Roseman, M. and Greenberg, S. (1993). User-centered design of interface toolkits. Research Report 93/501/06, Department
of Computer Science, University of Calgary, Calgary, Canada, January.

USER-CENTERED DESIGN OF INTERFACE TOOLKITS

Mark Roseman and Saul Greenberg
Department of Computer Science, University of Calgary
Calgary, Alberta, Canada T2N 1N4
Phone: +1 403 220-6087
E-mail: roseman,saul@cpsc.ucalgary.ca

ABSTRACT

Current user interface toolkits unnecessarily complicate the
process of creating user interfaces. This paper suggests that
the design of these toolkits must be rethought. We advocate
a user-centered approach to the design of these development
tools, considering the application developer as user and
applying principles from interface design to design of
interface toolkits. The process of user-centered toolkit
design is described, making use of design affordances to
influence the developers use of the toolkit. User-centered
design is shown as a useful framework for understanding a
number of toolkit issues and their solutions.

KEYWORDS: graphical user interfaces, toolkit design,
user-centered design, development methodologies

INTRODUCTION

Toolkits are one of the most commonly used tools for
developing graphical user interfaces [7], and most
environments have one. There is Motif and Xview for X,
NextStep for NeXT machines, MacApp for the Apple
Macintosh, and Windows for the IBM PC. However, a
survey of programmers suggested that developers using
toolkits devote a larger percentage of time and program code
to the interface than developers using a UIMS or interface
builder [7]. More surprisingly, development using a toolkit
fared worse than using no interface tools at all! This
supports a great deal of anecdotal evidence that current
toolkits are very difficult to use.

We suggest that many of the principles used to guide the
design of interfaces may be successfully applied to the
design of tools that better support the interface developer.
We will advocate a user-centered toolkit design, taking the
needs of the developer-as-user as a starting point. We will
also introduce the notion of a design affordance, where the
properties of the toolkit objects suggests how application
developers can produce better programs for end asers.

There are several benefits that can potentially be realized by
adopting a user-centered approach to toolkit design. The
first is better tools, constructed from a better understanding
of the needs of the developer and the uses the toolkit will be
put towards. This in turn can result in higher quality
applications that are developed more quickly using the
toolkit. Finally, user-centered design can serve as a useful
framework for thinking about the problems found in
toolkits, helping to reason about their probable causes and
possible solutions.

The next section develops the concept of user-centered
toolkit design, taking the perspective of the application

developers themselves as end users of programming
toolkits. This is followed by an introduction to design
affordances as a useful concept toolkit builders can use to
influence better design of application programs. We then
outline the steps to building a toolkit through a user-
centered approach. Next, a number of issues arising in
current toolkits are discussed and interpreted from this
perspective. Finally, we illustrate how we are applying
these concepts to the design of GROUPKIT, a prototype
toolkit for constructing real-time groupware applications.

TOWARDS USER-CENTERED TOOLKIT DESIGN
A goal of toolkits is to ease developers’ chores when
building specific portions of a program, such as the human-
computer interface. In order to succeed, the toolkit must
provide the necessary components and functionality required
by the developer. Yet how can the developer's needs be
determined?

Consider traditional interface practice. When designing
interfaces for end users, developers are taught to observe the
users of their system, to focus on the type of work the
users need to perform, and to take into account their needs
and preferences. Such user-centered design has proven to be
reasonably successful at determining the requirements for
new systems.

We would argue that a user-centered approach is equally
important for building other sorts of software, including
software for developing user interfaces. The users here are
the application developers who construct interface software.
These developers have particular needs in building their
applications that should be carefully considered by toolkit
builders.

One way to motivate improved toolkit support is to study
the problems developers encounter while building software.
In fact, difficult problems such as high learning curves and
portability are now being addressed. specifically because
developers need solutions to these problems. We consider
such work to be examples of a user-centered and iterative
toolkit design, comparable to the user-centered and iterative
design of interfaces.

An important consequence of user-centered toolkit design is
that the best way of determining the components that
should be included in a toolkit is to look at the types of
applications that developers are building. What features are
necessary, which are important, and which will never be
needed? These important questions can only be answered by
considering the needs of the developer, many of which are
embodied in the applications being designed.

