
SAUL GREENBERG AND CHESTER FITCHETT

Phidgets in C#
A Tutorial

Volume

1
This is a working draft, and is obviously incomplete, as of Mar 8, 2005

Please do not redistribute or repost on a public web site, or use for commercial purposes. However, you are free to copy it
for immediate local educational purposes, e.g., as part of a class.

The conditions for using it are simple: you can use this document as long as you send me:

• comments about the various chapters (where they work, where they fail, where things are not clear)
• corrections (e.g., bugs in programs or descriptions)

Draft of February 28, 2005

S A U L G R E E N B E R G A N D C H E S T E R F I T C H E T T

Phidgets in C# - A Tutorial

© Saul Greenberg and Chester Fitchett
Department of Computer Science • University of Calgary

Calgary, AB Canada T2N 1N4
Phone 403,220,6087 • Fax 403.284.4707

saul@cpsc.ucalgary.ca

 Draft of March 9, 2005

1

The first three chapters introduce Phidgets. Chapter 1 briefly explains what Phidgets
are. Chapter 2 gives several ‘getting started’ examples that illustrate how easy it is to
program Phidgets. Chapter 3 introduces concepts that are common to all phidgets.
Chapter 4 shows you how to use Phidget Skins, which are a graphical interface to
phidgets that you can use in a program with no coding.

Read these chapters closely and do the exercises. To avoid excessive repetition, the
remaining parts of the book assume you have performed the exercises in Part 1 and
understand them.

Part 1
Introducing Phidgets

 Draft of March 9, 2005

2

What are Phidgets?
Phidgets are easy to program hardware devices that make it very
easy for the average program to design and implement physical user
interfaces .

e are just now beginning to see a wave of new system designs that include
‘out of the box’ physical devices augmented by computing power. Instead
of the conventional view of computers as boxes with large monitors,
designers are now realizing that ‘computers’ can be just about anything:

small displays, sensor networks, ambient displays, ‘smart’ furniture and appliances, and
so on. Various research movements have embraced this approach: ubiquitous
computing and calm technology, pervasive computing, tangible user interfaces,
information appliances, and context-aware computing .

While exciting in concept and rife with opportunity, everyday programmers now face
considerable hurdles if they wish to create even simple hardware-dependent
applications. Even simple devices made out of cheap and readily available components
(switches, sensors, motors) are hard to build unless one has a background in hobby
electronics, circuit design or electrical engineering.

Perhaps the biggest—but most easily solved—obstacle is the sheer difficulty of
developing and combining physical devices and interfacing them within the application
software. This is where Phidgets come in.

Our original goal was to create hardware devices that were easy to program, test,
debug, and extend. Most importantly, we wanted these devices to be so simple that
developers could concentrate on the overall product design instead of low-level device
construction and implementation. Our approach was to develop ‘physical widgets’, or
Phidgets, that are almost direct analogs to how graphical user interface widgets are
packaged and ‘dropped into’ applications. As we will see, all Phidgets comprise four
parts:

• a hardware device (usually a board and perhaps some things you plug into it),

• a USB cable (to connect to the host computer),

Chapter

1

Designing ‘out of
the box’ W

The idea of
Phidgets

 Draft of March 9, 2005

3

• a programmer’s API accessed by any .NET programming language and
packaged as an object (a .NET component), and

• an (optional) graphical skin – also an object – that lets the end user see the
device state and control it.

Phidgets are hardware that present themselves as a ‘black box’ to programmers via its
API, which is itself encapsulated as an object. All phidgets have well-defined functions,
accessed by the familiar programming notions of properties and events. A few of the
many Phidgets are listed below. Other phidgets are described in Part II of this book, or
on the Phidgets web site www.phidgets.com.

• Phidget Servo contains one or more servo motors, where they programmer
can easily rotate a motor to an angle between 0 – 180 degrees by setting its
position property.

• Phidget RFID is an RFID reader that returns the unique identity of an RFID
tag as it is passed over the reader as an event.

• Phidget InterfaceKit is a general purpose device that returns (as events)
changing values of various sensors and switches that are plugged into it, and
that lets you turn low-power things (such as LEDs) on and off by setting a
property.

• Phidget WeightSensor is a scale that returns the weight of the item placed
atop of it as an event

• Phidget Encoder is a rotary dial that returns as events the changes in position
of the dial as a person rotates it, and whether or not its shaft is pressed as a
button.

To use Phidgets, software people only have to leverage skills that they already know,
i.e., how to program. They do not have to know anything about hardware, circuit
design, firmware, wire protocols, low-level device managers, and so on.

Several examples illustrate how phidgets can be used. Susannah McPhail, a student in a
course using Phidgets at the University of Calgary, wanted to create a flower that
bloomed under computer control. The final result is shown below. To build this
flower, she used a servo motor, where the position of the motor could be rotated
between 0 to 180 degrees. She attached a shaft to the head of the motor, so that motor
rotation was translated into pushing and pulling a guide wire. This guide wire operated
the leaves that wrapped itself around the flower.

