
GROUPKIT
A Groupware Toolkit for Building
Real-Time Conferencing Applications

Mark Roseman
Saul Greenberg

Department of Computer Science
University of Calgary
Calgary, Alberta, Canada T2N 1N4
(403) 220-6015 roseman@cpsc.ucalgary.ca

ABSTRACT
This paper presents our approach to the design of groupware
toolkits for real-time work, and how the design is
instantiated in our toolkit, GROUPKIT. The design is
based on both the technical underpinnings necessary for
real-time groupware, and on user-centered features identified

by existing CSCW human factors work. We also present
three strategies for building GROUPKIT’s components.
First, an extendible, object-oriented run-time architecture
supports managing distributed processes and the
communication between them. Second, transparent
overlays offer a convenient method for adding general
components to various groupware applications, for example
supporting gestures via multiple cursors and annotation via
sketching. Third, open protocols allow the groupware
designer to create a wide range of interface and interaction
policies, accommodating group differences in areas such as
conference registration and floor control.

KEYWORDS
real-time groupware, toolkit, development tools

INTRODUCTION
Real-time computer conferencing applications have been a
major focus of groupware development efforts. Often
motivated by CSCW research, we have recently seen the
creation of numerous systems, such as shared text editors
[23], freehand sketching systems [13,22], structured

drawing programs [15], and group support systems [24].
Yet construction of these applications is fraught with
difficulties. Besides all the normal problems of building
single-user applications, the groupware developer must be
concerned with technical issues such as synchronization,
concurrency, communications, registration and more. The

Permission to copy without fee all or part of this material is
grented provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the
title of tha publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

@1992 ACM O-Lt9791-543-71921001010043...Sl .50

developer must also understand and incorporate the
fundamental CSCW human factors issues identified for
effective group work. Groupware toolkits are now
emerging that address some of these issues. By providing
the key components for common groupware needs, the
toolkits can reduce development effort, enable rapid
prototyping, and increase product quality of multi-user
applications.

Of course, there are many potential groupware applications,
and no one toolkit could cover all possibilities. In our case,
we are concerned with toolkits that assist in constructing
real-time work surfaces — shared visual environments
where one user’s actions are made immediately visible to
other users [11]. These work surfaces are useful in both
face to face and geographically distributed meetings. At its
simplest, a work surface is a “What You See Is What I See”
(WYSIWIS) space [27] that conference participants use for
creating, importing, displaying, and interacting with their
artifacts — usually text and graphics of some sort. Thus
work surfaces include generic applications such as shared
windows, whiteboards, structured drawing systems, and
shared editors. But work surfaces can be far more powerful
and specialized than that. For example, WYSIWIS could be
relaxed so that people could view the work surface from
different perspectives; an example would be a competitive
card game [26]. Specialized applications could expand the
notion of work surface to include tools for voting,
brainstorming, organizing ideas, and so on.

This paper discusses our toolkit design philosophy, as
embodied in GROUPKIT. We begin by listing a preliminary
set of requirements for groupware toolkits, derived from
both human factors work and technical innovations in
CSCW. The following section presents an overview of
GROUPKIT, with a detailed description of its technical
architecture. Examples of three strategies for designing
toolkit component are then given.

CSCW 92 Proceedings November 1992

43



TOOLKIT DESIGN REQUIREMENTS

In this section we propose and defend some of the

underlying design requirements we feel are important for a
real-time conferencing toolkit. We do not believe this list
is complete, nor will every item be necessary for every
groupware application. However, we do feel the

requirements listed will apply to a wide range of real time
conferencing applications, and that the y provide a
reasonable starting point for discussion. Requirements
listed in the first section are human-centered, and those in
the second are programmer-centered

Human-centered design requirements

Supporting multi-user actions over a visual work surface.
We believe there are several general but critical activities
that people do over a shared work surface, regardless of its
contents, Two of these, gesturing and annotation, are
described below.

