Supporting Command Reuse:
Mechanisms for Reuse

Saul Greenberg
Department of Computer Science
The University of Calgary
Calgary, Alberta, Canada T2N 1N4
email: saul@cpsc.ucalgary.ca

Ian H. Witten
Department of Computer Science
University of Waikato
Hamilton, New Zealand
ihw@waikato.ac.nz

Abstract: Reuse facilities help people to recall and modify their earlier activities and re-submit them to the
computer. This paper examines such mechanisms for reuse. First, guidelines for building reuse facilities are
summarized. Second, existing reuse facilities are surveyed under four main headings: history systems, adaptive
systems, programming by example, and explicit customization. The first kind relies on temporally ordered
lists of interactions, the second builds statistical dynamic models of past activities and uses them to expedite
future interaction, the third collects and generalizes more extensive sequences of activities for future reuse,
while in the fourth the user collects items of interest explicitly. Third, the paper presents WORKBENCH, a
reuse facility that uses an empirically-derived history system as a way of capturing and organizing one’s
situated activities. An appendix reports a study of a widely-available history system, the UNIX csh, and
explains why it is poorly used in practice.

Keywords: reuse facilities, interface guidelines, history systems, predictive interfaces, programming by
example, customizable interfaces, human computer interaction,

1 Introduction

Users often repeat activities that they have previously submitted to the computer. In command-driven systems, these
activities comprise both individual commands and command lines complete with filenames and options. Likewise,
people repeat the ways they traverse paths in menu hierarchies, select icons in graphical interfaces, navigate through
file hierarchies, and choose document nodes in hypertext systems. Yet recalling the original activity can be both
difficult and tedious. For example, mental contexts must be re-created for complex activities, command syntax or
search paths must be remembered, input lines retyped, icons found, directories and files opened, and so on.

There is potential for a well-designed reuse facility to alleviate the problems of activity reformulation by keeping
previous activities that are likely to be repeated ready to hand. Interactive reuse facilities allow users to recall,
modify, and re-submit previous entrics to computers. Clearly, this is only effective if recalling old entries is easier
for the user (cognitively and physically) than constructing new ones. Salient differences between reuse facilities arise
from their choice of pertinent offerings and from the operations they provide to manipulate them.

Reuse facilities abound in every day life. A cook can flag preferred recipes in a cookbook with bookmarks.
“Adaptive” marking also occurs because the pages fall open to popular locations through wear of the binding. An
audiophile returns records to the top of the pile so that popular ones tend to remain near the top. A carpenter’s
workbench has a work surface large enough to keep recently used tools close by.

Reuse facilities abound for computers as well. They fall into four classes. The first comprises history mechanisms

that let users manipulate a time-ordered list of their previous interactions. Items are retrieved and selected through
textual syntactic constructs, by pointing to menu items and buttons, or by editing dialogue transcripts. We include

Supporting Command Reuse: Mechanisms for Reuse 1 Greenberg and Witten




in this category history to support the way people navigate to items in networks, as in hypertext, file hierarchies,
and menu hierarchies. The second class, adaptive systems, uses statistical models of previous inputs to predict
upcoming ones. Examples are hierarchical menus that are dynamically configured to give preference to high
frequency items, and text predictors that maintain statistical models of the text entered so far to predict future
submissions. The third class, programming by example, addresses the reuse and generalization of long input
sequences. The final class, explicit customization, provides tools for users to tailor their working environment to
their own liking.

This paper examines existing reuse facilities, beginning with a summary of important design guidelines culled from
the literature (Section 2). Sections 3 through 6 surveys schemes for reuse under the four class headings mentioned in
the previous paragraph, and illustrate how the diversity of techniques fit the design guidelines. Section 7 describes
WORKBENCH, a novel reuse facility that follows the metaphor of a handyman’s workbench. It incorporates many of
the reuse design guidelines. Through direct manipulation editing, WORKBENCH allows the user to pick items off a
history list and stash them temporarily on a visible tool shelf or place them semi-permanently within a drawer of a
tool cabinet. Finally, an appendix shows the results of a study of 168 users using one particular history system, the
UNIX csh. By comparing actual usage to the theoretical potential of reuse, we see how poorly csh performs and
suggest how such history systems can be improved.

2 Designing Reuse Facilities: A Summary of Guidelines

This section summarizes guidelines applicable to the design of reuse facilities, listed in Table 1. There are three
fundamental design requirements: a user’s previously submitted activities should be available for recall; activities
should be grouped into high-level task sets and switching between these sets should be supported; and end-user
customization of activities and task sets should be permitted. These guidelines are derived from our own empirical
studies (Greenberg 1993; Greenberg and Witten 1988; Greenberg and Witten 1993), from usage observations of other
researchers (Bannon, Cypher, Greenspan and Monty 1983; Card and Henderson Jr 1987; Cypher 1986), and from
design insights provided by existing systems (as surveyed in this paper). This section provides only brief
descriptions of the guidelines; readers are referred to the original papers for full detail and argumentation.