The primary effort in this project was creating the linkage between the physical flower
and the motor. The flower itself was modified from a store-bought plastic flower.
Programming this operation was totally trivial. The initial version used the graphical

Flower in Bloom

 Draft of March 9, 2005

4

skin (which required almost no coding), while a later version included a graphical
control that was customized to opening and closing this flower (about 10 minutes of
coding and screen design).

Flower in Bloom: closed partially bloomed fully bloomed

At this point, many things could be done with the flower. For example, using standard
programming techniques and knowledge of Windows objects, one could (say)
instrument the flower so that it reflects the on-line/away/off-line state of an Instant
Messenger contact. Or the flower could be ‘watered’ every time someone visits your
home page; with lots of visits, the flower is healthy and blooming. As visits wane, the
bloom begins to close. Again, this can be done through basic programming, i.e., by
monitoring hits to your web site, by incrementing the ‘bloom’ (i.e., motor position)
every time a hit is observed, and by decaying the ‘bloom’ over time (e.g., through a
timer control).

Inspired by the MIT Tangible Media Group’s Lumitouch frame, Kathryn Elliot
implemented the Picture Frames system shown below. Picture Frames was designed
as a messaging system to show that one person is thinking about another, and that this
thought is reciprocated. These are two or more picture frames, each attached to a
different person’s computer, that interact with one another as an ambient display. Co-
workers, friends or loved ones separated by distance use the Picture Frame as a way to
make others aware of their presence in a non-intrusive manner and/or to
communicate emotional content. Exploiting the tangible property of the device,
touching one frame causes lights to blink on its partner’s frame, and the remote person
can respond in turn. Any 5"x7" picture may be inserted into the Picture Frame, which
transforms the device into a fairly concrete embodiment of the remote person.

Picture Frames

 Draft of March 9, 2005

5

Picture Frames.

Simon the Sun Flower, developed by Nancy Lopez, recreates Hasbro’s Simon game
for children as a flower with glow-worms located on its petals (see below). The flower
creates a visual and audio pattern by playing a sequence of sounds while lighting up
glow worms on particular petals (via LEDs). The child whose turn it is repeats the
pattern by squeezing the bugs on the correct leaves (each contains a pressure sensor); if
they make a mistake, the sound changes and it is the next child’s turn. As with the
previous example, it was built using LEDs connected to a Phidget InterfaceKit, as well
as pressure sensors. The programming challenge was not on controlling these LEDs or
acquiring sensor data, but on developing and playing pleasing sounds. The construction
challenge was sewing and gluing the various parts of the flower together.

Simon the Sunflower

Other examples.

Simon the
Sunflower

 Draft of March 9, 2005

6

A myriad of example projects developed using Phidgets are viewable as both pictures
and videos at http://grouplab.cpsc.ucalgary.ca/phidgets/ and selecting the Gallery
link. Almost all items shown were developed in a very short amount of time (a few
weeks) by students as their very first Phidget project.

Average programmers can learn to use and program Phidgets with ease. I know this
from experience. I have taught many students – all ‘average’ programmers - how to
program phidgets. They needed very little technical instruction to get going. Indeed,
their only difficulty was relearning the skills acquired in Grades 1 to 7: cutting paper,
using glue, building things with clay, sewing, building with Lego, and so on.

This book is here to help you through the easiest part of that process: learning how to
program Phidgets. Don’t be intimidated by the fact that there are many pages in this
book.. The book is this thick only because there are quite a few different types of
Phidgets, and each phidgets has a corresponding chapter. In practice, you will likely
find yourself able to program Phidgets after reading the three chapters in part 1, and
the chapter(s) dedicated to the particular Phidget you want to program.

Are you ready for
Phidgets?

 Draft of March 9, 2005

7

Getting Your Hands Dirty
This chapter provides several introductory examples of how you
can program and run several phidgets.

his chapter offers three simple examples that illustrate step by step how you
can program and run phidgets. No extra details are provided; the examples are
just intended to whet your appetite. You can choose to program one or all of
these examples, although your choice will depend somewhat on the actual

phidgets you have on hand. Full details for each phidget are described in later chapters.
If your programs run as described, you will also know that everything is installed
correctly on your system.

Before trying these examples, make sure that you have installed the phidget software,
and that your phidgets software components are visible in your C# Visual Studio
.NET environment. Appendix 1 describes how to do this.

Making a Servo Motor move
You will create a program that rotates a servo motor to a random position
between 0 and 180 degrees whenever the Phidget Servo is plugged into
the computer.

Our first example uses a 1-motor Phidget Servo kit comprising a servo motor, the
Phidget Servo hardware board, and a USB cable. As shown in the figure, plug the
connector leading from the servo motor to the connector on the Phidget Servo
hardware board; the white, red and black wires on the connector should match the ‘w
r b’ letters on the board. Then use a USB cable to plug the hardware board into a USB
port on your computer. You may get a message on your computer saying “New
Hardware found”, but no further action needs to be taken by you (if it says to restart
the computer, just ignore that message).