a) Provide support for gesturing. Researchers at Xerox
PARC studied the use of conventional drawing surfaces by
small groups [28]. A critical finding was that participants
frequently gesture over the drawing surface: to enact ideas,
to signal turn-taking, to focus the attention of the group,
and to reference objects on the surface. Several recent
computer systems emulating group drawing surfaces
support gesturing with multiple cursors appearing on all
displays [13,2,15], and their usability studies confirm the
ubiquity of gesturing. We believe that gesturing can

enhance communication in many diverse types of
conferences, and should be supported at the toolkit level.

b) Provide support for graphical annotation. The Xerox
studies also noticed many instances of annotations made to
existing drawings, serving both as gestures (eg underlining
text while saying “this one here”) and as meta-level notes.
Several systems now incorporate graphical annotations of
their objects. FREESTYLE users, for example, can verbally

and graphically annotate bitmap snapshots; the results can

be mailed to others who can then play back the transcript

[9]. Both PROOF-MARKS in vmacs [18], and the
commercial MARKUP application allow comments and
markup symbols to be added to written documents. As with
gesturing, we believe that real-time group graphical
annotation over a work surface is useful in many situations
and should be supported by the toolkit.

Structuring group processes during a meeting
Some researchers believe that groupware should impose a
sociat model of interaction on the group. This is an explicit
attempt, based on management theory, to provide methods
for keeping the group on task, enforcing roles and
commitments, and making the group more efficient and
productive. There is certainly controversy between those
who believe that social protocol should be determined only
by the group members (eg [7]), by the software (eg [24]),
and somewhere in between (eg [16,14]). We believe that
some group process primitives should be provided by the
toolkit, accommodating groupware that wishes to control

meeting structure. The list below discusses only a few
group process requirements.

c) Provide various fIoor control policies. Floor control or
turn-taking mechanisms provide a way to mediate access to
shared work items. Lauwers [19] and Greenberg [14]
recommend that systems should “support a broad range of
[floor control] policies” to suit the users’ needs. Systems
such as SHAREDX [10] and ASPECTS (from Group
Technologies) support a few different policies, while
SHARE [14] strives to provide complete flexibility. Floor
control can be important in many situations, such as shared
screens allowing only serial interaction, or systems
following strict interaction models, such as a teacher
controlling which students can access the work surface.

d) Support different registration methods. Another part of
group process controls who is allowed to join the meeting.
For some meetings, anyone may be allowed to join. For
others only a select group can participate, or perhaps new
users must be “sponsored” by an existing user. Sometimes
more spontanems creation of conferences is desired [17]
while other situations require a central facilitator to handle
registration [24]. Toolkits should provide the flexibility to
support any reasonable registration process.

e) Support latecomers to the conference. A consequence of
spontaneous conferences is that all users will not join the
conference at the start. Provisions should exist allowing
newcomers to join at any time, as well as allowing existing
members to leave. Strategies must also be supported to
assist the newcomers in “getting up to speed.” This may
involve simply sending the current conference state to the
new user [15] or providing summary information on how
the conference has progressed over its lifetime.

Integration with conventional ways of doing work.

Groupware should not impose a barrier between “individual”
and “group” ways of working. For example, the system
should provide group members with ready access to their
individual work, and allow them to import it to a

conference. Additionally, all normal communication
channels (eg telephone, email) should be readily available.

f) Integrate other forms of communication. Voice
communication is an important factor in most conferences
[4], and given the ubiquity of telephones, we should
assume that a voice channel is available. While many real-
time conferencing systems assume a voice channel is
present, they do not explicitly support creating voice links.
Ideally, there should be a mechanism in the conferencing
system to establish voice conferencing — perhaps
automatically when a data conference is started. Similar
arguments hold for other channels that may be available
such as video links.

g) Allow use of single-user applications. Soon, most
computer applications may be designed to support multiple
users. Unfortunately, most of today’s applications support
single users only. There are several reasons why single-user

44



programs should be available in multi-user conference
settings. Groupware counterparts to single-user programs
may not exist; a person’s work may be accessible only
through a particular application; people are skilled on
particular applications. Conference users should be able to
view and interact with single-user systems through shared

screen or shared windows eg SHARE [12] and SHAREDX
[10]. The toolkit should provide shared windows or the
means to incorporate other shared window systems.