Saul
Roseman, M. and Greenberg, S. (1993). User-centered design of interface toolkits. Research Report 93/501/06, Department of Computer Science, University of Calgary, Calgary, Canada, January.

DESIGN AFFORDANCES

In the previous section, we advocated the idea that toolkits
should provide the components developers need as building
blocks to good programs. But merely providing these
components is not sufficient. Developers must be
encouraged to actually understand and use the appropriate
components when the situation demands it. With careful
design, toolkits can actually encourage the creation of better
programs. Here we develop the idea of a design affordance to
address this issue.

Affordance theory has been applied to the design of
interfaces by several people [2, 8], where an affordance is
defined as the properties of objects that suggest particular
uses to users. Gaver [2] believes the theory can guide us in
designing artifacts which emphasize desired affordances and
deemphasize undesired ones.

We define a design affordance as a property of a toolkit
object that suggests how it can be used. The design objects
are at the level of underlying software tools, not end-user
applications. Design affordances therefore involve
interactions between such tools and program developers, not
end users. In this sense a toolkit could have affordances,
suggesting appropriate uses of the toolkit to the software
developer.

It is important to distinguish between design affordances
and “features.” Features can be hidden all too easily within
a toolkit, be difficult to use, and can be hard to comprehend
when or why they would be used. In contrast, design
affordances are situated in the overall toolkit so as to
present themselves to developers when needed. Design
affordances clearly suggest to the developer how a particular
feature can be used and why it should be used.

Design affordances can be used by toolkit builders to aid
developers in building better programs. Most toolkits, for
example, provide “control panels” that collect buttons,
valuators, menus, and so on. As an affordance, this
suggests a particular interaction style to the developer, and
indeed control panels are prevalent in many of today's
applications. Other common toolkit constructs-as-
affordances are graphical canvases, text editors, and terminal
windows.

Similarly, a toolkit supplying consistent looking
components will encourage building consistent looking
interfaces. Supporting keyboard accelerators by default at
the toolkit level will encourage their adoption. Programs
built using a toolkit with an embeddable control language
(e.g. TCL [10]) will themselves be structured to support
this language. Nothing forces developers to incorporate
these features in their applications, but because of the
toolkit's design affordances it is simply easy and natural to
do so.

DESIGN PROCESS

The previous two sections looked at the general principles
behind user-centered design of toolkits, as well as
introducing design affordances that suggests to the designer
how to use toolkit features. This section outlines the steps

toolkit builders can take to follow a user-centered design
approach. The steps reflect those found in more typical
user-centered design: observe users, design and prototype,
then repeat.

Identify Toolkit Domain

The first step is to identify the domain the toolkit will be
used in. What problem is the toolkit meant to solve? A
toolkit meant for building menu and form filling interfaces
will be quite different from one supporting the creation of
direct manipulation graphical editors. Toolkits for
applications with a prescribed look and feel (e.g., Motif)
will be different from those supporting a very configurable
look and feel. Special needs application domains such as
hypertext systems or groupware can benefit from toolkit
support quite unnecessary for most applications.

It is important to take this first step, so that it can be
determined what features will and will not be included in the
toolkit. As with end-user applications, the more general the
domain the more difficult it will be to construct a good
system which meets the needs of its users.

identify Developers

Having identified the target domain, it is then important to
identify the developers who will use the twolkit. Depending
on organizational considerations, this step will often
precede the first. Knowing the types of users will have
important consequences for how the toolkit will be
designed, the level of functionality provided, and how that
functionality will be delivered to the developer. A number
of important considerations can arise.

Programming Languages. What programming languages do
toolkit users already know? If possible, toolkits should
allow use of known languages, or at least have bindings for
familiar languages. If designing a toolkit in an unusual but
perhaps more elegant language would require a large amount
of learning, this might outweigh the advantages of using
the toolkit in the first place.

Previous Toolkit Experience. What other toolkits have
developers worked with? Wherever possible, a toolkit
should exploit already familiar concepts, which may include
things like main event loops and callbacks. Terminology is
also important, and familiar concepts should be given
familiar names. '

Learning Time. How much time is available for users to
learn and then use the toolkit? Will the toolkit be used for
short-term or long-term projects? For example, a longer
learning curve may be appropriate only when development
will take place over long periods of time, and when
sophisticated tools are required.

