easy to note
down; registration works well for the context it aims to
support.

There are two classes of systems where registration has
been reasonably successful, by designing it to support
particular styles of meetings. First are systems that
support casual interaction.  These are usually centered
around a media space of some sort (e.g. Cruiser [17],
Cavecat [11], Portholes [6]) but can also rely on more
conventional technologies (e.g. Telefreek [3]). These
systems are highly tuned to the social contexts in which

they are embedded, taking into account privacy, awareness
of other users and their activities, and preserving the social
cues people use when collaborating. Some systems
leverage people’s conceptual models of casual interaction
by providing a variety of registration metaphors e.g.
person-centered, space-centered, and time-centered [11].

Facilitated group support systems are the second class of
systems fitted to a particular meeting style [13]. Because
they are designed for executives who do not have time to
deal with the quirks of technology, registration is
moderated by a trained facilitator who performs much of
the clerical duties for the pre-meeting setup.  As with
casual interaction, the scheme works well for a particular
meeting style but does not necessarily generalize to
others.

The one initiative that we are aware of that seriously
considers general registration (rather than particular styles
such as casual interaction support or facilitated group
support systems) is the “mmusic” working group of the
Internet Engineering Task Force. Their goal is to produce
a “multiparty multimedia session control” protocol that
will provide registration support to Internet-based
groupware and multimedia conferencing tools [20, 21].
The protocol is being designed to acknowledge the
variability inherent in registration styles and overall
session policy. Issues covered include late joiners, floor
control, interaction style, and mechanisms to negotiate
and change session policies. What is interesting is that
they are using a range of meeting and communication
scenarios to elicit the variability of registration styles, as
illustrated in Figure 2.

In summary, there has been scattered success in
developing context-specific registration mechanisms.
Notions of general registration are still in very early
stages.



Roseman and Greenberg Page 5 of 10

George's Workstation

Any Workstation

George
Mary

Mary's Workstation

Registrar
Client X

Registrar
Client X

Registrar

Application
      A

Application
      A

Application
      B

Application
      B

Figure 3.  Basic run-time architecture of GroupKit.

A REGISTRATION ARCHITECTURE
We have built a groupware toolkit called GroupKit to
provide developers with an infrastructure for implementing
real-time groupware systems [18]. One of our key
concerns was how to design GroupKit’s architecture to
cope with the diverse registration schemes required by
groupware developers, ultimately driven by the needs of
their users. The architecture has proven successful, both in
letting us build a variety of registration prototypes, and in
providing a better understanding of general registration.

This section begins with a snapshot of GroupKit’s
registration architecture and its features. The power of this
architecture is then demonstrated by illustrating a broad
range of prototype registration systems we have
constructed with it.

Features of the Registration Architecture
A brief overview of GroupKit’s run-time architecture is
necessary to understand how registration is handled.
Further details are found in Roseman and Greenberg [18].

GroupKit user sessions consist of a number of mostly
replicated processes arranged across a number of machines.
All processes maintain communication facilities necessary
for exchanging messages with each other. Figure 3
illustrates an example of the processes running when two
people (George and Mary) are communicating to each
other through two groupware applications 'A' and 'B'
(perhaps a group sketchpad and editor). Processes are
represented by ovals, and the lines joining them indicate
communication paths. Each person would see windows
representing each application on their screen. They also
have a window representing their Registrar Clients — the
interface and policy supplier of their registration system.

The actual components work as follows. The central
Registrar maintains a list of all the conferences active on
the system and a list of all the conference users.  The
Registrar itself does not decide how conferences are created
or deleted nor on how users join or leave conferences. The
Registrar Client (one per user) allows users to create,

delete, join or leave conferences. It interacts with other
Registrar Clients through the central list provided by the
Registrar. The Registrar Client provides both a user
interface as well as a policy dictating how conferences are
created or deleted and how users are to enter and leave
conferences.  Different Registrar Clients can be created to
suit different registration needs. Finally, the replicated
conference application is the actual shared application
built using GroupKit, and is separate from the registration
system.

The important architectural features of the registration
components are described below. These features, as well as
the examples later on, will indicate how GroupKit can
satisfy our registration requirements.

