

Sharing views and interactions with single-user applications

Saul Greenberg

Advanced Technologies†
Alberta Research Council

6815 8 St NE
Calgary, Alberta, Canada T2E 7H7

phone: (403) 297-2674

Abstract—Although work is frequently collaborative, most computer-based activities revolve around software
packages designed to be used by one person at a time. To get around this, people working together often talk
and gesture around a computer screen, perhaps taking turns interacting with the running “single-user”
application by passing the keyboard around. However, it is technically possible to share these unaltered
applications—even though they were originally designed for a single user only—across physically different
workstations through special view-sharing software. Each person sees the same image of the running
application on their own screen, and has an opportunity to interact with it by taking turns. This paper discusses
the various roles and responsibilities of the view-sharing software that must be considered during its design and
evaluation: view management, floor control, conference registration by participants, and handling of meta-level
communications. A brief survey of existing shared view systems is provided for background.

Keywords: computer supported cooperative work, real time conferencing, shared window systems.

1. Introduction

Tele-conferencing and video-conferencing often support
only one part of the collaborative process, that of bringing
people together. Yet most real meetings require not only the
people, but also the materials and on-going work
participants wish to share with others. These include notes,
documents, plans and drawings, as well as some common
work surface that allows each person to annotate, draw,
brainstorm, record, and convey ideas during the meeting's
progress. Given that an individual’s work is commonly
centred around a workstation, the networked computer can
become a valuable medium for collaborators to share work
with each other.

The ideal approach towards building software systems that
support real-time sharing of work would recognize the
existence of each participant and his or her niche in the
collaboration. Such software is called “collaboration aware”
(Lauwers and Lantz, 1990). For example, groupware applied
to document collaboration could: recognize the roles of the
primary writers, reviewers, and readers; adjust access
permissions to reflect these roles; keep track of version
differences; and enhance communications between the
various collaborators (Leland et al, 1988). It is unlikely,
however, that collaboration aware systems will have a major

 †email: saul@noah.arc.cdn or greenberg.chi@xerox.com

impact on the market in the next few years. Not only are
they technically difficult to build, but the prerequisites for
design are lacking—we really know very little about how
people work together. As a result, we will probably see
“single-user” applications—products designed to be used by
one person at a time—far outstripping collaboration-aware
systems for years to come.

An alternative approach, and the theme of this paper, stems
from the old idea of taking a single-user application and
sharing it between participants of an on-line meeting
through a “shared screen” or “shared window”. Each
participant would have an identical view of the running
application and an opportunity to interact with it. Special
“view-sharing” software would allow any unaltered single-
user application to be brought into a meeting; the application
itself would have no awareness that more than one person
was using it. The view-sharing software’s responsibilities
include maintaining consistent shared views, managing floor
control between participants wishing to interact with the
application, registering participants, and allowing attendees
to gesture and annotate around the shared view.

Although simple in idea, sharing views and interactions with
single-user applications can augment significantly people’s
ability to work together. Several possibilities are listed
below.
1. Participants can be geographically dispersed. Given an

underlying network of sufficient bandwidth and a voice

Cite as:
Greenberg, S. (1990). Sharing views and interactions with single-user applications. In Proceedings of the ACM/IEEE Conference on Office
Information Systems, p227-237, Cambridge, Massachusets.

channel, small groups of physically separated people
could easily share their computer-based work in real-
time.

2. Sophisticated textual and drawing tools become available
to the group. When compared to traditional media such
as paper or the whiteboard, shared single-user
applications provide not only functional richness but
increased flexibility for the group to compose,
manipulate, and save the objects on display (Stefik et al,
1987). Similarly, specialized applications (such as idea
outliners) give participants a tool more suited to their
task.

3. It is easier for people to take turns accessing the work
surface, simply because they do not physically get in
each other’s way. (Consider the inherent awkwardness of
five people drawing on a small physical whiteboard.)

4. Shared views are useful for “over the shoulder”
consultation. The expert can quickly provide assistance
by asking the novice to point out the problem, by “taking
the user for a ride” through the solution, and by watching
the novice attempt it himself (Engelbart and Lehtman,
1988).

5. Shared views can be used for presenting material to an
audience, and as a medium for allowing the audience to
reference and use the material during the course of the
meeting.

The list is by no means exhaustive. Any collaborative
process—information sharing, coordinating activities,
interactive design, joint supervision, keeping tabs on
progress—can benefit from shared views.