This exercise will also work with a 4-motor Phidget Servo. Just make sure a motor is
plugged into the first connector on the board. Since that connector is powered by the
USB cable, you do not need to use the power adaptor.

Chapter

2

T

What you need

 Draft of March 9, 2005

8

A 1-servo phidget plugged into a computer; the servo motor is also connected to the hardware board.

Start Visual Studio .NET and create a new C# Windows Application project called
‘servoTester’.

Creating a new C# project titled ‘servoTester’.

What you have to
do

 Draft of March 9, 2005

9

Open the Phidget Tab in the Toolbox and find the component labeled ‘Servo’ in the
list. This is illustrated in the following figure.

Drag and drop the Servo component from the Toolbox onto the Form1 window.
After you do so, you will see a servo1 icon appear below the form. This too is
illustrated in the following figure. If you click on servo1 icon, it will raise the properties
of the servo1 object in the properties window.

Drag and drop a Servo component into the form, and view its properties.

Create an event handler for servo1’s Attach event. This is
done in the usual .NET way. That is, click on the servo1
component to see its properties in the properties window, then
click on the event button (the lightning bolt) to see the list of
events, then click in the empty field next to the Attach event
and hit return. A method called servo1_Attach will be
automatically created

Insert the following code in the servo1_Attach event handler. The Attach
event is raised when the servo device is seen by the system (i.e., when you start the
program if the servo is plugged in, or if you plug in the servo after the program has
been started. Through the code below, the servo1_Attach event handler will just
rotate the 1st servo motor (counting from 0) to a random position between 0 and 180
degrees by setting that motor’s Position property.

 Draft of March 9, 2005

10

private void servo1_Attach(object sender, System.EventArgs e)
{
 Random random = new Random ();
 servo1.Motors[0].Position = random.Next (180);
}

Execute the program. The servo motor should rotate to a random position when
the program starts (assuming the servo is attached to the computer by the USB cable).
With the program running, try unplugging the USB cable and then plugging it back in
again; you should see the motor rotate again to a new random position.

The complete program. Even though you have only written two lines, Visual Studio
.NET filled in – as it usually does – additional code. The program is provided below
for completeness, but there should be no reason for you to type this in (unless you are
not using Visual Studio). Most of the code creates basic classes and constructs the
window interface necessary to make this program executable; only a small amount of
this code creates and configures the servo component and its event handler.

using System;
using System.Drawing;
using System.Collections;
using System.ComponentModel;
using System.Windows.Forms;
using System.Data;

namespace servoTester
{
 public class Form1 : System.Windows.Forms.Form
 {
 private GroupLab.Phidgets.Components.Servo servo1;
 private System.ComponentModel.Container components = null;

 public Form1()
 {
 InitializeComponent();
 }

 protected override void Dispose(bool disposing)
 {
 if(disposing)
 if (components != null) components.Dispose();
 base.Dispose(disposing);
 }

 private void InitializeComponent()
 {
 this.servo1 = new GroupLab.Phidgets.Components.Servo();
 this.servo1.AutoAttach = true;
 this.servo1.PhidgetDevice = null;
 this.servo1.Attach +=new System.EventHandler(this.servo1_Attach);
 this.AutoScaleBaseSize = new System.Drawing.Size(5, 13);
 this.ClientSize = new System.Drawing.Size(292, 266);
 this.Name = "Form1";
 this.Text = "Form1";
 }

 [STAThread]

 Draft of March 9, 2005

11

 static void Main()
 {
 Application.Run(new Form1());
 }

 // Whenever the servo device is attached (plugged in), rotate
 // the motor to a random position between 0 and 180 degrees
 private void servo1_Attach(object sender, System.EventArgs e)
 {
 Random random = new Random ();
 servo1.Motors[0].Position = random.Next (180);
 }
 }
}

For the adventurous. If you wish, try the following on your own. What the steps do
is let you operate a servo motor through a trackbar (a slider), where feedback is given
on the attach state of the Phidget Servo as well as the motor position. Don’t worry if
you have problems or don’t fully understand everything; a later chapter will detail a
robust version of this exercise.

• Add a trackbar to the form. Through the properties window, set its
Enabled property to false and its Maximum property to 180.

• In code, enable the trackbar in the servo1_Attach event handler. Assign
the motor’s Position property to the trackbar’s value property.

• Add a label to the form, and set its text to the trackbar’s position. This will
let you see the current angle of the motor.

• To make it more robust, create an event handler for the servo’s Detach
event and disable the trackbar within it. As a consequence, a person can
change a motor’s position only when the Phidget Servo is plugged in.

• Using the Title property of the form, provide textual feedback (added in
the Attach and Detach events) that describes if the Phidget Servo is
attached or detached.

Getting Analog Input from an InterfaceKit
You will create a program that displays input gathered from an analog
input (a sensor) plugged into an InterfaceKit.

You should have a version of an InterfaceKit that includes the ability to connect
sensors to it. The most common version is an 8/8/8 InterfaceKit, which means that
you can connect up to 8 Analog Inputs (i.e., sensors) to it, up to 8 Digital Inputs (i.e.,
switches), and up to 8 Digital Outputs (i.e., low powered devices such as LEDs). In
the following discussion, ‘sensors’ and ‘analog inputs’ are the same thing.