Programmer-centered design requirements

Technical support of multiple and distributed processes.
Most groupware, especially for geographically distributed
conferences, will require an architecture where multiple
(perhaps distributed) processes can communicate with each
other. While most operating systems provide process
control and inter-process communication, the programmer’s
job of initiating, maintaining and tearing down processes
and their communication channels is a tedious one. As
well, state information about sessions may need to survive
beyond the lifetime of a single processor meeting.

h) Provide processes for basic conference management.
Groupware applications must oversee all conference
management, which include activities such as participant
registration, initiation and teardown of meeting processes,
communications, and so on. Groupware toolkits have
placed much emphasis in providing capabilities for
conference management eg LIZA [11], CONFERENCE
TOOLKIT [3], and MMCONF [5]. We tQo believe that the
basic run-time infrastructure for conference management
must be supplied by the toolkit.

i) Provide a robust communications infrastructure. Any
groupware toolkit must provide the communications
facilities on which to build conferencing components. At
the very least, it must be possible for any process to send
messages to specific processes owned by conference users,
and it is preferable if a multi-cast facility is available to
broadcast a single message to all. Of course, the
communications demands will depend heavily on the way
the process architecture is determined. The trade-offs
between centralized and replicated architectures are well-
documented [20], with centralized architectures simplifying
concurrency control and replicated architectures being more
efficient and robust to machine failure.

j) Provide support for persistent sessions. Often computer
conferences will span more than a single session, for
example decision support meetings [24]. It is desirable to
maintain session state information over the full duration of
the conference. There should exist a general mechanism
whereby conference objects can be made persistent.

Technical support of a graphics model.
A visual work surface will require graphical and textual
primitives. Yet shared graphics require several capabilities
that are not present in single user systems.

k) Provide primitives to a shared graphics library. Many
groupware applications require graphical library primitives
for creating multi-user objects such as shared lines,
rectangles, circles and text. Greenberg, Roseman et al’s
discussion of GROUPDRAW [15] describes technical issues
of a shared object-oriented drawing package, and provides

their design of an abstract drawing object that can be sub-
classes into concrete objects such as shared lines [15].
Similarly, the fine-grained editing of simple graphics and
text objects in Bier and Freeman’s MMM system gives
insight into how shared objects should behave [1]. Similar
extendible graphics libraries should be provided by toolkits,
so that programmers can easily create shared interactive
graphical objects on the display.

1) Provide object concurrency control. Many groupware
conferencing systems support access to some type of shared
object, be it structured graphics or a text buffer.
Concurrency control is often needed to mediate access to the
object, for example, two people trying to manipulate the
same point on a line. In fact several concurrency schemes
have already been implemented in groupware toolkits
[25,26,1 1], Concurrency can be achieved through simple
locking, transaction mechanisms, or numerous other
schemes [8]. In addition, the degree of concurrency and
access to shared objects can be specified through the notion
of flexible coupling [6].

m) Separate the view of an object from its underlying
representation. Many single-user graphical systems
separate the properties of an object from its view on the
screen. Patterson argues that this separation is critical in
groupware [25,26], and that abstractions should be used to
create an interface-independent representation of data. As a
consequence, users can have multiple perspectives on the
same data.

GROUPKIT
GROUPKIT is a toolkit a programmer can use to develop
real-time computer conferencing applications for
geographically distributed or face to face meetings. It
provides not only support for basic connectivity, but also
support for higher-level human factors concerns. As it is
still being developed, we have not yet incorporated all our
design principles. However components are provided for
flexible policy conference registration, communications
support, flexible floor control, and gestural and annotative
communication.

GROUPK~ is written in C++, on top of the INTERVIEWS
toolkit [21]. Applications built using GROUPIUT will run
on any machine supporting INTERVIEWS, that is, Unix
workstations running X-Windows. GROUPKIT relies on
the INTERVIEWS glyph mechanism for its user interface
constructs. Glyphs are lightweight objects (similar to
widgets in other toolkits) that are composed to make
interfaces, The INTERVIEWS Dispatch library — a front
end to normal Unix sockets — is used for communications.