The rest of this paper will focus exclusively on sharing
views and interactions with single-user applications between
participants in a computer meeting. We will assume that all
meetings are augmented by (at least) a voice channel. The
first section provides a brief survey of existing
implementations, from a visionary first step in the 1960s, to
the sophisticated multi-media conferencing systems of
today, through to the new visions for tomorrow. The
subsequent section describes the roles and responsibilities of
the view-sharing software that must be considered by the
designer or evaluator of such systems. The paper closes with
a brief discussion of several outstanding issues facing view-
sharing systems.

2. A Brief Survey of Shared View Systems

Shared views are far from new. This section surveys some of
the work that has been on-going since the mid-1960s.

2.1 The First Steps

NLS. Over twenty years ago, the visionary Doug Engelbart
built what is probably the first shared screen conferencing as
part of his NLS system (Engelbart and English, 1968). Six
displays were arranged on a table so that a group of twenty
participants could see the screens. While only one
participant could control the screen, other participants could
control a large arrow (a telepointer) visible on all screens but
invisible to the application.

Augment. As Engelbart's work matured to the Augment
system (a commercialized version of NLS), he expanded the
shared screen conferencing software to incorporate distance
conferencing, true floor control, dynamic entry and
departure of participants during the conference, and a virtual
terminal screen-image so that dissimilar terminals could be
used (Engelbart, 1982 and 1984). For turn-taking, the
controller explicitly hands off the floor to another
participant.

2.2 Continuation
Doug Engelbart's work aside, most of the early effort in
remote conferencing emphasised video. It was not until the
mid-1980s that researchers returned to serious consideration
of the computer to support group work.

RTCAL is a remote meeting tool that supports meeting
scheduling by building a shared information space from
participant’s on-line calendars (Sarin and Greif, 1985) .
During the meeting, each participant sees the shared
calendar and their own private calendar. A chairperson
oversees all activity, decides who has control of the shared
view (each person can request control by entering a special
control character), and is the only person who can terminate
the conference. A small summary window indicates what the
conference is about, who is present, who the chairperson is,
and who currently has control. Dynamic registration of
participants is allowed.

MBlink allows multiple workstations to share a bitmap
(Sarin and Greif, 1985). It is unique in that all participants’
cursors are visible on all the shared screens. Distinctive
cursors identify their owners.

Cantata is a Macintosh-based suite of programs, featuring a
sophisticated multi-person text-based “talk” system; a
message broadcasting system; and a shared view system
(Chang, 1987). Additionally, a specialized tool called the
Participant Construct System supports knowledge
acquisition from groups of persons working cooperatively.
The shared view sub-system, called switchboard, shares
access to a participant’s serial port through a terminal
emulator, rather than sharing the standard applications
running on the Macintosh. The switchboard’s turn-taking
mechanism is described in Section 3.2 and illustrated in
Figure 3.

Shared X. Rather than share the complete screen, a person
can selectively choose and share one or more “public”
windows on the display through “window sharing”. A
participant can then display both private and public windows
on his screen, with public windows perhaps representing
multiple conferences. Hewlett-Packard’s SharedX is one
example of this genre (Garfinkel et al, 1989). Based upon
the X window system, SharedX is a centralized window
server that interposes itself between a running application
and the physical servers controlling each participant’s actual
workstation. It can be thought of as a switch that redirects X
protocol to and from several X servers on behalf of
applications.

Registration is primitive. Through a “ShareTool”, a
participant can make a duplicate of her window appear on
another person’s display. Conversely, one may “pull”
another person’s window across to ones own display
through a “PullTool”. SharedX also provides a primitive
protocol for manipulating floor control, on top of which
several more sophisticated floor control interfaces have been
constructed. Telepointers are also available.

Dialogo. Most shared view systems follow a centralized
architecture, where a single executing application is shared
amongst all participants. The user's input is directed to that
application, and the application's output is sent to every
participant in the meeting. An alternative architecture,
suggested and implemented by Lantz (1986) in a system
now called Dialogo, replicates each application at every
workstation to minimize network traffic. Although a
controller's input is sent to all replicated applications, each
application is responsible for generating its own output on
its own workstation without going over the network. As
long as synchronization is maintained, all views should be
consistent. Similar replicated architectures included BBN’s
Diamond Multimedia Conferencing System (Crowley and
Forsdick, 1989) and an early version of Rapport (Ensor et
al, 1988).

There are several disadvantages to replicated architectures
(Ensor et al, 1988). The software must be available at every
workstation; there may be contention for physical devices;
states local to a specific machine may be referenced; it may
be impossible to guarantee consistent views across
workstations using this architecture. A good critique of the
issues in replicated architectures is provided by Lauwers,
Lantz and Romanow (1990).

2.3 Recent Work
The current genre of shared view systems is becoming quite
sophisticated. Systems are more complete and polished in
appearance. Some include media aside from text and

graphics, such as voice, still video, and motion video
imagery. Others are tailored for particular meeting styles.