As illustrated in the figure below, plug a sensor into Analog Input port #1. You can
use any of the many different sensors provided with the InterfaceKit – force sensors,

What you need

 Draft of March 9, 2005

12

light sensor, rotation sensor, slider, joy stick, motion sensor – but probably the slider
is the easiest to try if you have one. Using the USB cable, plug the Interface Kit
hardware board into your computer. As with the servo, you may get a message on
your computer saying “New Hardware found”, but no further action needs to be
taken by you (if it says to restart the computer, just ignore that message).

An 8/8/8 Phidget InterfaceKit, with a slider sensor plugged into Analog Input #1.

You will create a program that resembles the one below. A trackbar will graphically
display the current value of the first analog input, while the title of the window will
show the sensor and its value in textual form.

To do this, you will follow a sequence of steps that is very similar to those you already
did in the earlier Servo example.

Start Visual Studio .NET and create a new C# Windows Application project called
‘interfacekitTester’.

Drag and drop a TrackBar component from the Toolbox onto the Form1 window
and select it. After you do so, you will see the trackBar1 properties appear in the
properties window. Set the following properties of the trackBar1 component:

What you have to
do

 Draft of March 9, 2005

13

• Minimum 0

• Maximum 1000

• Tick Frequency 25

• Enabled False

• Dock Fill

The trackbar will be used to display the sensor values; Enabled is set to False because
there is no need for the trackbar to be interactive. The sensor values returned are
always between 0 and 1000, which is why the Minimum and Maximum properties of
the trackbar are set to those values. Finally Dock is set to Fill so the trackbar always
resizes itself to fill the window.

Open the Phidget Tab in the Toolbox and find the component labeled ‘InterfaceKit
in the list.

Drag and drop the InterfaceKit component from the Toolbox onto the Form1
window. After you do so, you will see an interfacekit1 icon appear below the form. If
you click on interfacekit1 icon, it will raise the properties of the interfacekit1 object in
the properties window.

Create an event handler for interfaceKit1’s SensorChange event. This is done in
the usual .NET way. That is, click on the interfacekit1 icon to see its properties in the
properties window, then click on the event button (the lightning bolt) to see the list of
events, then click in the empty field next to the SensorChange event and hit return. A
method called interfaceKit1_SensorChange will be automatically created.

At this point, your project should resemble the figure below.

 Draft of March 9, 2005

14

Insert the following code in the interfaceKit1’s SensorChange event handler.
The SensorChange event is raised whenever any Analog Input generates a new value,
which is returned in the events argument e. This events argument contains two new
properties above and beyond what is normally found : e.Index is the number of the
Analog Input that generated the event, while e.Value is the current value of that
Analog Input. The value is always within 0 to 1000.

private void interfaceKit1_SensorChange(object sender,
GroupLab.Phidgets.Components.EventArguments.IndexSensorChangeEventArgs e)
{
 if (e.Index != 0) return;
 this.Text = "Sensor " + e.Index + " value is " + e.Value;
 trackBar1.Value = e.Value;
}

In this case, we are only interested in the first Analog Input (numbering starts at 0), so
we check if that is the one that generated the event. If it isn’t, we exit the event
handler. Otherwise, we change the title bar to provide feedback as to which sensor
generated the event and its current value, and we set the trackbar’s value to be the
same as the sensor’s value.

Execute the program. When you manipulate the sensor, the trackbar and window
should reflect the current value of the sensor. Try unplugging that sensor and plugging
another one in; you will see that the program continues to display the values of that
new sensor.

For the adventurous. If you wish, try these 3 different exercises on your own. Don’t
worry if you have problems or don’t fully understand everything; a later chapter will
fully detail the Phidget InterfaceKit.

1. Add other trackbars to the form, each corresponding to a different Analog
Input. By using a switch statement on the e.Index value, you should be
able to track the values of many sensors at the same time.

2. Create a graphical object (e.g., a rectangle). Scale the object so that its size
is adjusted by the value of the sensor.

3. If you have a motion sensor, create a
bar graph that displays the motion
detected over time, such as the one
illustrated here.

Using an Analog Input to Operate a Servo
You will create a program that uses the input gathered from an analog
input sensor plugged into an InterfaceKit to rotate a servo.

 Draft of March 9, 2005

15

This final example will use both a servo and an InterfaceKit. You will use a sensor
attached to the InterfaceKit (e.g., a slider) to control the servo motor, as illustrated in
the figure below. To build this example, you will need everything you used in the two
earlier examples.

As before, plug a sensor such as a slider into Analog Input #1 of the Phidget
InterfaceKit. Using the USB cable, plug the Phidget InterfaceKit into a USB port on
your computer. Using another USB cable, plug the Phidget Servo into another USB
port on your computer.

Note: if you do not have two USB ports available on your computer, you will have to
purchase a USB hub. Alternatively, you can use the USB hub that is built into certain
versions of the 8/8/8 InterfaceKit (note the power supply is required for the USB hub
to work).