Decouple Applications from Registration.  A key feature of
our architecture is that the specific groupware applications
are decoupled from the registration process itself (the
Registrar Clients). Different groups can use different
Registrar Clients and thus different registration policies.
Participants within a single session can also have their
own special Clients (that coordinate their policy with the
other Clients in that session). Decoupling explicitly
acknowledges that no one registration scheme can deal
with all the registration needs its users may have, and that
registration need not be tied to a particular application.
This allows us to build, use, and substitute a wide variety
of registration schemes with a single groupware
application, and also to use the same scheme with
different applications. It achieves the flexibility necessary
to combine registration systems and applications based on
users needs, not technological restrictions. An additional
and important benefit is that writing application code is
greatly simplified, since the registration component is
handled separately.

Standardize Communication Mechanisms Between
Application and Registration System.  Despite being
decoupled, the application and registration components
must communicate so that, for example, the application
knows when a new user enters the group. Remember that
applications do not know details of the particular
registration system they are attached to (and vice versa).
Thus managing the various combinations of registration
systems and applications requires a standard
communication protocol based on registration primitives.
This makes it easy to intermix the different components.
In GroupKit, we define two messages or events that are
sent from the registration system to the application. The
first instructs the application to add a new user to the
groupware session, with a special instruction to one of the
replicated applications to update the new arrival. The
second message instructs the application to remove a user
from the session. Though the way in which these two
events are generated varies with the registration module,
the applications need only be concerned with handling
these specific events.



Roseman and Greenberg Page 6 of 10

Figure 4.  Open registration interface.

Figure 5. Dialog to start up new application.

Minimize Information Sent to Application.  In order to
provide the high interoperability between quite different
registration and application systems, we have tried to keep
to a minimum the amount of critical information
communicated about the meeting and its participants. This
greatly simplifies the construction of both applications
and registration systems, at the cost of neglecting
information that particular applications could want. To
compensate, the registration system can augment the
required information sent to the application, and
applications may choose to take advantage of this
information if present. However, any extra information
provided by the registration system must be viewed as
supplementary by the applications, and applications must
be able to work with only the minimal required
information.  We see this as a reasonable trade-off between
inter-operability and the potential for richer systems.

Support a Multiplicity of Behaviors and Interfaces Through
Open Protocols.  One of the key architectural features of
GroupKit’s registration scheme is the ability to specify a
very wide variety of behaviors, policies and interfaces
within a single system.  A single Registrar can support a
number of different Registrar Clients, each behaving quite
differently.  The result is that different users may have
quite different registration tools, even within the same
meeting. The system relies on a technique called “open
protocols,” which we have described in detail elsewhere
[19]. Briefly, open protocols provide us with the ability to
define some very sophisticated sets of behavior based on
primitive manipulations of the Registrar’s information.
The same Registrar can provide service for a number of
differently behaved Registrar Clients, and these Clients
can even interact with each other through the Registrar.

Example Registration Schemes
This section illustrates several registration schemes we
have designed. We are not recommending these examples
as a list of optimal registration methods — while some
are in use, most are prototypes and have not undergone
any user testing.  Instead, our goals are to illustrate the
diversity of registration schemes that can be implemented
with GroupKit, to better understand the design and
implementation of groupware registration strategy, and to
show by example how GroupKit can accommodate the
wide range of user requirements for registration.

Open Door Registration.  Our first and most commonly
used scheme provides “open door” registration. All users
see what conferences are in progress, where a conference
consists of a number of participants and a single
groupware application. Anyone can create a new
conference, or join any existing conference (hence the
“open door” policy).

The interface used for this scheme is shown in Figure 4.
The list on the left displays all existing conferences, and
selecting one of the conferences displays its users in the
list on the right.  Users can join an existing conference by
double-clicking on its name.  To create a new conference,

users select “New”, which brings up the dialog box shown
in Figure 5. They can then choose from a list of all the
available groupware applications, and give their conference
a name.

This registration scheme works well for fairly informal
groupware sessions among colleagues of equal status
(which has been the majority of our use). While it is best
for planned encounters, it does support a modest level of
casual interaction — the list of conferences and attendees
can be considered opportunities for contact. Of course, it
is not appropriate for all cases, e.g. when access control is
required for meetings discussing sensitive information.
Further, the concept of a “conference” maps to a single
groupware application, so if a group wants several tools
they will have to create and join several conferences.

Facilitator Controlled.  Our second example takes a much
different approach, mimicking group support meetings



Roseman and Greenberg Page 7 of 10

Figure 6.  Participant’s Registrar Client
interface to the facilitated meeting.