Computer-supported meeting rooms. Xerox PARC
pursued the idea of computer support for face-to-face
meetings in an experimental meeting room for small groups
known as CoLab (Stefik et al, 1987). The room is arranged
with one workstation per participant, as well as a very large
touch-sensitive screen and stand-up keyboard. CoLab
employs customized, collaboration-aware software, rather
than the general single-user applications emphasised in this
paper. Three systems were built: Boardnoter, a shared
chalkboard; Cognoter, a tool for brainstorming and idea
organization; and Argnoter, a tool to organize and evaluate
arguments.

In contrast, the Capture Lab, another computer-supported
meeting room, uses quite a simple view sharing setup (EDS,
1988). Each participant has a private workstation (a
Macintosh), and has opportunity to gain serial control of a
group workstation running a large screen at the front of the
room. Work from the private workstation may be copied and
pasted to the group workstation and screen. The best part of
the Capture Lab is that its construction emphasised the need
for careful design of all aspects of the room (Mantei, 1988).
The subtle effects of seemingly trivial items such as seating,
viewing distances between participants, availability of a
front screen, and access protocols had a profound effect on
the way the computer-supported meeting is run.

Multi-media conferencing. There is a proliferation of
multimedia systems for sharing views. Rapport, for
example, uses the X window system to support a
multimedia conferencing system (Ensor et al, 1988; Ensor,
1989). A voice channel is explicitly integrated into the
conferencing software (other systems reviewed here assume
that the voice channel is handled separately). Rapport also
supports multiple telepointers, as well as pictures of the
participants themselves. Participants can point to one
another and “raise their hands” for attention.

EMCE also integrates a voice channel along with the shared
application (Garcia-Luna-Aceves et al, 1988). Floor control
is handled automatically by the system through a distributed
dialogue-activated collision-sensing algorithm, which notes
pauses and handles any contention for the floor. Other
participants can also signal the current floor-holder when
they would like a turn.

There are several other notable examples of shared-view
conferencing systems. Suzuki et al (1986) describe their
real-time electronic conferencing system based on
distributed Unix, while Lester Ludwig of Bellcore is
furthering a centralized multi-media shared view system that
integrates sound and video into the SharedX platform.

Commercial systems. On the commercial front, Farralon
Software sells a simple, inexpensive but surprisingly
effective shared-screen facility for the Macintosh called
Timbuktu (Farallon, 1988), described in Section 3.3 and
illustrated in Figure 4. A list of earlier commercial products
can be found in Sarin and Greif (1985).

2.4 Innovative Directions
VideoDraw. Not all work is performed using a computer.
One exciting possibility allows participants to share video
projections of a workspace. Tang and Minneman from
Xerox PARC built a prototype system called VideoDraw for
video sharing of a virtual whiteboard between two
participants (Tang, 1989). Each participant’s work surface is
a horizontally-mounted video screen, covered by a
translucent drawing surface that can be marked with a pen.
A video camera above the surface transmits the
corresponding image to the other participant. The effect is a
truly-shared “whiteboard”. Each person sees not only the
annotations and erasures of the other, but also the hands as
they draw over the surface. People working together have
opportunity to place their arms on top of the projected arm,
so that their pen tips are literally on top of each other.

As a variation, several research laboratories are exploring
the possibility of “video hallways” for casual interaction
between remote sites. Two examples are the
TeleCollaboration project (Corey et al, 1989), and Cruiser
(Root, 1988; Fish, 1989). Users can “walk” the hallways and
offices of the remote sites through remote-controlled video
cameras. On their own screen, they can see who is around,
start informal conversations, engage others in coffee room
chit-chat, and so on. If video hallways were combined with
ideas such as VideoDraw, we may see the start of the
computer-supported spontaneous meeting that allows people
to develop, jot down and share ideas in a non-formal
situation.

Virtual reality allows people to interact within a three-
dimensional world by using a head-mounted display, a data-
glove, and a 3-D audio display. The head-mounted display is
a helmet that contains a screen for each eye; projected 3-D
images are synchronized for true binocular vision. When the
person moves his head, his view of the 3-D space is adjusted
accordingly. The data glove is an input device that converts
hand gestures and relative positions into computer-readable
form. When linked into the 3-D space, the user can see his
gloved hand, and use it to manipulate his virtual objects.
Finally, the audio display synthesizes audio cues so that the
sound heard reflects the user’s position in the virtual space.
Off the shelf equipment is now available from VPL
Research Inc (California).

