Supporting Command Reuse:
Empirical Foundations and Principles

Saul Greenberg
Department of Computer Science
The University of Calgary
Calgary, Alberta, Canada T2N 1N4
email: saul@cpsc.ucalgary.ca

Ian H. Witten
Department of Computer Science
University of Waikato
Private Bag 3105
Hamilton, New Zealand
ihw@waikato.ac.nz

Abstract: Current user interfaces fail to support some work habits that people naturally adopt when
interacting with general-purpose computer environments. In particular, users frequently and persistently repeat
their activities (e.g. command line entries, menu selections, navigating paths), but computers do little to help
them to review and re-execute earlier ones. At most, systems provide ad hoc history mechanisms founded on
the premise that the last few inputs form a reasonable selection of candidates for re-use.

This paper provides theoretical and empirical foundations for the design of a reuse facility that helps people to
recall, modify and re-submit their previous activities to computers. It abstracts several striking characteristics
of repetitious behaviour by studying traces of user activities. It presents a general model of interaction called
“recurrent systems.” Particular attention is paid to the repetition of command lines given a sequential history
list of previous ones, and this distribution can be conditioned in several ways to enhance predictive power.
Reformulated as empirically-based general principles, the model provides design guidelines for history systems
specifically and modern user interfaces generally.

Keywords: reuse facilities, history systems, command-based systems, design principles, human-computer
interaction.

1 Introduction

There is much repetition in computer use. Yet most interfaces offer little help for reviewing and reusing previous
submissions. As a result, users often find themselves retyping command lines or reselecting menu items that
they had entered previously. To relieve the tedium, some systems incorporate a history mechanism that allows a
user to recall old submissions. These are invariably based on the premise that recently entered submissions are a
reasonable working set of candidates to keep available to the user for reselection. But is this premise correct?
Might other strategies work better? Indeed, is the user~computer dialog sufficiently repetitive to warrant some
type of reuse facility in the first place? As existing history mechanisms were designed by intuition rather than
from empirical knowledge of human-computer interactions, it is difficult to judge how effective they really are
and what scope there is for improvement.

This paper assesses the extent to which people reuse their previous activities. Although the idea of reuse is
simple—anything used before may be used again—it is only effective when recalling old activities is less work
for the user (cognitively and physically) than submitting new ones. Consider a user who has submitted »
activities to the system over time (say n > 100) and whose next activity is identical to some previous one. An
optimal reuse facility would be an oracle that correctly predicted when an old action would be reused, and then
selected the correct one and submitted it to the system in the user’s stead. In contrast, a non-predictive system
that merely presents the user with all previous n submissions would be less effective, for the user’s overhead now
includes scanning (or remembering) the complete interaction history and selecting the desired action. Real
systems are situated between these extremes. A small set of reasonable predictions p is offered to the user

(p << n), sometimes ranked by probability. The intention is to make the act of selecting a prediction less work
than entering it anew; the metric for “work™ is, of course, ill-defined.

Supporting command reuse: Empirical foundations and principles 1 Greenberg and Witten, 1993




Schemes for activity reuse are based upon the assumption that the human-computer dialog contains repetition.
Yet very little critical attention has been given to this assumption. Section 2 introduces a model of human-
computer dialog called recurrent systems, where most users predominantly repeat their previous activities. Such
systems suggest potential for activity reuse because there is opportunity to give preferential treatment to the large
number of repeated actions. A few suspected recurrent systems from non-computer domains are summarized in
this context to help pinpoint salient features.

The remainder of this paper investigates recurrences exhibited by 168 subjects using the UNIX command
interpreter csh. Section 3 describes the method of data collection and introduces some terminology, while Section
4 reviews previous studies on how people enter UNIX commands (as opposed to complete command lines).
However, we believe that studies of commands only have limited utility. As commands often act on objects and
are qualified with options, it is important to look at the command line as a whole.

Next, three questions particularly relevant to reuse facilities are addressed, all concerning the statistics of complete
command lines entered by the user to UNIX. First, how often do users repeat themselves? Section 5 details how
often a UNIX user actually repeats command lines over the course of a dialog. Particular attention is paid to the
variation in this rate between groups and between individuals, and its stability over the number of command lines
entered. Second, how well does recency behave as a predictor of future events? Section 6 gives the probability
distribution that the next command line will match a previous input, measured as a function of the number of
entries that have elapsed from the matched input to the current one. Third, given that people repeat themselves,
what is the best way to predict (and offer for reuse) what will be done next? Section 7 examines several predictive
schemes for reuse through an empirical study that derives the probability distribution of the next activity given a
list of previous ones.