45



Process and Communications Run-Time Support
GROUPKIT’s technical infrastructure is based upon a
replicated architecture and communications support, as
illustrated in Figure 1. The infrastructure supports

conference registration and the subsequent communication
between processes owned by conference participants. This
is comparable to the communications support in
RENDEZVOUS [25] and the CONFERENCE TOOLKIT [3].
The remainder of this section describes the infrastructure
components by walking through an example scenario.

Registration. Suppose a user wants to create a shared
drawing surface, perhaps to discuss a design problem with a
remotely located colleague. On initiating the GROUPKIT-
based program, the user must first create a conference. This
is done through the Registrar Clienr, which provides an
interface to the central Registrar.

The Registrar allows the user to create, join or leave one or
more conferences. The Registrar Client is responsible for
implementing particular regiswation policies, eg deciding
who enters the conference, how they do so, and what the
interface looks like. While GROUPKIT allows new Clients
to be programmed, it also provides a library of predefine
Registrar Clients implementing particular registration
policies and user interfaces. One novel aspect of this
scheme is that it allows group members to use different
Registrar Clients to enter a single conference.

The Registrar is an independent process (invisible to the
user) that maintains a list of all conferences and their users.
One central Registrar would exist at each installation. The
Registrar itself is policy-free, and leaves it to the Registrar
Clients to implement a particular registration policy and to
present a reasonable interface to the user. This allows
different policies and interfaces to be implemented in order
to accommodate group differences.

Conference Initiation. In our scenario, the user has just
requested a new conference through the Registrar Client,
which in turn passes the request on to the Registrar. Next,
the Registrar Client asks the Coordinator to create a new
Conference object. The Coordinator acts as an intermediary
between the Registrar Client and application Conferences,
permitting multiple conferences (eg sketching and editing
applications) to share a common registration mechanism.
Its main duties are to create Conferences at the request of
the Registrar Client, and to direct requests from the Client
to the appropriate Conference.

The Coordinator then spawns a new process which
instantiates a Conference object. It is the Conference object
that actually runs the specific groupware application.
GROUPKIT provides a generic Conference object, which the
developer may subclass to provide extra functionality
required by the application. In this case, the generic

-

-++:’’:’=-’’”
‘-..

add-user ----
delete-user

R> display-users
*

,0 new-conference

0

0

delete-conference
display-conferences

Registrar
Client

❑ process

delete-user
join-to-user
join-from-user
create-conference
delete-conference

. . .
.D.Conference

applicati On-

\ specific
~,messages

f

“’’’’”m___+ socket
connection QI

o object object message~ ~as~ing

Figure 1, Communications infrastructure of GROUPKIT, showing message passing between objeets. Here, objects owned by
one user (rightmost Registrar Client, Coordinator, and Conference) interact with objects owned by another user, as well as the
central Registrar. Small font text indicates the message passing protocol.

46



Conference object is used, along with a programmer-defined
glyph (graphical interface) supporting a shared drawing
surface.

Conference Maintenance. Other users can also create
Conference objects. As each Conference locates the
meeting participants via the Registrar, communications
channels will be opened between all Conference objects.
Facilities in the generic Conference are provided for
exchanging messageswith other user processes.

Communications between distributed processes are
maintained by messaging objects. The two types of
messaging objects (“Writer” and “Reader”) provide a
convenient method of communicating with processes owned
by remote conference participants. These objects, derived
from the INTERVIEWS Dispatch library, provide a primitive
Remote Procedure Call (RPC) facility. Writer objects
specify messages they can send, while Reader objects
provide functions to be called when messageswe received.

Conference Leaving and Tern”nation. As with initiation,
conference leaving and termination is handled through the
Registrar Client. If a user wishes to leave the conference
without terminating it, their Registrar Client sends the
de 1 e t e - us e r message (Figure 1) to the Registrar.
Some Clients may permit explicit conference termination,
allowing any user to terminate the conference, while more
typically the Registrar Client for the last user to leave will
terminate the conference. This is done by sending a
de let e -conf erence message to the Registrar, which
will be rebroadcast to any remaining users’ Registrar
Clients.