The relevance of virtual reality to shared workspaces
becomes clear when two or more people interact within the
virtual space. Imagine a conference held in a virtual room,
with attendees milling about, holding private conversations,
and viewing and manipulating some of the available 3-D
entities. Science fiction? Not quite. The first demonstration
of VPL’s shared virtual reality occurred on June 7, 1989 in
San Francisco.

Shared Alternate Reality Kit. SharedArk is a workstation-
based graphical model of a shared virtual yet physical
world—a two-dimensional “flatland”—used for teaching
students physics (Smith, 1988). Students can wander
through flatland and manipulate physical objects with a
mouse-operated hand. Unlike most virtual worlds, flatland is
populated by all the people travelling in it. Students may
accidentally encounter each other (one will see another
person’s hand). They then have opportunity to open an
auxiliary video and audio connection for more direct
communication. Within SharedArk, students can form
collaborations on shared simulated physics experiments and
jointly edit text and graphics.

3. Roles and Responsibilities of the View-

Sharing Software

There are a number of design decisions that must be
considered when building a comprehensive workstation-
based view-sharing system. The responsibilities of the
system fall into four major roles, as listed below.
A. The View Manager. The distributed view of the running

application should follow (more or less) the “what you
see is what I see” (WYSIWIS) abstraction, in which
everyone sees the same image on their screen or window
(Stefik et al, 1987). The View Manager is responsible for
synchronizing and transmitting these views.

B. The Chair Manager. All participants should be able to
interact with the application in a reasonable manner.
Since the application is built to handle only one input
stream, a floor-control mechanism that gives control to
only one person at a time is usually desirable. The Chair
Manager is responsible for setting or changing the floor
control policy, for coordinating and enforcing turn-
taking between participants, and for sending the selected
input stream to the application.

C. The Registrar. Conference “registration” by the
Registrar addresses four issues: conference set up and
tear down; entry and departure of participants while the
conference is in progress; access control; and feedback of
the conference's current status.

D. The Meta Manager. Participants should be allowed to
talk “around” the application through gestures and

annotations without actually affecting the application.
The Meta Manager is responsible for separating and
controlling these meta-interactions.

Each manager is discussed in greater detail below.

3.1 The View Manager
Given a homogeneous terminal-based computing
environment, creating a WYSIWIS View Manager is fairly
straightforward. One merely has to tap into the application's
output stream and send a copy of that stream to each of the
other participants’ terminals. Assuming that all connected
participants are running compatible terminal types with the
same initial terminal and screen configuration, each screen
would then show the same image (Figure 1).

The real world is heterogeneous, and incompatible terminal
types are likely. In this case, the View Manager would
probably have the application write to a “virtual terminal”,
and then translate the output stream so that the same view
(or a close approximation) appears across the different
terminals (Engelbart, 1982) (Figure 2).

The situation is exacerbated in a windowing environment,
where a shared view is represented in one of several
windows on a workstation screen. Windows can normally be
overlapped, resized, and destroyed at a user’s whim. Four
such cases are described below.
1. User resizing of a shared window is a problem. The View

Manager may “fix” the window to a pre-determined size;
allow windows larger (but not smaller) than the one the
application expects; or alter the size of all windows
across all workstations to reflect the single user’s request.
Alternatively, the manager may create a window that is a
“viewport” to the underlying shared view, where the
participant can pan across the image if his window is
smaller than the actual size of the virtual view.

2. Window movement is usually handled by the
workstation's window manager, and does not usually
require intervention by the View Manager. Problems
arise when the window is covered and then uncovered,
for the window system may send a “window repair”
request to the application. If this were to occur, all
participants’ views may be refreshed unnecessarily. As
an alternative, backing store (if available) may be used to
save the bitmap of the occluded region, or the View
Manager may store and restore the particular window
based on its own internally maintained virtual image.

3. Window destruction is analogous to leaving the
conference. The registrar should be notified, and none of
the other participant’s displays should be damaged.
“Window destroyed” notifications sent to the application
must be intercepted and handled gracefully.

Other issues specific to shared window systems are raised in
Lauwers and Lantz (1990).

3.2 The Chair Manager
A truly shared application requires that each participant is
able to interact with it. Technically, the simplest approach is
to have all input from all users merged into a single stream
on a first-come, first-served basis (Figure 1). This sounds
chaotic in principle—just imagine several people typing at
the same time, with letter insertion interleaved into the text
depending upon who struck the last key! However, stream
merging can work well in practice. Our experience suggests
that voice-mediation is a reasonable way of controlling
casual sharing of applications between small groups (2–3
people), provided that the consequences of accidental
simultaneous interactions are not disastrous.