Either add the following steps to the program you created previously for the
InterfaceKit example, or repeat all the previous steps to create a new program. Test it
to make sure it works, i.e., that the slider repositions that trackbar as before.

Now, drag and drop a servo component onto the form (as in the Servo example).
However, don’t bother setting up the Attach event.

Modify the interfaceKit1_SensorChange method as follows.

private void interfaceKit1_SensorChange(object sender,
GroupLab.Phidgets.Components.EventArguments.IndexSensorChangeEventArgs e)
{
 interfaceKit1.Sensors[0].Sensitivity = 1;
 if (e.Index != 0) return;
 this.Text = "Sensor " + e.Index + " value is " + e.Value;
 trackBar1.Value = e.Value;

What you need

What you have to
do

 Draft of March 9, 2005

16

 // If there is a servo attached, make its position match the value
 // returned by the sensor, translated to a number between 0 and 180
 if (servo1.Attached)
 {
 float position = (e.Value / 1000f) * 180;
 servo1.Motors[0].Position = position;
 this.Text += ". Servo at: " + position;
 }
}

The first few lines are identical to what was seen in the previous example, although we
added a line that makes the sensor highly sensitive by changing that sensor’s Sensitivity
value. By default, sensors will only raise an event if their value has changed by at least
10 units from the previously generated value. By setting the sensitivity to 1, the event
will be raised any time there is a difference in the current value from the previously
generated one.

We then check to see if the servo1 component is in an Attached state. If it is, we
calculate the servo motor’s position so that the sensor value (which is between 0 to
1000) is mapped onto the allowable motor positions (i.e., between 0 to 180 degrees).
We then set the servo motor Position property to that position, and append a bit of
text to the Window’s title so that it also shows what position the motor is in.

Execute the program. The servo motor position should now follow any changes to
the sensor. It is also robust; if you unplug the servo, the program continues to run and
the sensor value is still reported.

Summary
The purpose of this chapter was to give you a taste of programming phidgets. As you
should now know, it is a fairly simple matter to control phidgets (such as with the
Phidget Servo) or to collect input from them (such as with the Phidget InterfaceKit). It
is also fairly simple to have one type of phidget hardware control another type of
phidgets hardware, all mediated by software. Or you can have software controlling the
hardware , or hardware controlling the software!

The following chapters add detail to what you have learnt here. They describe features
common to all phidgets, and then walk through the full capabilities of each phidgets.
They also describe a special component called the Phidget Manager.

While many details are provided in the following chapters, what is important is that –
as with these examples – most phidgets can be operated at their basic level in just a
few lines of uncomplicated code.

 Draft of March 9, 2005

17

Concepts Common to All
Phidgets
All Phidgets have a variety of concepts in common. They all
behave the same way when the hardware is attached (plugged into
the computer) or detached. They all share several programmable
properties that describe the particular phidget. They (almost) all
come with graphical ‘skins’ that lets you control the phidgets
and/or see its state.

ll phidgets share several things. Once you learn what these are, you can apply
them to your treatment of any phidget. This chapter describes these common
concepts. We will use the Phidget Servo as our running example, but all
phidgets are treated the same way.

The Phidget Philosophy: Hardware as Software
In C#, phidgets present themselves as software components (i.e., objects).
All phidget programming is done through these components using
standard notions such as properties, methods, events and event handlers.
No knowledge of hardware, firmware, or wire protocols is needed.

Until phidgets were available, most programmers had to build hardware from scratch.
This included finding appropriate devices to control, assembling a circuit board to
control that device (based around a micro-controller chip), writing firmware for that
micro-controller, figuring out how to connect that circuit board to a computer via
some wire (e.g., serial port, USB, etc.), defining and writing the wire protocol between
the controlling computer and the software, wrapping this up in some kind of
programmable interface, debugging and testing the hardware and software, and so on.
This is hard work, even for something as simple as a servo motor (see figure below).
To make matters worse, the average programmer does not even have the necessary
electrical engineering skills to do some of these tasks. No wonder so few programmers
dealt with hardware!

Chapter

3

A

Hardware
complexity

 Draft of March 9, 2005

18

Hardware

device circuit

wire
protocol communication layer

wire protocol

SoftwareHardware

device circuit

wire
protocol communication layer

wire protocol

Software

A programmer’s nightmare: low level construction of hardware and wire protocol.

The Phidget philosophy is to make hardware accesible to the average programmer,
even those with zero hardware knowledge. It does this by presenting the Phidget
hardware as a ‘black box’. All the low level implementation details of the hardware,
firmware, and network protocol are hidden from the end programmer. Instead, the
programmer only sees a software component – an object in C# – with a well-defined
application programmer’s interface (API). Technically speaking, phidgets inherit from
System.ComponentModel.Component. Thus, excepting a few notable exceptions
discussed later in this chapter, the programmer uses this component in a way that is
almost identical to other C# .NET components (e.g., timers).