Identify Use of Toolkit

Toolkits can either provide building blocks for making
domain-specific objects, or the domain-specific objects
themselves. In the first case, the developers must act as
widget builders, creating high-level components that are
then used to construct the end applications. In the second
case, the high-level components in the toolkit are used
directly in the end applications.

As one example, a toolkit could provide all the buttons,
scrollers, etc. required to construct a file chooser dialog, or
could provide just the file chooser itself. Similarly, toolkits
could provide very general components, which developers
need to customize to use. Alternately, finished complete
components with particular behaviors could be included.

The choice will depend on the ways developers need to use
the toolkit. If only standard interface components are
required, the toolkit need stock only a fixed set of widgets.
Toolkits for larger problem domains may benefit from a
layered approach, where core functionality is provided but in
an extensible way. Developers extend the functionality to
create their own widgets. This approach might also be
beneficial for newer or more experimental domains.

Consider Target Applications

The toolkit features required by developers depend heavily
on the applications they will be constructing. Studying
these applications can suggest common needs that can be
translated into functionality and features that are best
incorporated into the toolkit. Existing applications in the
selected domain are the easiest to consider, but considering
possible future applications can be valuable as well. This
step is useful to decide what features are important to
include and which are unnecessary, refining decisions made
as a result of identifying the toolkit domain. Members of a
UIST Panel on X toolkits [13] argued that it is invaluable
to design toolkits in conjunction with a number of typical
target applications.

Design for Proper Use

The previous steps generated a set of necessary components
and features of the toolkit, raised issues concerning
flexibility of the components, and suggested information
about the implementation language, and other important
concepts. But combining and structuring this information
in a useful way is important as well.

A toolkit provides more than an alphabetic list of routines
in a library available to the developer. A toolkit should
contain a philosophy of how applications should be
developed using the toolkit, and should encourage

developers to construct good programs properly.

This is where design affordances can be used. Make it
obvious to the developer, through the structure of the
toolkit, how applications should be built. If features deemed
important or essential are hidden deep within the toolkit or
are difficult to use, they will be ignored. As described
earlier, the toolkit developer can greatly influence the way
the toolkit is used. Done properly, this can result in
developers building better programs.

There are other ways in which the toolkit developer can aid
the application developer in creating better programs. Good
documentation describing the toolkit can highlight not only
how to use particular widgets, but more importantly when
to use them. Example programs included with the toolkit
are extremely valuable resources, and probably more likely
to be used than even the best documentation. Good
examples can highlight instances of good interface design,

which are sure to be remembered when similar new projects
arise. Interface style guides (e.g. Motif Style Guide [9]), and
tools to help the developer follow them (e.g. KRI/AG [5))
can all assist in the process of creating better interfaces,

Iterate Design

Finally, it is essential to iterate the design, using
preliminary versions of the toolkit to design standard
applications, identifying problems, redesigning, and trying
again. The toolkit should be used by the application
developers, who will identify problems that would not be
found by the toolkit builders. As with applications, the
chance of getting the design right the first time are
extremely small. Iterating the design will help refine both
the set of features and the ways of structuring those
features.

ADDRESSING TOOLKIT ISSUES

The user-centered approach can be used as a framework for
considering problems and issues that arise in toolkit design
and use. This section looks at a number of these issues and
some of the proposed solutions from a user-centered
perspective.

Learning Curve

One of the most common complaints against user interface
toolkits has been the incredible learning curve often
associated with them. Toolkits can require learning hundreds
of new library calls, or in the case of object-oriented
toolkits, dozens of new object classes, each with potentially
large numbers of access methods. Achieving proficiency in
most modern toolkits is a long and painful process. Even
worse are layered toolkits that require knowledge of
underlying libraries. For example, proficient use of
MacApp [15] requires an intimate understanding of the
Macintosh ToolBox. Similarly, most higher level X
Windows toolkits demand knowledge of lower level Xlib
calls.

From a user-centered perspective, this sort of design is
appropriate only when developers already have the required
background knowledge or have compelling reasons to learn
it. When that knowledge is not present, higher level
libraries should be designed to encapsulate, and not just
extend lower level libraries. Implementation details should
be hidden, at least at first, requiring the minimum amount
of leaming to accomplish basic tasks. As more involved
tasks are attempted, underlying details may be exposed. The
amount of learning should be proportional to the
complexity of the task. In other words, simple things
should be simple, and hard things possible.