As groups become larger, more advanced forms of floor
control are usually desired. In Figure 2, the Chair Manager
arbitrates turn-taking between the participants, and usually
restricts control of the floor to one person at a time. At issue
are the several ways that control is relinquished between
participants, and what floor control policy is actually
implemented. For example, four methods for acquiring and
releasing the floor are described below.
Ring-passing. The participant currently in charge must

explicitly release control before anyone else can assume
it. Although this guarantees that a person can retain
control of the floor, tension can arise between a
participant who will not release control and others who
wish to acquire it. Even in a benign setting, the current
controller still has to remember to release the floor after
he completes his turn.

Pre-emptive. Any participant may grab control of the floor
at any time. This can lead to excessive interruptions in an
aggressive conference.

Time slices and time outs. A person may have a set time-
slice for control, after which the floor is taken away from
him. More reasonably, the floor can be released for
anyone's acquisition if the current controller has been idle
for a set time period. Although a controller cannot be
interrupted while “speaking”, the floor is automatically
available after a suitable pause.

Moderated. A designated participant may act as a
chairperson who is responsible for passing control to and
from the other attendees.

Other explicit floor-control protocols include round robin,
queuing, random access, and so on. The preferred style will
depend upon the group task, the size of the group, the
politics of the group’s interactions, and the application itself.
Surprisingly, there has been no attempt to evaluate these
different methods in existing shared view systems.

From the user's perspective, how is explicit floor control
activated? In a windowed environment, a separate window,
menu, or panel may be used to control turn-taking. Perhaps
the name of the active controller is added to that panel, or
placed in the shared window's title bar, or appended to the
cursor. Consider the Cantata Switchboard (Chang, 1987),
shown in Figure 3. The example illustrates four people
sharing an electronic bulletin board through a queue floor
control policy. The queue icon in the upper left indicates that
the viewer (identified as “self”) is waiting in line; the name
list below shows her position in line in relation to the other
participants. As the other participants gain and release
control, she advances up the queue until it is her turn. The
icon changes to a terminal pictogram, and control is kept
until the icon is selected again. The line can be re-joined by
another click on the queue icon.

Managing the floor is difficult when full screens are shared.
There is no place to display a control panel for turn-taking,
nor is there any room for feedback without disrupting the
shared view. Although turn-taking may be controlled
completely by special keyboard sequences, there is no room
to give the participant feedback upon the state of the floor or
meeting, such as who currently holds the floor and who the
other participants are.

3.3 The Registrar
How do people enter and leave a shared view session?
Technically, the easiest approach is to require that all
participants be known before-hand to a “Registrar” (Figure
1). Connections are made between participants during
conference setup only, and all channels remain open until
the meeting terminates. This is reasonable for short meetings
with few participants. One example is a person asking for
momentary “over the shoulder” assistance in his work.

Dynamic registration is usually desirable for long-term,
larger conferences. Any participant should be able to join
and leave the shared view conference at any time. The
Registrar must keep track of who has entered and left the
conference, and alert the other managers to that fact (Figure
2). For example, the View Manager must be sure to
synchronize a new participant's view with the established
common view (Lauwers and Lantz, 1990).

The Registrar must also handle the differing roles of each
attendee. Participants may, for example, have different
levels of access to the meeting. These include no permission
to join the conference, observer status, full read/write
permission, and a special preferred status in floor control.
The Registrar must also coordinate the conference start-up
and tear-down. Other duties could include making potential
participants aware of the meeting.

Figure 4 illustrates a control panel from Farallon’s Timbuktu
screen-sharing package (Farallon, 1988). Through this
panel, a user can set permissions for other “guests”
(participants) to share his screen. In this case, there are three
people sharing Saul’s screen—one with observe only
permission (designated by the eye icon on the guest list) and
two with interaction permission (the hand icon). Access
control for guests is controlled either globally (top right
panel) or individually (the middle panel).

3.4 The Meta Manager
Conventional approaches to shared workspaces are usually
concerned with the text and graphics of the running
application. This view is deficient, for it does not include
gestures, a vital part of the group interaction (Tang and
Leifer, 1988; Tang, 1989). People will often talk around a
shared view without interacting directly with the displayed
application. Some of these “meta” actions involve:
• directing the group's attention to some aspect of the view

(referring, retracing, emphasising);
• allowing more than one person to gesture around the

view at the same time;
• providing feedback on the attentiveness of other

participants;
• augmenting verbal dialogue; and
• leaving marks on top of the view that are transparent to

the application.