Like other components, Phidget components have properties, methods and events.
Event handlers (or callbacks) can be attached to an event in the standard C# way, so
that the event handler is invoked automatically whenever the appropriate event is
raised by the component. As well, the programmer can use the Visual Studio .NET
interface builder to create instances of the component simply by dragging and
dropping components from the Toolbox onto the form. Some (but not all) of a
component’s properties and events of the component are displayed in Visual Studio
.Net’s Properties window. Using the form-filling properties window at design time, the
programmer can then redefine property values or specify the component’s event
handlers.

In practice, programmers often build a graphical interface that visually shows the end
user the current state of a particular Phidget, and/or that lets the end user control the
hardware via graphical controls. While this is straight-forward to build from scratch, it
is still a burden. Thus each Phidget component is accompanied by a ‘skin’: a graphical
component that visually represents a Phidget component. As with user controls, skins
can be dragged from the Toolbox and dropped into a form. After the skin is

Hardware as a
software
component

Properties,
methods, events
and event handlers

Graphical Skins

 Draft of March 9, 2005

19

connected to the Phidget component, it displays the Phidget hardware’s state and
shows various controls. Chapter 4 shows how to use existing skins, while details of
each Phidget’s skin will be discussed in chapters describing that Phidget. A later
chapter illustrates how custom skins are constructed.

There is one very important difference between Phidgets and normal components.
Unlike software which is always present, the actual Phidget hardware may or may not
be plugged into the computer. When the hardware is not plugged in, the component is
in a ‘detached’ state: while the software component exists, it has no hardware to
control. When the hardware is plugged in, the component is in an ‘attached’ state: the
software component is actually connected to the hardware and (under the covers) it is
communicating with it.

To simplify the job of detecting when hardware is attached or detached, Phidgets
include a special kind of software called the Phidget Manager. As we will see shortly,
the Phidget Manager can be exploited so that it automatically connects your
component to phidget devices, or it allows you to do it by hand.

The Phidget Manager, the specific Phidget components, and the Phidget skins all work
together to provide the end programmer with a powerful means to control hardware
devices without worrying about the details of hardware programming. As the figure
below illustrates, all the hardware and networking complexity is hidden; the only thing
the programmer has to do is use familiar programming concepts to control the device.

Hardware Software

phidgetManager

Skin - phidgetServo

Events Properties
Attach DeviceType
Detach SerialNumber…

Component - phidgetServo
Events Properties
PositionChanged Motor[0].Position=90

Hardware Software

phidgetManager

Skin - phidgetServo

Events Properties
Attach DeviceType
Detach SerialNumber…

Component - phidgetServo
Events Properties
PositionChanged Motor[0].Position=90

A programmer’s delight: programming hardware through familiar software concepts.

While this book refers only to C#, Phidgets are language independent. Under the
covers, they are implemented as COM objects. Thus they are accessible to all the old
Visual Studio 6 languages (C++, J++, Visual Basic, etc). While COM objects are also
accessible in .NET, the Phidgets.NET version wraps the COM object so that all

Attaching and
detaching
hardware

Language
independence

 Draft of March 9, 2005

20

Phidgets appear as true .NET objects. This makes them easier to program and
accessible from any .NET language e.g., C# and VB7.

The Phidget Manager Concept
The Phidget Manager automatically monitors phidgets as they are
attached or detached from the computer.

The Phidget Manager usually works behind the scenes. It monitor all phidgets as they
are plugged or unplugged (attached or detached) from the computer. Perhaps the best
way to illustrate what the Phidget Manager does is by example.

In this example, you will create the program illustrated below. You will use the Phidget
Manager Skin to show a list of all phidgets that have been plugged into the computer
since the program was started. What you will see on your list will likely differ from this
one, as you may plug in different devices. However, in this case we see 4 phidgets
listed: two Phidget Servos, a Phidget Weight Sensor, and a Phidget Encoder. All are
identified by their ‘Device type’ name, a unique serial number and the version number
of the hardware. We also see that only three of the devices are currently attached to the
computer; the encoder is detached.

This program is trivial to build: really! All you have to do is drag and drop a Phidget
Manager Skin onto the form.

Drag and drop a Phidget Manager Skin onto the form. You do this following the
steps quite similar to those in the previous chapter. Find the PhidgetManagerSkin
component on the Toolbox under the Phidgets tab. Drag and position this
component onto the window. Resize it as needed: make sure all four columns are
visible. You do not have to change any properties or write any code.

Test it. Run the program. Plug in several phidgets. You will see new ones appear on
the list, with their Attached state shown as true. Try unplugging phidgets. When a

Example

What you have to
do

 Draft of March 9, 2005

21

particular phidget is unplugged, its attached state is shown as false. Plug it back in again
and you will see the attached state shown as true.

That’s it! You can now use this program as a diagnostic tool, i.e., to see what phidgets
are recognized and even to look up their basic properties.

It should now be clear that the Phidgets platform allows you to dynamically plug and
unplug devices at run time, and that the Phidget Manager detects this. While you can
work directly with the Phidget Manager to detect these devices (as discussed in a future
chapter), most of the time you will let the Phidget Manager work automatically behind
the scenes. Instead, you will use each phidgets component’s Attach and Detach events,
discussed next.