Overlays
GROUPKIT provides components that maybe included in
any Conference object through an overlay strategy.
Overlays are transparent “windows” placed on top of the
main application graphics shown by the Conference object,
Currently, overlay components have been implemented for
gestural communication (via multiple cursors over a
surface) and annotative communication (via freehand
drawing over a surface), The motivation is that such
components could be useful for a variety of groupware
applications, as mentioned earlier.

Figure 2 provides a conceptual picture of adding an overlay
for displaying multiple cursors on an existing application
graphic. The transparent cursor overlay is written as an
INTERVIEWS glyph that overlays any other glyph. Neither
the cursor glyph nor the main application glyph need any
knowledge of the other. Input events are received by the
cursor glyph, which updates cursors as necessary. The
event (eg cursor motion) is then passed to the application
glyph, to use as needed. The application glyph need not
even know the event went through the cursor glyph. As
with single-cursor window systems, event-driven drawing
operations are performed normally by the application glyph,
based on these events, with the cursor glyph sketching the
cursors on top of the normal graphics.

/
/

0-’
----

/
/

,

Main
Application
Graphic
(e. g. Drawing

Edit or)

/--/
,-’

/
/

/
/

Transparent
Cursor
Overlay

M

-~ d

1##

I
I

Figure 2. Adding a multiple cursor overlay.

To incorporate the multiule cursor overlay into an
application;, the programme; instantiates a Cur;orOverlay
which surrounds the application’s graphic. Code in the
overlay’s constructor allows the CursorOverlay to
communicate with remote conference objects and inquire
about new conference users.

This technique, also used to implement the freehand
sketching overlay, seems very promising, Through the
composition mechanism, adding overlay components to
applications is extremely straightforward. As well, the
overlays are kept separate — conceptually and in the code
— from the underlying applications. Its strength is that the
overlay does not interfere with the underlying graphics of
the application, even if those graphics are changing.
Because of this, it is a trivial matter to add, for example,
annotation capabilities on top of a “live” shared terminal
application. Unlike other systems that only allow
annotation of screen snapshots (eg MMCONF [5]), the
underlying application can be fully active. It is expected
that further research will suggest other components that
could be transparently added to a variety of conferences.

Open Protocols
One design requirement for GROUP KIT is to provide
flexible policies where appropriate, allowing group
processes to be structured during a meeting, and to
accommodate group differences. Open protocols provide a
means of implementing this flexibility. They have three
components: a controlled object, a controller object, and a
protocol describing how the two communicate. The
controlled object’s behavior does not incorporate any policy
determining how its state can be manipulated. Instead, a
protocol is defined, and the object will obey any external
requests made to it to change its state. The controller is
just an external object that implements a particular policy
by the requests it sends to the controlled object.

Currently, two components have been implemented using
open protocols, a floor control module and a registration
module. We concentrate here on the regk.radon module.
Figure 3 shows the message protocol (beside the arrows)
between the Registrar (the controlled object) and its Clients

47



(the controllers). Here, the Registrar responds to any
request from its clients, allowing any client to ask the
Registrar to create a new conference, or conceivably even to
delete any user out of any conference. While this does
make it possible to create a “super-user” version of the
Client, it also provides the flexibility to create any number
of other Clients interfacing to the Registrar, without
making any changes to the Registrar itself. As examples of
this, the implementations of both a free and a restricted
registration policy are now described. Under a free
registration policy, new users may join any existing
conference. The implementation here is straightforward.
The Registrar Client sends an add-user message to the
Registrar, which is broadcast to the other Registrar Clients
in the selected conference. The Registrar Client also
requests the Coordinator to create a new application
Conference. The Conference makes connections with the
other users, and the interaction proceeds normally.