Figure 7.  Facilitator’s Registrar Client interface.

janu% cmdrc -confs
GroupSketch
Saul’s Meeting
janu% cmdrc -join GroupSketch

Figure 8.  Command line registration interface.

where a dedicated (human) facilitator manages the use of
the group’s tools.  Under this scenario, the facilitator
creates a facilitated meeting to which users are permitted
to join — at the facilitator’s discretion.  The facilitator
thus controls who is allowed to join the meeting, and can
remove participants from the meeting at any time.

A facilitated meeting encapsulates a number of groupware
applications as well as instances of two different Registrar
Clients. Initially, the meeting contains no applications,
and participants only see a small window indicating they
are part of the meeting (Figure 6).

The facilitator sees a much different interface (Figure 7).
Along the left is a list of all the users currently in the
meeting; the “boot” icon allows the facilitator to remove
any user (admittedly, not an icon we’re likely to see in
any real business meetings).  The facilitator may create a
number of groupware tools that can be used by the
meeting participants (through the “New” menu, its
contents similar to the list in Figure 5).

When a new tool is created, it appears only on the
facilitator’s screen, and an extra column appears on the
facilitator’s control panel.  By toggling the checkboxes,
the facilitator joins or removes individual users from
tools, effectively showing or hiding the window on their
screen.

With this scheme, there is strict control over who can join
the meeting, making it more suitable for formal meetings
than the open door scheme.  Users are also removed from
the burden of creating and joining conferences, relying on

the facilitator to control this. Yet this scheme obviously
restricts the flexibility of individual participants.

Command Line and Scripting.  Our next example provides
a command line interface that can be invoked from the
Unix command prompt or a shell script.  Presenting no
graphical interface, it is a simple mechanism for creating
or joining conferences with a minimum of user interaction
(Figure 8).

Using command line registration, users could place a
single line in the shell scripts that are executed when they
login to automatically join the sketchpad session.  This
scheme makes it easy to join “persistent” groupware
sessions. For example, consider a group that wants to
keep a common blackboard (a group sketchpad) on display
at all times, used perhaps to jot down notes that may
trigger focused collaboration. The act of a person logging
on or off (which executes the appropriate cmdrc
command)  will have them join and leave the blackboard
session.

A second use of command line registration is to allow
other programs to easily invoke groupware applications.
Such scripting ability can be useful in a number of
situations. A mail program might allow invoking a
groupware application as an alternative to replying to
mail, and a graphical toolbar may provide shortcuts to any
number of commonly used groupware applications.

A Rooms-Based Facility.  This example illustrates a
spatial metaphor modeled after one of the schemes found
in Cavecat [11] and other Rooms-based systems [2].  The
registration interface (Figure 9) is a browser containing a
number of different “rooms,” which may or may not have
some relation to physical rooms in a building. Each room
contains any number of groupware applications. Users are
free to move between rooms.  When they enter a room,
they are automatically joined to all applications running
in the room.  When they leave, they are automatically
removed from these applications. As well, the group in
each room can set a “privacy indicator” (indicated by how
far open the door is) to tell the curious how well the
group will accept newcomers. While this now capitalizes
on social protocols, it could easily be extended to an
actual access control mechanism.

Rooms-based registration has the advantage of grouping
sets of groupware applications into work areas. It can also
take advantage of spatial cues, so that several aspects of
the same project might be placed in adjacent, directly
linked rooms.  We expect this is a useful registration



Roseman and Greenberg Page 8 of 10

Figure 9.  Prototype rooms-based registration interface. Figure 10.  Contact registration interface.

system for managing  a number of distinct projects or
work items that persist over a long period of time, as it
organizes both projects and required tools.  While it may
be less useful for short term groupware sessions requiring
special tools (the overhead of setting up the rooms
outweighs the benefits), special “breakout” rooms could
be designed.

Making Contact.  Our final registration example is
embodied in a system called “Contact,” derived from our
earlier work on informal contact facilitation [3]. Contact’s
goal is to minimize the problem of making contact with
potential collaborators, using information freely available
on the Internet and low bandwidth communication
channels.

Figure 10 shows the main Contact facilities. The top
window shows a list of all the people the system knows
about, which can be filtered based on a number of user-
definable criteria to create “communities” of interest.
Names are linked to a database, and contact information
(addresses, phone numbers, email, etc.) can be retrieved for
particular users (rightmost window).