Attach and Detach Events
The Attach and Detach events are raised whenever a phidget is plugged in
(attached) or unplugged (detached) from the computer.

All Phidget components have two special events, called Attach and Detach. These
events are triggered behind the scenes by the Phidget Manager. All also have a special
property called Attach which reflects whether a particular component is attached to a
Phidget hardware device.

event Attach is invoked whenever a Phidget hardware device attaches to its matching
component, but only if the component is not already connected to another Phidget
hardware device.

event Detach is invoked whenever a Phidget hardware device is disconnected from its
matching component. This usually happens when you unplug the Phidget hardware
from the USB port.

bool Attached [get] returns true if the Phidget hardware is plugged in and is attached to
its matching component, or false otherwise.

As we will see in a later section, you can restrict attachment to devices that have
particular serial numbers.

To illustrate how attach and detach works, we will build an example that shows how a
servo component recognizes these events. When you run this program and repeatedly
plug and unplug a servo device into the computer, the program will alternate between
these two states:

Example

 Draft of March 9, 2005

22

If you don’t have a Phidget Servo, just use whatever Phidget device you have; just
select the corresponding component for that device. For example, if you have a
Phidget RFID device, use the RFID component.

Start a new program.

Add two labels to the form to the left and then to the right of each other. They will
automatically be called label1 and label2. If you want, increase their font size to
(say) 12 point. Rename label2 (via its Name property) to labelAttachStatus. Set
their properties via the Properties window or via code as:

label1.Text = “Attach state:” ;
labelAttachStatus.Text = “False”;

Drag and drop a servo component onto the form.

Create event handlers for servo1’s Attach and Detach events. These are done in
the normal Visual Studio .NET way, i.e., click on the servo1 component to show it in
the Properties window (don’t forget to click on the lightning bolt icon to show the
events). Then click and hit return in the Attach field to automatically create the
servo1_Attach event handler. Do the same to the Detach field to create the
servo1_Detach event handler. At this point, your project should look something like
this. We are now ready to start coding.

Program the Attach event handler via the servo1_Attach event handler. This is
executed when the servo device is seen by the system (i.e., when you start the program
if the servo is plugged in, or if you plug in the servo after the program has been started.

What you have to
do

 Draft of March 9, 2005

23

private void servo1_Attach(object sender, System.EventArgs e)
{
 //A servo device just attached. Provide feedback.
 labelAttachStatus.text = servo1.Attached.ToString ();
}

Program the Detach event handler via the servo1_Detach event handler.

private void servo1_Detach(object sender, System.EventArgs e)
{
 //A servo device just deatached. Provide feedback.
 labelAttachStatus.text = servo1.Attached.ToString ();
}

Test it. Start the program. Plug in a servo and unplug it. You will see the display
provide the appropriate feedback.

Don’t throw away this program! You will modify it for our next example.

Identifying the Phidget Hardware
Through software, you can discover various properties about the Phidget
hardware such as its name, its unique serial number, and the hardware’s
version number.

Whenever a Phidget hardware device is attached, you can discover through software
various details about it. This is held in a phidget component’s PhidgetDevice
property.

PhidgetDevice is a handle that lets you access properties that describe particular device
details. While some of these properties are specific to the particular type of hardware,
all PhidgetDevice will have at least the following:

string Name [get] returns the name of the device as a string.

For example, a Phidget Servo device will always return the name “phidgetservo” if
you call (say) the servo1.PhidgetDevice.Name.

int SerialNumber [get] returns a unique serial number for this device as an integer.
This serial number is actually burnt into the hardware. This is an important field,
for it means you can differentiate between particular Phidget Servos if you have
several plugged in.

For example, if you plugged in a Phidget Servo whose hardware had the serial
number 325, a call to servo1.PhidgetDevice.SerialNumber would return
325.

 Draft of March 9, 2005

24

float Version [get] returns the version number of the hardware. This too is burnt
into the hardware. While this can be useful if you have to check the version due to
a change in capabilities, it is rarely used.

For example, if you plugged in version 2.1 of a Phidget Servo, a call to
servo1.PhidgetDevice.Version would return 2.1.

To illustrate how these properties work, we will extend our previous example to show
how a servo component can list their values. When you run this program and plug in a
servo device into the computer, the program will display something like:

Again, if you don’t have a Phidget Servo, just use whatever Phidget device you have.
This will work as long as you select its corresponding component.

Open up the previous example as we will just add to it.