“’’s”=“’””.
.aw-confe,. n.e
delet. -c.nfe r.nce

I

di@ay-c. ”fex. n..B

add-user I ; ==::fl~-’i”’ Protocol
delete-user

dis~lay-user.

“’’ra* .O.ro’

Figure 3. Registration Protocol.

In contrast, a restricted registration policy does not permit
new users to join an existing conference unless “sponsored”
by an existing conference participant, Here, the Registrm
Client again sends an add-user message, which is
rebroadcast to the other users. At this point, the local
Registrar Client does not ask the Coordinator to create a
new conference. The remote users are asked by their
Registrar Clients if the new user should be accepted. A
remote user can accept the new user, and sends them a
message,prompting the new user to create the conference as
before. If rejected (either explicitly or by timeout), the
de let e -use r message is sent to the Registrar.

Floor control policies are handled similarly [14]. Each user
has a flag, specifying if their actions should affect the
conference or not. Any user can examine or change any
other user’s flag. A preemptive floor control scheme for
serial interaction, where a user can immediately seize
control from the current floor holder, can be implemented
by setting the local flag to write and setting all others to
no-write. The end result is that the local user gains
control of the floor until preempted by another user. A
ring-passing policy, where the floor may be seized only if it
is free (ie the previous floor holder has released it), is
implemented by setting the local flag to write only if all

others are currently set to no-write. MMCONF [5] uses
a similar strategy for floor control, but manipulates only a
single token, thus allowing less flexibility in protocols.

Again, this strategy seems useful in general. By providing
a simple protocol to change states, building new policies
becomes a simple matter of expressing the policy’s
semantics in the language of the protocol.

BUILDING AN EXAMPLE APPLICATION
This section describes the steps necessary to build
applications using GR OUP KIT. The steps include
specifying the application-specific graphical presentation
and interaction, initializing objects to send and receive
application messages, selecting an application Conference
object, and initializing a Coordinator object.

As an illustration, we describe the construction of a simple
multi-user freehand sketching program using the multiple
cursor overlay. The interface is similar to GROUPSKETCH
[13]: multiple cursors are always visible, any user can draw
at any time, and fine-grained actions are immediately visible
on all displays. Note that although GROUPKIT provides a
sketching overlay, for illustration we will not use it.

Graphical presentation
The application needs one or more INTERVIEWS glyphs to
manage the graphical presentation and user interaction
aspects of the interface, as well as any internal data
structures. For a freehand sketching application, this
involves creating a glyph holding a bitmap, and providing
tools (pencil and eraser) that respond to mouse events for
changing the bitmap. To incorporate the cursor overlay,
the bitmap glyph is “composed within” the cursor glyph.

Designing this part of the sketching application is
comparable to designing a single user version of the group
application. There are some general conventions that are
helpful to follow, such as separating event handling (cause)
and the result of events (effect) into different routines. This
facilitates use of common routines for local and remote
invocations [15].

Messaging objects
Writer and Reader objects are used to send and receive
application-specific messages. The routines in Writer
objects are invoked as a result of local actions, for example,
transmitting coordinates of a drawn line segment to the
other replicated applications. Callbacks in the Reader
objects interpret these messages, usually calling routines in
the graphical presentation object to handle requests. In the
example, the Reader instructs the sketchpad glyph to draw
the line specified in the message. The standard objects
must be initialized to include the required callbacks.

Coordinator
The Coordinator connects the registration mechanism (via
the Registrar Client) to the application Conference objects
running as separate processes. Available conference types

48



must be specified to the Coordinator, using the standard X
resource mechanisms (ie .xDefaults).

Application Conference
The application Conference maintains communications
channels with other distributed applications. In our
example, the generic GroupKit conference has sufficient
functionality. The main program instantiates this object,
and “attaches” to it the bitmap glyph described earlier, so
that the glyph can send and receive messages.

The Conference is notified when users join or leave.
Routines in the base Conference class manage the low-level
socket connections between users. However, other classes
may be notified when new users join or leave, to
manipulate application data structures maintained for each
conference user. For example, the cursor overlay uses this
information to add or remove cursors as users join or leave.