The paper closes by reformulating the study’s findings as empirically-based general principles that govern how
users repeat their activities on computers. These provide a basis for design guidelines for history mechanisms
specifically and modern user interfaces generally.

2 Recurrent Systems

Reuse facilities presuppose that people repeat their activities. But do they do so enough to repay the overhead of
learning and using a reuse facility? And how are these activities repeated? Are patterns of repetitions arbitrary or
system-specific, implying that reuse facilities must be customized to be worthwhile? Or can general patterns be
found in most dialogs, implying the possibility of generic reuse facilities? This section provides evidence for the
latter view by defining a model of human-computer dialog called “recurrent systems.”

An activity is defined as the command formulated by the user and submitted to the system. Its execution is
expected to gratify the user’s immediate intention. Activites are the unit entered to incremental interaction, a
human-computer dialog characterized by successive requests that are submitted to the computer and responded to
in turn (Thimbleby 1990). Entering command lines, querying databases, choosing items from a pallete, and
locating and selecting items in a menu hierarchy are some examples. Copy typing is not, as it is continuous
rather than incremental, and is not a cognitive activity (at least, not for the skilled typist).

A recurrent system is defined as an open-ended system where users predominantly repeat activities they have
previously submitted to the computer. In other words, although many activities are possible, most (but not all)
of a user’s entries are repetitions of their previous ones.

The frequency of repeats, called the recurrence rate, is the probability that any activity is a repeat of a previous
one. Let total activities be the number of all submissions a user has entered, and the vocabulary size be the count
of different submissions in the set. The recurrence rate R over a set of user activities is calculated as:

_ total activities - vocabulary size
total activities

R x100%.

Although many old activities are repeated, new ones are constantly added to the repertoire. The rate at which new
activities are composed and introduced to the dialog is the composition rate C, simply expressed as C = 100 - R.
As there are a very large number of possible activities available, new activity formation within recurrent systems
is open-ended. Even when new activities are continually generated, it is expected that these will remain a small
subset of the activities that could be formed by any one user.

We have performed several empirical studies of recurrent systems. These included information retrieval from
manuals, telephone dialing patterns, UNIX command and command line use (reported in this paper), and the way

Supporting command reuse: Empirical foundations and principles 2 Greenberg and Witten, 1993




people use a functional programming language (Greenberg 1993). From these, we abstract typical characteristics
of how individuals interact with such systems.

1. Many activities are repeated, with the recurrence rate R ranging between 40-85%; the exact value depends
on the application domain and the individual's usage patterns. That is, there is a probability of 40-85%
that the next activity the user submits to the §ystem is an exact duplicate of a previous submission.

2. Recurrent systems incorporate new activities regularly, where the composition rate C falls between 15—

60%. That is, there is a probability of 15-60% that the next activity submitted by the user is novel.

. The set of activities invoked by any particular user is typically a small subset of the total activities

usually available.

4, Although the overall recurrence rate remains fnore or less constant over time, the frequency at which

particular items are repeated over the course of the interaction waxes and wanes.

. The probability of an activity recurring in s (although not linearly) with its recency of selection. That

is, recently-submitted items are more likely to be repeated than those last submitted a long time ago.

6. While there is some overlap, the sets of activities invoked by different users of the system are mostly
disjoint.

7. Different people may repeat the few activities in common at quite different rates.

w

W

This definition and list of properties is not a strong one, for the boundary between recurrent and non-recurrent
systems is not well-defined. Such a boundary specification, even a “fuzzy” one, would be subjective and would
also depend upon other aspects of the system being investigated. For example, time between recurrences might be
a consideration, where short-term recurrences are cov(.inted but those repeated only after long intervals are discarded.
Still, the properties provide a reasonable checklist far judging whether particular systems have potential for reuse.

It may seem that, at least on the surface, recurrent systems are just another way of denoting patterns of behaviour
already well described by Zipf’s law (Zipf 1949). However, major differences exist.

+ Many human-oriented observations characterised by Zipf’s law are based upon data pooled over the entire
population. One study, for example, examined the statistics of all terms used to retrieve items over all
users of two separate bibliographic data bases, and describes how they conform to Zipf’s law (Bennett
1975). Similar large-scale statistics have been applied to many facets of library science; a list is provided
by (Peachey, Bunt and Colbourn 1982). Yet there is no evidence that the same distribution applies to
individuals. Recurrent systems, on the other hHand, are centered around the statistics of activities of
individuals, rather than the pooled statistics of large groups.

« Zipf’s law typically deals with very large numbers, and tends to break down with few observations (see
Bennett 1975 for one example). Recurrent syftems do not break down, and the analysis below shows that
patterns within recurrent system are apparent/within small slices of sequential activities entered by a single
individual.