2.1 A user’s previously submitted activities should be available for recall

A major theme of most reuse facilities is to allow users to repeat a single activity identical or similar to one invoked
previously. The minimum requirement for a useful system is that the interface must supply users with good
candidates for reuse, and that recall should be less work than re-entering activities (Table 1, guidelines 1a,b,c)
(Greenberg and Witten 1993).

There are several reasonable strategies for allowing activities to be reused, as outlined in Sections 3 through 6. Items
can be recorded into a time-ordered history list and presented to the user through various presentation methods (as
evaluated in Greenberg and Witten (1993) (guidelines 1d,e). Alternatively, the system can use schemes other than
recency to favor certain activities or others (e.g. adaptive methods, end-user customization) (guideline 1f). We have
noticed that when people use history, the items they recall tend to be reused again and again (Appendix A). These
items should somehow get preferential treatment (guideline 1g).

Most of the approaches for reuse require that activities must be recorded in a workspace if they are to be reused.
However, there is no real need to show these activities in their raw (and often ugly) syntactic form. Instead,
meaningful symbols that remind users of the meaning behind an action can label an activity (guideline 1h). For
example, the UNIX command

lpr -Palw3 -d galley.dvi

could be shown instead as the more meaningful (to the user, at least) “Print text galley.” Similarly, symbols can
represent other attributes associated with an activity. Each entry can be annotated with extra information, such as
help text or a property sheet specifying new input parameters (guideline 1i). For example, the help string “Print the
paper (a LaTeX document) onto the printer in the main office” may be attached to the above command line.
Depending on how one selects the symbol, the activity may be executed, help text displayed, or even a property
sheet raised for further clarification.

—Table 1 around here—

Supporting Command Reuse: Mechanisms for Reuse 2 Greenberg and Witten




2.2 Support grouping of activities into high-level tasks, and switching between tasks
Activities are not necessarily independent of each other, but may be related in many ways. First, linear sequences of
activities may represent the steps of a repeatable procedure. If the procedure can be captured, the user may recall the
entire procedure in a single step (Table 1, guideline 2a) (Witten, MacDonald and Greenberg 1987).

Second, users may partition their actions and the objects they manipulate (such as files) into sets of goal-related
tasks, each called a task set. Bannon, Cypher et al (1983) studied UNIX users, and noticed that people performing
particular tasks would consistently use the same particular command lines. These differ from procedures as command
lines did not always follow in the same order or frequency, and that the activity selected at any moment from the task
set seemed to depend on the user’s particular circumstances. Also, other activities loosely related to the task set may
be interposed from time to time.

Third, relations between activities may arise from the function they serve, rather than the particular task they address.
Example functions are shaping text, orienting oneself in the environment, process management, printing to various
devices, and so on (Hanson, Kraut and Farber 1984). We believe it self-evident that users organize their activities in
many (perhaps vague) ways throughout the computer dialog. The implication is that the system should somehow
group together those activities associated with a task or function, and present them to the user as a set (guideline 2b).

Tasks are not invoked sequentially, but are interleaved because the user switches, suspends, and resumes his goals
(Cypher 1986). For example, a user may be “simultaneously” working on a document, reading some mail, chasing
references, and so on, Because tasks are frequently interrupted, the system should save and restore the task state
between excursions, and allow users to navigate easily between the different sets of activities associated with the
tasks (guideline 2c). Since these task sets can act as visible place-holders to reduce one’s mental load, task switching
and resumption should be fast, and should recreate as much as possible of the user’s mental context (Card and
Henderson Jr 1987) (guideline 2d).

Of course, task sets are not necessarily independent from one another, and may be related in quite strong ways
(perhaps as a goal/sub-goal relationship). Information in one workspace may be related to another, and the display
should make such relations obvious. Also, items from one task set can be useful in others. Items could be shared
among several tasks, and their visual presentation should be task-specific (Card and Henderson Jr 1987). Inter-
dependencies should be allowed between task sets and the items they contain (Bannon, Cypher et al 1983) (guideline
2e,f).

2.3 Support end-user customization of workspaces

A workspace is a software tool that not only keeps activities available for reuse, but allows them to be organized
into related sets. Yet who actually builds and maintains workspaces—the overall structure, the activities included,
and the symbols chosen? From a population perspective, designers can create only a few default workspaces, as there
is little overlap between what individuals actually do (Greenberg and Witten 1993). Particular users have their own
unique task sets, and no universal scheme can cater to individual idiosyncrasies. Ideally, when a need arises that is
not addressed well by predefined workspaces, the system should try to create one for the user. However, this will be
at best a close approximation to what the user really requires. Alternatively, each user should be able explicitly to
create the workspace organization that best suits their needs (Table 1, guideline 3a). As user needs, tasks, and
preferences change over time, the workbenches and their contents should be easily modifiable (guideline 3b.c).