The Meta Manager is responsible for handling these meta-
level interactions between participants (Figure 2). Simple
gesturing, however, is possible when the shared view
includes the controller’s cursor. In most window systems,
moving the cursor without depressing the mouse button does
not generate any application input. The controller can
gesture with his cursor, and other participants will see the
cursor move in their views. Another more general approach
is to provide a “telepointer” which is a cursor visible to all
participants but invisible to the application (Stefik, 1987).
Each participant can turn their cursor into a telepointer on
demand (perhaps a large arrow with their name on it), and
gesture accordingly. More than one telepointer may be
shown at a time, and the person using it does not have to be
the application controller.

Leaving marks on the shared view is more complicated and,
to our knowledge, has not yet been tried. Using a “tele-
pencil” as opposed to a telepointer, a participant may write
on top of the application. He may annotate portions of the
view, circle items, or erase some or all of the marks.
Although this approach will not work well for a constantly
changing view, it is a reasonable approach for relatively
static images.

3.5 Implementation

Share is a “policy-free” view-sharing system whose
architecture closely implements the conceptual design
shown in Figure 2 (excepting the Meta Manager). It is a
simplified system built for testing purposes—although it
employs windows within its interface, it only shares views
of a virtual terminal, itself running within its own window.

Most of our efforts in Share has been in floor control. Share
departs slightly from the conceptual design in that the
centralized Chair Manager does not enforce a specific floor
control policy—it just understands a simple protocol that,
amongst other things, controls observe and write status of
participants, and sets a time-out period. Instead, policy is
defined in a turntaking interface process—one for each
participant—that converts a specific floor control policy into
a protocol stream sent to the chair. For example, pre-emptive
floor control is implemented by having the turntaking
process request the Chair Manager to assign write
permission to the process’ owner and observe-only status to
all other meeting participants.

The Chair Manager also mediates direct inter-process
communication between the turntaking processes, allowing
them to extend the floor control protocol and coordinate
their behaviour directly. In one example interface, we have
implemented a floor control policy where participants must
request the floor from a moderator. Since the Chair
Manager’s protocol has no notion of a “pending floor
request”, it was implemented as a protocol understood by
the turntaking processes themselves.

Although Share is a working prototype still under
development, initial results are promising. Different floor
control and registration policies are almost trivial to
implement; each participant's turntaking interface may be
specialized to reflect his specific political role in the
meeting; floor control policies may be switched on the fly;
and the turntaking interface becomes platform-independent.

4. Obstacles and issues

Given the systems and architectures described above, it
appears that shared views have reached a reasonable level of
maturity using conventional technology. Such is not the
case. It is worth considering several obstacles and issues
facing current and future systems.

4.1 Standards
One of the greatest limitations of any view sharing system
and, for that matter, any multi-user system, is the lack of a
presentation standard. View-sharing of text-based terminals
is fairly straightforward due to the ASCII standard and
integrated databases of terminal drivers. However, most
modern workstations support window systems that are, with

one or two notable exceptions, proprietary. Given the wide
diversity of workstations within and between offices, it is
unlikely that all participants will use or be familiar with the
same window system.

Many vendors are now recognizing this problem and are
embracing X windows as a platform-independent window
system standard. Although it will still take several years for
X to migrate to the office, it may be reasonable to assume
that a X-based window sharing system will support future
meetings where participants use a variety of different
workstations.

The down-side is that X describes only the underlying
window protocol, and not the “look and feel” of the user
interface. Sharing applications with non-familiar interfaces
is difficult for the user. While standards are being
suggested, there is an on-going battle between the Open
Software Foundation’s Motif and Unix International’s Open
Look user interface. Similarly, vendors running their own
proprietary window systems (such as Apple Macintosh and
NeXT) may have too much at stake (and too much inertia
with their user audience) to switch window systems in mid-
stream.

4.2 Networks and Multimedia
Effective conferencing demands real-time feedback of the
view shared between participants. Sharing all but the
simplest text-based applications will require fast, high-
bandwidth communication channels. When multimedia are
included (such as graphics, voice and video), the demands
on the network become much more stringent.

Most existing shared view systems are built to run over local
area or specialized high-bandwidth networks, which seems
at odds with the objective of bringing together participants
from remote sites. Normal phone lines are too slow, and
special high-bandwidth connections are either unavailable or
costly. Until the technology is in place and high-speed lines
inexpensive, real-time view-sharing that includes multi-
media objects will not be a serious communications device
between distant offices.

As a stop-gap measure, some companies are including a fax-
like capability in their machines. Rather than supporting
interactive sharing of an application, people can mail screen
snapshots. One example is Wang’s Freestyle multimedia
communications system that allows users to take a snapshot
of a window, annotate it with voice and hand drawings, and
then mail it over the network (Wang, 1989). The recipient
sees an animated playback of the voice and drawing
annotations.