As Zipf’s law describes a frequency distribution, it does not account well for items that are heavily used in
a short-term interaction but rarely used afterwards, or ones whose frequencies fluctuate over time (point 4
above). Recurrent systems handle this well sijice they emphasise recency as well as frequency of use (point
5).

3 Data Collection Methodology
The remainder of this paper presents our empirical study and discussion of UNIX as a recurrent system, This
section introduces some terminology and describes the way data was collected in our UNIX study.

3.1 Definitions

A command line is a single complete line (up to a terminating carriage return) entered by the user. This is a
natural unit to consider as an “activity” because commands are only interpreted by UNIX csh when the return key
is typed, and the complete line is a more detailed reflection of one’s intentions than just the command itself.
Command lines typically comprise an action (the command), an object (e.g. files, strings) and modifiers (options
that modify the behaviour of the command). The coinmand is the verb of the command line.

A history list is a sequential record of command lines entered by a user over time, ignoring boundaries between
login sessions. Unless stated otherwise, the history list is a true sequential record of every single syntactically
correct command line typed (erroneous submissions noticed by csh are not included). Duplicate activities, for
example, are included.

The distance between two command lines is the difierence between their positions on the history list. A working
set is a small subset of items on the history list. The number of different entries in the history list is the
command line vocabulary. All white space separaung words in a command line are considered equal, so two lines

Supporting command reuse: Empirical foundations and|principles 3 Greenberg and Witten, 1993




that differ only in their use of white space are equivalent. However, syntactically different but semantically
identical command lines are considered distinct.

3.2 Data Collection
Command-line data was collected from users of the csh command interpreter (Joy 1980). The selection and
grouping of subjects, and the method of data collectjon, are as follows.

Subjects. The subjects were 168 unpaid volunteers, all university students or employees.

Subject use. Four target groups were identified, representing a total of 168 male and female users with a wide
cross-section of computer experience and needs. Salient features of each group are described below, while the
sample sizes are indicated in Table 1.

—Table 1 around here—

Novice Programmers. Conscripted from an introductory Pascal course, these had little or no previous
exposure to programming, operating systems, or UNIX-like command-based interfaces. They spent most of
their computer time learning how to program) and to use the basic system facilities.

Experienced Programmers. Members were senior computer science undergraduates, expected to have a fair
knowledge of programming languages and thf UNIX environment. As well as coding, word processing, and
employing more advanced UNIX facilities to fulfill course requirements, these subjects also used the
system for social and exploratory purposes.

Computer Scientists. This group, comprised of faculty, graduates and researchers from the Department of
Computer Science, had varying experience wglh UNIX, although all were experts with computers in
general. Tasks performed were less predictable and more varied than other groups, spanning advanced
program development, research investigation$, social communication, maintaining databases, word-
processing, satisfying personal requirements, and so on.

Non-programmers. Word-processing and document preparation was the dominant activity of this group, made
up of office staff and members of the Faculty\ of Environmental Design. Little program development
occurred—tasks were usually performed with|existing application packages. Their knowledge of UNIX was
usually the minimum necessary to get the job done.

Since users were assigned to subject groups only through their membership in identifiable user groups (e.g.
Computer Science graduate students), their placement in the categories above cannot be considered strictly
rigorous. Although it is assumed that they generally follow their group stereotype, uniform behaviour is not
expected.

Instructions to subjects. As part of the solicitation process, subjects were informed verbally or by letter
that:

data on their normal UNIX use would be monitored and collected at the command line level only;

the data collected would be kept confidential through use of anonymous reference;

at any time during the study period the subject could request that data collection stop immediately;
there would be no noticeable degrading of system performance;

if requested, data collected from a subject would be made available to him or her.

Subjects did not require nor did they receive any additional instructions during the actual study period. No subject
asked to be withdrawn from the experiment, and no-one asked to see their personal data.

Apparatus. A modified version of the Berkeley 4.2[UNIX csh command line interpreter was installed on three
VAX 11/780’s located in the Department of Computer Science and one VAX 11/750 in the Faculty of
Environmental Design, both within the University of Calgary. Many different terminals were available to
participants, most of which were traditional character-based VDU’s. In addition, Corvus Concept workstations
running the Jade Window Manager were available to members of the Experienced and Computer Scientist groups.

1For example, the command lines Is -las and Is -Isa are|treated as different vocabulary items, even though they mean the
same thing. Although this strategy overestimates the vocabulary size, a semantic analysis was deemed too expensive
for the large data set covered.

Supporting command reuse: Empirical foundations and principles 4 Greenberg and Witten, 1993