There are some systems that address this high learning
curve by trying to match its complexity with the needs of
the developer. The Simple User Interface Toolkit (SUIT)
[11] provides basic graphical interface components such as
buttons, sliders, text widgets, yet boasts a leamning curve
measured in hours, not weeks. SUIT was specifically
designed for quick learning, in particular for use by student
during a single course. InterViews [4] is one of several X
toolkits that requires no knowledge of underlying X
internals, catering to those with no need or desire to learn

them. Other learning aids exist outside the toolkits
themselves, ranging from books and sample pr - " t0
systems such as the View Matcher and others . it
IBM [14] to aid developers in coping with .ic 3
SmallTalk class library.

integrating Application Code

Toolkits are typically characterized by the separation of
interface and application code. While this separation is
generally seen as useful, one of the greatest problems with
toolkits is integrating application code. The most common
mechanism for this is the callback. Unfortunately, as the
number of interface components grows, so does the number
of callbacks, resulting in large amounts of application code
closely tied to the toolkit. Some interesting work was done
by Myers [6], who studied how developers used callbacks,
and from that identified common tasks they were used for.
This knowledge was then used to redesign a toolkit which
reduced the number of callbacks the developer needed.

Portabllity

Another general issue is that of portability, or allowing
applications developed with the toolkit to be used on
different physical platforms. While this is a generally
desirable feature for a toolkit, it will depend heavily on the
needs of the application developers, whether they must
support applications across several platforms. A number of
toolkits are available supporting some degree of portability
across platforms (e.g. XVT, SmallTalk/V, SUIT, X).

Another issue is supporting different look and feels from
the same code (e.g. an application's appearance can be
toggled to Motif or Open Look). This is becoming
increasingly necessary for application developers due to the
wide variety of look and feels and the high cost of building
systems. InterViews, for example, provides different
“widget factories™ for different look and feels, each with the
same programming interface. The end user can call up the
look and feel of choice when the application is invoked.

Extensibility and Abstraction

Different toolkits provide vastly different levels of support
to the developer. At the bottom level, simple graphics
primitives (e.g., drawing points, lines, circles and bitmaps)
are technically sufficient for designing any interface, albeit
with incredible effort on the part of the developer. At a
much higher level, complete dialog boxes can be provided
by the toolkit, saving countless hours of programming
time, but severely restricting the flexibility of the resulting
interface. Extending the interface is possible with low-level
primitives available, yet higher level toolkits can make
extensions almost impossible.

This is inherently a trade-off, between the time saved by
high-level toolkits, the configurability provided by the low-
level toolkits, and the degree of standardization required. Yet
this is again best understood in terms of the developers
needs. Time will only be saved by high-level components if
the components needed by the developer are provided.
Configurability may not be as important if the proper
components are available, if the task domain requires little

variation, or if the developers are not themselves skilled at
widget design.

An interesting approach to this problem is taken in
InterViews. Many low-level components are provided in the
toolkit, e.g. allowing the creation of buttons with almost
arbitrary appearance and behavior. This provides a high
level of functionality, but at the price of great complexity.
However, InterViews also provides a WidgetKit which
provides a simplified front end to the underlying
functionality. The WidgetKit allows developers to very
simply instantiate commonly used types of buttons, such
as push buttons and radio buttons. By taking this approach,
InterViews caters well to developers needing standard
components as well as those with a need to design custom
components. Simple things are simple, while harder things
are reasonable.

Internal Structure

Borenstein [1] has noted that many user interfaces are
among the worlds most horrible programs in terms of their
internal structure and maintainability. Much of this
difficulty is due to the inherently iterative design required in
developing interface software.

However, much of the difficulty can also arise from a
toolkit that does not adequately fit the needs of the
application developer. It is a rare project indeed that can
handle the entire interface in a completely standard way, and
that is completely supported by the toolkit. New interaction
techniques in particular can cause endless grief to the
developer, who must spend considerable time hacking
around the framework provided by the toolkit.