Users, however, will not take advantage of a customizable workspace facility if it involves a significant overhead.
The interface must therefore minimize the mechanical and cognitive overhead of manipulating workspaces (guideline
3d). But how can this be accomplished? Even with the best interface, consider the cognitive overhead of forming
activities collected by a workspace. If users must anticipate what they are going to do, then the burden of collecting
the appropriate activities into the workspace will be high. People may not know precisely what activities are required
for their task. Those that are known must be composed, debugged, and tested to ensure that they perform correctly.

A better approach would have users create candidates for a workspace by recalling previous activities (Greenberg
1993; MacLean, Carter, Lovstrand and Moran 1990). By merging a reuse facility with a customizable workspace, and
by allowing old activities to be changed into workspace items, considerable power can be gained. Users would not
only be able to redo old actions but could use the history list as the primary source of tried and tested candidates for
their task sets. They could select, copy, and add them directly into their workspace (guideline 3e). The potential
benefits are important. First, workspace items do not have to be anticipated. Instead, users can perform their tasks as

Supporting Command Reuse: Mechanisms for Reuse 3 Greenberg and Witten




normal and decide at any time to assemble the relevant previous activities that make up the task sets. Second,
because these items are directly available, they are recalled rather than composed. Third, they have already been
debugged and tested to some extent. Finally, interaction tedium is minimized, because modern techniques for
selecting and transferring activities (the cut/copy/paste metaphor) take only a moment.

Finally, MacLean, Carter et al (1990) argue that end-user customization will occur best within a community that has
a culture of changing the workstation environment. Users not only create innovations useful to themselves, but may
recognize when things are of value to the community at large. Specialists can reduce a non-programmer’s burden by
bundling up activities into a simple interface, and then passing it on. Even if the fit is not perfect, non-programmers
may be able to modify the workspace to their particular task by simple changes (guideline 3f).

The remainder of this paper examines particular systems built to support reuse. Generic design ideas of these
facilities are abstracted, and (when necessary) related to the guidelines of in Table 1.

3 Reuse through History Mechanisms

History mechanisms assume that the last few user submissions are good candidates to make available for reuse (see
guidelines 1a-d). This notion of “temporal recency” is cognitively attractive because users generally remember what
they have just entered and can predict the offerings the system will make available to them. Little time is wasted
searching in vain for missing items.

By far the most common reuse facility available, history mechanisms are implemented across diverse systems in a
variety of flavors. Four fundamentally different interaction styles can be identified: glass teletypes, graphical
selection, editing transcripts, and navigational traces. The first three pertain to command-line interfaces, while the
last applies to systems in which users traverse some information structure.

3.1 History in glass teletypes

Traditional command-line dialogues were created for the teletype, and as a result many of today’s VDUs are still a
fixed viewport into a virtual roll of paper. Two history systems designed for these “glass teletypes” are the UNIX csh
and the INTERLISP PROGRAMMER'’S ASSISTANT. Both systems have users retrieve old commands by “history
directives,” themselves commands interpreted in a special way.

UNIX csh maintains an invisible record of user inputs, where every command is recorded in a numbered event list
(Joy 1980). Special syntactic constructs allow previous events to be partially or completely recalled, either by
position on the list (relative or absolute) or by pattern-matching. The events can be viewed, edited, or re-executed.
Although the set of predictions is in principle unbounded, in practice it is small, because users forget all but the last
few items they have entered. While users may request a snapshot of the event list, they rarely do so due to the extra
work and time involved.

Figure 1 illustrates an event list (top box) and a few possibilities of csh history in use on the next event (bottom
box). Inputs in the bottom left column are translated by csh to the actions shown in the middle, and the right
column describes the semantics of the history directives. The syntax is quite arcane, and deters use of the more
powerful features (Greenberg 1988; Lee 1988). Since the event list is generally invisible, it is difficult for the csh
user to refer to any but the last few events.

—Figure 1 around here—

Another functionally powerful history mechanism is the PROGRAMMER'’S ASSISTANT, designed for the INTERLISP
programming environment (Teitelman and Masinter 1981; Xerox 1985). Although INTERLISP is window-based, the
top-level “Interlisp-D Executive” occupies a plain scrolling window where the user types lisp expressions (Figure 2).
Historical events may be selected and processed by special command directives entered in this window. For example,
the request

USE cons FOR setq IN -1

will replace “setq” by “cons” in the previous command. Through the history mechanism, users can retrieve and
manipulate several events at a time, specify iteration and conditionals, edit items, undo effects of previous entries,

Supporting Command Reuse: Mechanisms for Reuse 4 Greenberg and Witten