FUTURE WORK
The work presented here should be seen as an initial attempt
to formalize the design and implementation of general
groupware conferencing toolkits. The design requirements
emphasize the important abstractions needed in real-time
CSCW applications, and provide a basis for generalizing
existing application or toolkit features. The three strategies
presented — a run-time process and communication
architecture, overlays and flexible policies — should be
seen as general strategies that can be used to implement
certain design features. It is expected that further design
principles and strategies will evolve.

GROUPKIT has proven to be a flexible platform for testing
our ideas. We have already built prototype drawing
programs and shared terminals, and we will be constructing
more elaborate and robust applications shortly. Currently,
several of the design principles have not yet been embodied
in the toolkit. Our immediate plans are to address the
concurrency control issues, building a layer of support for
generic shared graphical objects, that follow ideas presented
in [15]. Ideally, a framework for building domain-specific
group graphical editors could be created, drawn from the
ideas in Unidraw [29].

Some other work has focussed on blurring the distinction
between synchronous and asynchronous groupware, by
providing a system that determines the appropriate means of
conferencing (synchronous or asynchronous) and makes
available various communication channels (text, voice,
video). The choices offered the user depend on
environmental information (ie who is currently around,
what communication channels are available). The
registration mechanisms in GROUP KIT provide the
flexibility to implement such a scheme.

Groupware toolkits still have a long way to go to catch up
to their single-user counterparts. We look forward to the
day when all toolkits will incorporate multi-user features,
and its interface components (such as control panels and
editing widgets) have multi-user capabilities built into

them. When that day comes, the artificial distinction
between single and multi-user systems will disappear.

Note: GROUPKIT will be available for anonymous ftp by
conference time, from the Department of Computer
Science, University of Calgary (cpsc. ucalgary. ca).

REFERENCES
1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

Bier, E.A. and Freeman, S. MMM: A User Interface
Architecture for Shared Editors on a Single Screen.
In User Interface Sofware and Technology (UIST
‘91), NOV. 11-131991, pp. 79-86.

Bly, S.A. and Minneman, S.L. Commune A shared
drawing surface. In Proceedings of the Conference
on O#ice Information Systems (COIS ‘90), Apr. 25–
271990, pp. 184-192.

Bonfiglio, A., Malatesa, G., and Tisato, F.
Conference Toolkit: A framework for real-time
conferencing. In Proceedings of the 1st European
Conference on Computer Supported Cooperative
Work (EC-CSCW ‘89), Sept. 1989.

Chapanis, A. Interactive human communication,
Scientij?c American 232,3 (1975), 36-42.

Crowley, T., Baker, E., Forsdick, H., Milazzo, P.,
and Tomlinson, R. MMConfi An infrastructure for
building shared applications. In Proceedings of the
Conference on Computer-Supported Cooperative
Work (CSCW ‘90), Oct. 7-101990.

Dewan, P. Flexible user interface coupling in
collaborative systems. In Proceedings of the ACM
CHS91 Conference on Human Factors in Computing
Systems, Apr. 27-May 2, 1991, pp. 41-48.

Dykstra, E.A. and Carasik, R.P. Structure and
support in cooperative environments: The
Amsterdam Conversation Environment. 1A14MS 34,
3 (Mar. 1991), pp. 419434.

Ellis, C.A., Gibbs, S.J., and Rein, G.L. Groupware:
Some issues and experiences. Comm. ACM 34, 1
(1991).

Francik, E., Rudman, S.E., Cooper, D., and Levine,
S. Putting innovation to work Adoption strategies
for multimedia communication systems. Comm.
ACM 34, 12 (Dec. 1991), pp. 37-63.

Garfinkel, D., Gust, P., Lemon, M., and Lewder,
S., “The SharedX multi-user interface user’s guide,
version 2.0,”, HP Research report, no. STL-TM-89-
07, Palo Alto, California, 1989.

Gibbs, S.J. LIZA: An Extensible Groupware
Toolkit. In Proceedings of the ACM CHI’89
Conference on Human Factors in Computing
Systems, Apr. 30-May 41989, pp. 29-35.