As a particularly pathological example, we developed an
object-oriented group drawing editor called GROUPDRAW
(3], which included large multiple cursors for all group
members that are always displayed on all workstations.
This technique has proved useful for allowing participants
to gesture around the drawing artifacts. However,
implementing multiple cursors with the toolkit we used
involved a great deal of effort, for the toolkit (as with most
window systems) supplies only a single cursor. As a
consequence, various pieces of the cursor handling code
found themselves into completely unrelated comers of the
application code. Here, the underlying toolkit had not
provided the primitives we required to implement this
feature, resulting in a confusing and difficult
implementation.

GROUPKIT: A CASE STUDY

We are currently developing a groupware toolkit called
GROUPKIT, described in detail elsewhere [12]. GROUPKIT
arose primarily out of our frustrations in building
groupware applications with conventional single user
interface toolkits [3]. As such, we were concerned with
building an infrastructure that would meet our needs. This
section reflects on our ongoing experience in working with
the GROUPKIT prototype, to help illustrate some of the
concepts of user-centered toolkit design.

From the beginning, we constrained the toolkit domain to
consider only real-time groupware applications for
geographically separated participants. These include
applications such as shared drawing and text editors,
analogies to face to face meeting tools, but excluding
asynchronous groupware such as electronic mail. The needs
of the two types of groupware are different enough that
supporting both is non-trivial.

Because groupware is a relatively new and very diverse
application domain, we knew the toolkit would have to be
designed in a very open-ended and extensible way. This
suggested the use of an object-oriented language. Since
most groupware is being developed in research labs, we felt
comfortable in assuming fairly technical developers, who
expect to build their own groupware-widgets from
primitives. The need for robust communications suggested
a Unix platform. Because of its flexibility and easy
composition of small interface components into larger
ones, we selected InterViews as the platform for building
GROUPKIT. While InterViews does have a reasonably high
learning curve, the basic mechanisms required by
GROUPKIT are relatively quickly absorbed.

In designing GROUPKIT, we began by selecting existing
groupware applications which we wanted to be able to
replicate using the toolkit. We also began to speculate on
the type of applications we might want to build in the
future. From looking at these various sorts of applications,
we distilled a preliminary set of requirements, which are
detailed in Table 1. We identified two types of

requirements. Human-centered requirements emphasize
groupware features that benefit end users — including them
in the toolkit encourages developers to include them in
applications, resulting in better programs. Programmer-
centered requirements emphasize the required technical
features hidden from the user — including them in the
toolkit aids the developer and results in quicker development
time and better structured programs.

We created a design affordance in GROUPKIT to meet the
first requirement, supporting actions (in this case gesturing)
over a work surface. Gesturing has been shown to be an
important activity in the shared workspaces that many
groupware programs strive to emulate {16]. Despite this
evidence, many shared workspace programs do not support
gesturing, likely because of the great implementation
difficulty [3]. GROUPKIT provides for a gesturing overlay
that supports gesturing over any workspace by adding a
single line of code to the application. Because the overlay
model is easily conceptualized by designers, and because
gestures are so easy to incorporate, it serves as a design
affordance, encouraging developers to think about gesturing
and to include it in their programs where appropriate,
thereby producing better groupware programs.

As another example, we designed a feature called open
protocols as part of our registration system. Because
different groups have different work practices, it is necessary
to accommodate different working styles in the software.
Open protocols allow different registration modules to be
easily added to groupware applications, where each module

Requirements

Human-centered requirements

Rationale

Examples

Supporting multi-user actions over a Human factors work indicates people ofien « provide support for gesturing

visual work surface gesture over and annotate diverse artifacts « provide support for graphical annotation

Structuring group processes duringa Many conferences need to be structured, » provide various floor control policies

meeting but different groups require different sorts = support different registration methods
of structure in order to accept software = support latecomers to the conference

Integration with conventional ways

People are comfortable with using other

» integrate other forms of communication

of doing work media, e.g. telephone and other programs « allow use of single-user applications
Brogrammer-ceniered requirements
Technical support of multiple and Programmer must, for any conference, » provide processes for basic conference
distributed processes manage a set of multiple, distributed management

processes, and connections between them, « provide a robust communications

including starting up connections, keeping infrastructure

them active, and tearing them down. « provide support for persistent sessions
Technical support of a graphics Many applications can be seen as shared « provide primitives to a shared graphics
model visual work surfaces, which will require library

textual and graphical primitives which can < provide object concurrency control
cope with issues such as concurrency and « separate the view of an object from its
WYSIWIS view sharing_ underlying representation

Table 1. Human-centered and programmer-centered design requirements in GROUPKIT, showing the requirements, the rationale
behind the requirements, and several examples of specific guidelines which could be used to develop the tookit.

can implement a particular registration style best suited to
the needs of the group. Open protocols serve as a design
affordance by facilitating this flexible and open-ended design
that is needed to accommodate group differences.