Users can raise a “peephole” on particular users (bottom
window).  Peepholes provide a poor man’s version of
Portholes [6], a system which uses video snapshots to
provide awareness of who is around and what they are
doing.  Peepholes provide a graphical indicator of whether
the particular user is logged in and if so, iconic
representations of the likelihood of them actually being by
their computer (based on the elapsed time since they last
touched the keyboard and mouse). This gives a reasonable
indication of whether that person is available for real time
collaboration. When a Peepholes partner is selected,
groupware applications — including non-GroupKit tools

such as mail and talk — can be started using the menu
attached to each peephole.

This registration scheme works well in providing for
casual contact, because it provides an overall awareness of
who is around, whether they are available, and greatly
simplifies setting up connections to them. Of course,
Peepholes are loaded with issues of privacy violation, as it
is easy to cross the line between awareness and
surveillance.

FUTURE WORK
We see GroupKit’s registration architecture not as a
complete solution to the issues surrounding general
registration, but rather as an attempt to understand and
conceptualize what a solution would encompass.  We
envision a “groupware registration standard” whereby
developers could build both registration and application
components and have them seamlessly interoperate. In
this section, we suggest areas we believe are in need of
further investigation, discussion and refinement.

Understanding the Scope of Registration
We have exposed a number of features of registration,
both human and technical. They are based upon some
models of pre-meeting processes and casual interaction,
and from our own experience. We would much rather be
supported by a well-formulated theory of registration, if
one could exist.  Presumably, there are many issues that
we have not considered that should be addressed by any
registration standard.

Of greater import  is whether we can justifiably consider
registration in isolation from other meeting activities.
Registration is situated within the pre-meeting process,
which in turn is situated within the entire meeting
process, which itself is embedded within a group’s social



Roseman and Greenberg Page 9 of 10

and work context. We are now considering a complete
meeting environment, where registration is more tightly
integrated with other meeting activities [14].

Generalize and Refine Architecture
Any standard must deal with issues of message or protocol
format.  In GroupKit, we’ve based our communications
protocols on a TCP/IP extension to the Tcl language on
which GroupKit is based [15]; the protocol is in effect a
set of Tcl commands. Presumably a general standard
would rely on more general mechanisms.

Regardless of the underlying format used for message
transmission, there are many refinements possible in the
content of the messages.  We have advocated keeping the
amount of data passed between registration and application
systems to a minimum, yet it is unclear if the set of
information we have chosen is optimal.  Further, some
standardization of “optional” data — conventions to allow
better interoperability — would be beneficial.

Tools to Support Registration Programming
Assuming for the moment a reasonable registration
standard, where underlying protocols — their format and
content — were well defined, there are still issues
involved in building new systems. Constructing new
registration components in GroupKit for example, could
be much simpler than it now is.  Though the interface
between registration and application has been rigidly
defined, encoding complex registration policies in terms of
that interface (as well as the open protocols technique used
within GroupKit) can be daunting, for we do not now hide
much of the complexity of distributed communication.

We are now redesigning the programmer’s interface to
GroupKit’s registration mechanism.  Program libraries are
being developed that encapsulate simple but powerful
registration concepts. Eventually, we would like to give
end users, who understand their own needs, the power to
customize their own registration system.

Experiment with Registration Metaphors
Though we presented a number of different registration
prototypes, none have undergone any form of user
evaluation. Developing effective registration systems for
particular groups will involve studying the effectiveness
of the metaphors we choose, as well as the particular
implementations.  However, as Grudin [9] has suggested,
these types of evaluations are exceedingly difficult.

CONCLUSIONS
We have tried to focus attention on the problems inherent
with groupware registration, an area largely ignored by
groupware researchers to date.  We viewed registration as
an essential component in the pre-meeting and casual
interaction process, and as such it can play a large role in
the success of the entire meeting. We argued that
registration is highly dependent on different groups and
their situations, and that an inappropriate style of

registration can seriously impede or disrupt the resulting
collaboration.

We derived a set of requirements for a general groupware
registration system, supporting critical registration
functions and the necessary diversity. We then described
the registration architecture we constructed in GroupKit to
address these requirements, and illustrated a number of
specific registration systems we have developed.

It is our hope that this paper will start the discussion —
both within the CSCW community, as well as
communities concerned with the technical side of network
standards — that will lead to a technical groupware
registration “standard” founded on the social realities of
meeting registration.

SOFTWARE AVAILABILITY
GroupKit is available via anonymous ftp from
f t p . c p s c . u c a l g a r y . c a ,  i n  t h e  d i r e c t o r y
pub/grouplab/software.