4.3 Technical difficulties of window-sharing.

There are a variety of technical difficulties still facing
effective design of window-sharing. Consider, for example,
the difficulty of sharing screen cursors within window
systems. Cursors are usually handled deep in the heart of the
window manager. The sharing of single cursors and the
display of multiple cursors may entail significant changes to
the kernel of the system.

Lauwers and Lantz (1990) also raise the issue of workspace
management. When the screen contains a mixture of private
windows, multiple shared windows attached to one
conference, and multiple conferences, the system must not
only identify the windows belong together but offer some
scheme for managing related windows cohesively.

4.4 Data Sharing
Another problem arises in how people share and manipulate
data through the common view (Sarin and Greif, 1985). If
the application runs within the data space of one participant
(ie within his file space), that person runs the risk of his files
being intentionally or inadvertently damaged by the other
conference attendees. Additionally, other participants are
restricted to the access permissions of that person, which
may exclude them from gaining access to and importing
their own work to the meeting. Access control remains a
problem even when the application runs within a data space
owned by the group.

A related issue arises from the possible desire of participants
to have “side conversations”. A large group may wish to
split into sub-groups, each with their own copy of the shared
view, perhaps comparing results later on. Since the shared
view may reference common data, maintaining different
versions is necessary to prevent each sub-group from
overwriting the data space of the others.

4.5 The Human Component
There are a variety of non-technical issues concerning
effective view-sharing meetings. First, not all participants
may have experience with a particular shared application.
Consider, for example, the problems of sharing an editor.
Perhaps there are several on the system. Each person may
favour ones own choice, and be unfamiliar with the others.
If a participant’s editor is not selected for sharing, he
becomes a second-class citizen in the meeting. Even when a
common editor is agreed upon, problems will arise if people
are used to a customized version.

Second, there is no way to personalize a shared view.
WYSIWIS can be overly restrictive, especially when
participants have widely differing roles, knowledge and
abilities. For example, a view used by a technical person
may have too much detail for effective viewing by (say) a
manager. This fundamental limitation can only be overcome
when applications become collaboration-aware.

Third, we really know very little about meeting dynamics.
Floor control in face to face meetings, for example, is often
based upon quite subtle yet natural body language. Human
conventions for being invited into and joining a meeting are
also subtle. In comparison, the explicit floor control
mechanisms and registration schemes now implemented in
shared view systems seem unduly contrived and restrictive.

5. Summary

Sharing single user applications across workstations is just a
first step in eliminating physical restrictions and distances
between people working together. It represents a paradigm
shift in user interface design for computing, emphasising the
collaborative nature of most real work.

This paper has provided a survey of the many existing
systems as a snapshot of the work available, and has offered
a schema for designing future view-sharing systems. Yet the
field is still young. Researchers are still immersed in
technical difficulties and have barely begun the empirical
studies necessarry to the design of truly effective
collaborative interfaces.

References
Chang, E., Kasperski, R. and Copping, T. (1987) “Group

coordination in participant systems.” Technical report,
Alberta Research Council, Alberta, Canada, September.

Corey, D., Abel, M., Bulick, S., Coffin, S. and Schmidt, J.
(1989) “Multi-media communication: The US WEST
advanced technologies prototype system.” Submitted to
the Fifth IEEE Workshop on Telematics, September 17-
21, Denver, Colorado.

Crowley, T. and Forsdick, H. (1989) “MMConf: The
Diamond multimedia conferencing system.” Proceedings
of the Groupware Technology Workshop, Palo Alto,
California. August

EDS (1988) “The Capture lab.” EDS Centre for Machine
Intelligence, Ann Arbour, Michigan. Videotape.

Engelbart, D. and English, W. (1968) “A research center for
augmenting human intellect.” Proceedings of Fall Joint
Computing Conference, 33(1), p395-410, AFIPS Press.

Engelbart, D. (1982) “Towards high-performance
knowledge workers.” AFIPS Office Automation
Conference, San Francisco, CA, p279-290, April 5–7.

Engelbart, D. (1984) “Authorship provisions in
AUGMENT.” In Proceedings of the IEEE Compcon
Conference.

Engelbart, D. and Lehtman, H. (1988) “Working together.”
Byte Magazine, 13(13), December.

Ensor, J. R. (1989) “Rapport: A multimedia conferencing
system.” The ACM SIGGRAPH Video Review Supplement
to Computer Graphics, 45(5). ACM Press, Baltimore,
MD. Videotape.

Ensor, J.R., Ahuja, S.R., Horn, D.N. and Lucco, S.E. (1988)
“The RAPPORT multimedia conferencing system — a
software overview.” In Proceedings of the IEEE
Conference on Computer Workstations, p52–58, March.

Farallon (1988) “Timbuktu User’s Guide.” Farallon
Computing Inc., Berkely, California.