The toolkits development was accompanied by the
development of several applications we deemed typical for
the application domain. These included a group sketchpad, a
group drawing program, a shared terminal, a brainstorming
tool, and a voting tool. This concurrent development
highlighted a number of problems in early designs,
resulting in numerous changes and one complete
reorganization of the toolkit structure. As we continue to
work with GROUPKIT, we expect further changes and
additions to be made, both in the toolkit and our design
requirements.

SUMMARY

This paper has applied many of the user-centered design
concepts traditionally used for designing user interfaces to
the design of interface toolkits. We believe it is important
to view toolkits not as entities in themselves, but tools
which are used by developers to accomplish a task, that of
building application programs. Only by analyzing the work
and needs of the developer can we adequately support that
task.

The notion of design affordances reinforces the relationship
between the toolkit and the developer, emphasizing the need
for making important features and their uses visible and
obvious. Design affordances can reinforce an underlying
toolkit philosophy, and if used correctly, assist developers
in creating applications that better suit the needs of their
users.

Finally, we feel the user-centered approach is a valuable
framework for considering issues related to toolkit design.
When problems are encountered by developers in building
applications, the language of user-centered design can help
explain and perhaps solve these problems.

REFERENCES :

1. Borenstein, N., Programming as if People Mattered.
1991, Princeton University Press.

2. Gaver, W. Technology Affordances. in ACM SIGCHI
Conference on Human Factors in Computing Systems.
1991.

3. Greenberg, S., Roseman, M., Webster, D., and
Bohnet, R., Human and Technical Factors of

10.

11.

12.

13.

14.

15.

16.

Distributed Group Drawing Tools. Interacting with
Computers, in press, late 1992,

Linton, M.A., Vlissides, J.M., and Calder, P.R.,
Composing User Interfaces with InterViews. /EEE
Computer, 1989. 22(2).

Lowgren, J. and Nordqvist, T. Knowledge-Based
Evaluation as Design Support for Graphical User
Interfaces. in ACM SIGCHI Conference on Human
Factors in Computing Systems. 1992,

Myers, B. Separating Application Code from Toolkits:
Eliminating the Spaghetti of Call-backs. in ACM
Symposium on User Interface Software and
Technology (UIST *91). 1991.

Myers, B. and Rosson, M. Survey on User Interface
Programming. in ACM SIGCHI Conference on
Human Factors in Computing Systems. 1992,
Norman, D., The Psychology of Everyday Things.
1988, Basic Books, Inc.

Open Software Foundation, OSF/Motif Style Guide.
1988.

Ousterhout, J.K. Tcl: An Embeddable Command
Language. in Proceedings of the 1990 Winter USENIX
Conference. 1990.

Pausch, R., Young, N., and DeLine, R. SUIT: The
Pascal of User Interface Toolkits. in ACM Symposium
on User Interface Software and Technology (UIST 91).
1991,

Roseman, M. and Greenberg, S. GroupKit: A
Groupware Toolkit for Building Real-Time
Conferencing Applications. in ACM Conference on
Computer-Supported Cooperative Work (CSCW ‘92).
1992,

Rosenberg, J., Asente, P., Linton, M., and Palay, A.
X Toolkits: the Lessons Learned (Panel Session). in
ACM Symposium on User Interface Software and
Technology (UIST '90). 1990.

Rosson, M., Carroll, J., and Sweeney, C. A View
Matcher for Reusing Smalltalk Classes. in ACM
SIGCHI Conference on Human Factors in Computing
Systems. 1991,

Schmucker, K., MacApp: An Application Framework,
in Byte. 1986, p. 189-193.

Tang, J.C., Findings from observational studies of
collaborative work. International Journal of Man
Machine Studies, 1991. 34(2): p. 143-160.