49



12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Greenberg, S. Sharing views and interactions with
single-user applications. In Proceedings of the
Conference on Office Information Systems (COIS
‘90), Apr. 25-271990, pp. 227-237.

Greenberg, S. and Bohnet, R. GroupSketch: A
multi-user sketchpad for geographically-distributed
small groups. In Proc. Graphics Zntetiace (1991).

Greenberg, S. Personalizable groupware:
Accommodatingindividual roles and group differences.
In Proceedings of the 2nd European Conference on
Computer Supported Cooperative Work (EC-CSCW
‘91), Sept. 1991.

Greenberg, S., Roseman, M., Webster, D., and
Bohnet, R. Human and technical factors of
distributed group drawing tools. In Interacting with
Computers (Speciai Edition on CSCW, in press).

Johnson-Lenz, P. and Johnson-Lenz, T. Post-
mechanistic groupware primitives: rhythms,
boundaries and containers. I.JMMS 34, 3 (Mar.
1991), pp. 385418.

Kraut, R.E., Egido, C., and Galegher, J. Patterns of
contact and communication in scientific research
collaborations. In Intellectual Teamwork: Social
Foundations of Cooperative Work. Lawrence
Erlbaum Associates, pp. 149–172, 1990.

Lakin, F. Visual languages for cooperation: A
performing medium approach to systems for
cooperative work. In Intellectual Teamwork: Social
Foundations of Cooperative Work. Lawrence
Erlbaum Associates, pp. 453-488, 1990.

Lauwers, J.C. Collaboration transparency in desktop
teleconferencing environments, Ph.D. dissertation,
Technical Report CSL-TR-990-435, Stanford
University, Computer Systems Lab, CA, 1990.

Lauwers, J.C., Joseph, T. A., Lantz, K. A., and
Romanow, A.L. Replicated architectures for shared
window systems: A critique. In Proceedings of the
Conference on Office Information Systems (COIS
‘90), Apr. 25-271990, pp. 249-260.

Linton, M.A., Calder, P.R., Interrante, J.A., Tang,
S., and Vlissides, J.M., InterViews Reference
Manual, Stanford University, Sept. 1991.

Minneman, S.L. and Bly, S.A. Managing a trois: A
study of a multi-user drawing tool in distributed
design work. In Proceedings of the ACM CHI’91
Conference on Human Factors in Computing
Systems, Apr. 27–May 21991, pp. 217-224.

23. Neuwirth, C.M., Kaufer, D.S., Chandhok, R., and
Morris, J.H. Issues in the Design of Computer
Support for Co-Authoring and Commenting. In
Proc. of the Conference on Computer-Supported

Cooperative Work (CSCW ‘90), Oct. 7-101990.

24. Nunamaker, J.F., Dennis, A.R., Valacich, J.S.,
Vogel, D.R., and George, J.F. Electronic meeting
systems to support group work. Communications of
the ACM 34, 7 (July 1991), pp. 40-61.

25. Patterson, J.F., Hill, R. D., Rohall, S.L., and
Meeks, W.S. Rendezvous: An architecture for
synchronous multi-user applications. In Proce. of
the Conference on Computer-Supported Cooperative
Work (CSCW ‘90), Oct. 7–10 1990.

26. Patterson, J.F. Comparing the programming
demands of single-user and multi-user applications.
In Proc. User Interface Software and Technology
(UZST ‘91), NOV. 11-131991, pp. 87-91.

27. Stetlk, M., Bobrow, D.G., Foster, G., Lanning, S.,
and Tatar, D. WYSIWIS revised: Early experiences
with multiuser interfaces. ACM Trans. on Office
Information Systems 5,2 (1987), pp. 147–167.

28. Tang, J.C. Findings from observational studies of
collaborative work. I.lMMS 34, 2 (1991), pp. 143–
160.

29. Vlissides, J.M. and Linton, M.A. Unidraw: A
Framework for Building Domain-Specific Graphical
Editors. In Proc. of User Znterface Software and
Technology, Oct. 1989.

50