Fish, R. S. (1989) “Cruiser: A multi-media system for social
browsing.” The ACM SIGGRAPH Video Review
Supplement to Computer Graphics, 45(6). ACM Press,
Baltimore, MD. Videotape.

Garcia-Luna-Aceves, J.J., Craighill, E.J. and Lang, R.
(1988) “An open-systems model for computer-supported
collaboration.” In Proceedings of the IEEE Conference
on Computer Workstations, p40-51, March.

Garfinkel, D., Gust, P., Lemon, M. and Lowder, S. (1989)
“The SharedX multi-user interface user’s guide, version
2.0” Technical report STL-TM-89-07, Hewlett-Packard
Laboratories, Palo Alto, March.

Lantz, K. (1986) “An experiment in integrating multimedia
conferencing.” In Proceedings of the conference on
Computer-Supported Cooperative Work, Austin, Texas,
December.

Lauwers, J.C. and Lantz, K.A. (1990) “Collaboration
awareness in support of collaboration transparency:
Requirements for the next generation of shared window
systems.” In Proceedings of the ACM Conference on
Human Factors in Computing Systems, Seattle,
Washington, April.

Lauwers, J.C., Lantz, K.A. and Romanow, A.L. (1990)
“Replicated architectures for shared window systems: A
critique.” In COIS 90—Proceeding of the Conference on
Office Information Systems, Cambridge, Mass. April 25-
27.

Leland, M.D.P., Fish, R.S. and Kraut, R.E. (1988)
“Collaborative document production using Quilt.” In
Proceedings of the ACM Conference for Computer-

Supported Cooperative Work, Portland, Oregon, p206–
215, September 26–28.

Mantei, M. (1988) “Capturing the Capture Lab concepts: A
case study in the design of computer supported meeting
environments.” In Proceedings of the ACM Conference
for Computer-Supported Cooperative Work, Portland,
Oregon, p257-270, September 26–28.

Root, W. (1988) “Design of a multi-media vehicle for social
browsing.” In Proceedings of the ACM Conference for
Computer-Supported Cooperative Work, Portland,
Oregon, p25–38, September 26–28.

Sarin, S. and Greif, I, (1985) “Computer-based real-time
conferencing systems.” IEEE Computer, 18(10), p33-45.

Smith, R. B. (1988) “A prototype futuristic technology for
distance education (working draft).” In NATO Research
Workshop on New Directions in Education Technology,
Cranfield, England, November.

Stefik, M., Foster, G., Bobrow, D., Kahn, K., Lanning, S.
and Suchman, L. (1987) “Beyond the chalkboard:
Computer support for collaboration and problem solving
in meetings.” Communications of the ACM, 30(1), p32-47.

Suzuki, T., Taniguchi, H. and Takada, H. (1986) “A real-
time electronic conferencing system based on distributed
Unix.” In Proceedings of the Usenix 1986 Conference,
Atlanta, Georgia, p189–199, June 9–13.

Tang, J. C. (1989) “Listing, drawing, and gesturing in
design: A study of the use of shared workspaces by design
teams.” Xerox Technical Report SSL-89-3. April. Also as
PhD Dissertation, Stanford University.

Tang, J.C. and Leifer, L.J. (1988) “A framework for
understanding the workspace activity of design teams.” In
Proceedings of the ACM Conference for Computer-
Supported Cooperative Work, Portland, Oregon, p244-
249, September 26–28.

Wang Corporation (1989) “Freestyle Multimedia
Communication System.” Demonstrated at the ACM
Human Factors in Computing Systems SIGCHI
conference, Austin, Texas, June 5-9.

Application

output from
application

Chair
Manager

input merged

View
Manager

same stream
transmitted

Registrar
all connections

made at the start of
meeting

input to
application

Figure 1: A simple view-sharing system for a homogeneous terminal-based computing

environment. There is no explicit floor control, no dynamic entry and departure of
participants, and no meta-level communication

output from
application

input to
application

Application

virtual
terminal

translate
virtual image
or stream to
terminal
dependant
output

View Manager

assign control to selected
participants (usually one person
at a time)

Chair Manager

send input from the floor
holder to the application

entry
request

Registrar

handle dynamic arrivals and
departures of participants
and initial connections.

Meta-Manager
handles meta-level
interactions between
participants such as
telepointers and annotations

Figure 2: A more complex view-sharing system handling heterogeneous terminals,

turntaking, dynamic registration, and meta-level dialog.

Figure 3: The Cantata Switchboard showing four people sharing an electronic bulletin board.

Figure 4: The Farralon Timbuktu control panel for setting access permissions for a shared screen.