ACKNOWLEDGMENTS
This research was supported by the National Sciences and
Engineering Research Council of Canada, which funds the
Grouplab and GroupKit project through its strategic and
operating grant program. Special thanks to Ted O’Grady
for comments on this paper as well as his work on the
Groupware Environment, and Alex Mitchell for building
the Rooms registration module.

REFERENCES

1. Bostrom, R., R. Anson, and V. Clawson, Group
facilitation and group support systems. 1991,
Department of Management, University of Georgia.

2. Card, S.K., M. Pavel, and J.E. Farrell, Window-
Based Computer Dialogues, in Readings in Human-
Computer Interaction: A Multidisciplinary Approach,
R. Baecker and W.A.S. Buxton, Editor. 1987,
Morgan Kaufmann.

3. Cockburn, A. and S. Greenberg. Making Contact:
Getting the Group Communicating with Groupware.
in Conference on Organizational Computing Systems
(COOCS ‘93). 1993. Milpitas, California.

4. Crowley, T., E. Baker, H. Forsdick, P. Milazzo, and
R. Tomlinson. MMConf: An infrastructure for
building shared applications. in Proceedings of the
Conference on Computer-Supported Cooperative
Work (CSCW ‘90). 1990.

5. Curtis, P. Mudding: Social Phenomena in Text-Based
Virtual Realities. in Proc. of the 1992 Conference on
the Directions and Implications of Advanced
Computing. 1992. Berkeley, CA.



Roseman and Greenberg Page 10 of 10

6. Dourish, P. and V. Belloti. Awareness and
Coordination in Shared Workspaces. in Proc. of the
Conference on Computer Supported Cooperative
Work (CSCW ‘92). 1992.

7. Dubs, S. and S.C. Hayne. Distributed Facilitation: A
Concept Whose Time Has Come? in Proc. of the
Conference on Computer Supported Cooperative
Work (CSCW ‘92). 1992.

8. Engelbart, D. and W.K. English. A research center for
augmenting human intellect. in Proceedings of the
Fall Joint Computer Conference. 1968. San
Francisco, Calif.

9. Grudin, J., Groupware and social dynamics: eight
challenges for developers. Communications of the
ACM, 1994. 37(1): p. 93-105.

10. Kraut, R.E., C. Egido, and J. Galegher, Patterns of
contact and communication in scientific research
collaborations, in Intellectual Teamwork: Social
Foundations of Cooperative Work, J. Galegher, R.E.
Kraut, andC. Egido, Editor. 1990, Lawrence Erlbaum
Associates: p. 149-172.

11. Louie, G., M. Mantei, and A. Sellen, Making
Contact in a Multi-media Environment. Behaviour
and Information Technology, 1993.

12. National Centre for Supercomputing Applications,
Collage (Computer Software). 1992.

13. Nunamaker, J.F., A.R. Dennis, J.S. Valacich, D.R.
Vogel, and J.F. George, Electronic meeting systems
to support group work. Communications of the
ACM, 1991. 34(7): p. 40-61.

14. O’Grady, T. and S. Greenberg. A Groupware
Environment for Complete Meetings. in Adjunct
Proceedings of CHI 94. 1994. Boston, MA.

15. Ousterhout, J.K. Tcl: An Embeddable Command
Language . in Proceedings of the 1990 Winter
USENIX Conference. 1990.

16. Patterson, J.F., R.D. Hill, S.L. Rohall, and W.S.
Meeks. Rendezvous: An architecture for synchronous
multi-user applications. in Proceedings of the
Conference on Computer-Supported Cooperative
Work (CSCW ‘90). 1990.

17. Root, W.R. Design of a multi-media vehicle for
social browsing. in Proceedings of the Conference on
Computer-Supported Cooperative Work (CSCW ‘88).
1988.

18. Roseman, M. and S. Greenberg. GroupKit: A
Groupware Toolkit for Building Real-Time
Conferencing Applications. in Proceedings of the
Conference on Computer-Supported Cooperative
Work (CSCW ‘92). 1992.

19. Roseman, M. and S. Greenberg. Building Flexible
Groupware Through Open Protocols. in Conference
on Organizational Computing Systems (COOCS
‘93). 1993. Milpitas, California.

20. Schooler, E., The impact of scaling on a multimedia
connection architecture. Multimedia Systems, 1993.
1(1): p. 2-9.

21. Schooler, E. and A. Weinrib, Multiparty Multimedia
Session Control Working Group. (Working Group
Notes). 1993, Internet Engineering Task Force.

22. Suchman, L., Plans and Situated Actions. 1987,
Cambridge University Press. 