Add 3 rows of two labels each to the form below the original ones, so that it
resembles the figure above. Change the names of the labels on the right to labelName,
labelSerialNumber, and labelVersion, and clear their text properties. As before,
increase all font sizes to (say) 12 point. Set the text properties of the left labels to
reflect the example above, either through the properties window or through code. For
example, (note that the label names may differ from what is below):

label2.Text = “Device name:” ;
label3.Text = “Serial number:”
label4.Text = “Version:”

Modify the Attach and Detach event handler so that it includes the code below.

private void servo1_Attach(object sender, System.EventArgs e)
{
 labelAttachStatus.Text = servo1.Attached.ToString ();
 labelName.Text = servo1.PhidgetDevice.Name;
 labelSerialNumber.Text = servo1.PhidgetDevice.SerialNumber.ToString ();
 labelVersion.Text = servo1.PhidgetDevice.Version.ToString ();
}

private void servo1_Detach(object sender, System.EventArgs e)
{
 labelAttachStatus.Text = servo1.Attached.ToString ();
 labelName.Text = "";
 labelSerialNumber.Text = "";

Example

What you have to
do

 Draft of March 9, 2005

25

 labelVersion.Text = "";
}

It should be clear that all we are doing is accessing and printing the properties of the
phidgets device. When the deivice is detached, we are just clearing the text fields.

Test it. Start the program. Plug in a servo. You will see the display provide the
appropriate feedback. If you unplug it and plug in a different servo, the serial number
will change. If you have different versions of a servo device, the version numbers will
change as well.

Again, don’t throw this program away. There are a few more things you will do with it
before we are done.

AutoAttach and Serial Number Filtering
Using the AutoAttach event, a Phidget component will automatically
attach itself to an appropriate hardware device. By filling in the
FilterSerialNumber collection with serial numbers, auto-attachment will
ignore devices whose serial numbers are not on the list.

Each phidget component has two other special properties: AutoAttach and
FilterSerialNumbers. These are defined below.

bool AutoAttach [get, set] If the phidgets component is not already attached to a
device, it will automatically try to attach to any matching phidget device that
becomes available. To further restrict what the component should attach to, it
looks at the FilterSerialNumber collection. If it contains any serial numbers,
the component will only attach to appropriate devices that contain a serial number
included in that collection. Default is true.

IntegerCollection FilterSerialNumbers [get, set] is a collection of serial numbers. It is
used by AutoAttach to filter the devices it is allowed to attach to.

Whenever you create a new phidget component (e.g., by dragging and dropping a
component onto a form), the AutoAttach property is (by default) set to True and the
FilterSerialNumber collection is empty. Because AutoAttach is true, the
component will work behind the scenes with the Phidget Manager to look for a
matching device. If AutoAttach were set to false, you would have to use the Phidget
Manager directly to look for devices (as explained in a future chapter).

Because the FilterSerialNumber collection is empty, any matching device will be
connected to the component (no matter what its serial number) and an Attach event
will be raised.

The programmer can use the properties window at design time to add serial numbers
to the FilterSerialNumber collection. Alternately, these numbers can be added at

 Draft of March 9, 2005

26

run time programmatically using the standard .NET Collection methods. Because
AutoAttach is True and this collection is not empty, the component will check each
matching device to see if its number is in the collection. If and only if it is, that device
will be connected to the component and an Attach event will be raised.

To illustrate how these two properties work together, we will again extend our
previous example. In this case, no changes to the code are required.

Run the previous example and write down the serial number of the attached servo
shown on the display. In the version above, this serial number was 264.

Change the AutoAttach property to False. Go to the
servo’s property window, and choose False from the pull
down menu, as illustrated on the right.

Run the example. The component does not attach to
the Phidget Servo even though it is plugged in. The
Attach event is not raised. Then set the AutoAttach
property back to True

Add 264 to the FilterSerialNumber collection. You can do this by clicking the
‘…’ ellipses in the FilterSerialNumber Property, and adding the value 264 to the
list via the dialog box. This is illustrated below. Don’t forget to set the AutoAttach
property back to True!

Run the example. The component attaches to the Phidget Servo, as you would
expect. If you have a second Phidget Servo, try unplugging the first one and plugging
in the second one. You will see that the other servo does not attach, as its serial
number is not on the list. You can also plug both servos in, and restart the program.
Again, you will see that only the phidget servo with the right serial number is included.

Example

What you have to
do

 Draft of March 9, 2005

27

Filtering by serial numbers is important whenever you need to use multiple instances
of a device, e.g., several Phidget Servos. This occurs when the product you build
contains several of the same kind of device and you have several phidgets components
to represent them. By tying each component to a particular instance of the Phidget
hardware (by its serial number), each component will control the right device.

Filtering by serial number is also important when you plan to plug in several products,
as each product may use the same kind of device.

Why the
FilterSerialNumber
property is
important

 Draft of March 9, 2005

28

Phidget Skins
Almost all Phidgets come with graphical ‘skins’ that lets you try it
out, where you can interactively control the Phidget and/or see its
state.

lmost all Phidget components are accompanied by a graphical skin. While
Phidget components are objects with a programming API accessed through
methods, properties and events, skins are graphical interfaces that visually
show the end user the current state of a particular Phidget, and/or that lets

the end user interactively control the hardware via graphical controls. Skins are very
easy to use, where they require no programming to access their basic operation.
Instead, a programmer just drags and drops both a component and its accompanying
skin from the Toolbox onto a form, and sets a single property in the skin to associate
it to the component. The program is then run, and the skin appears.

This chapter shows how an existing skin is used. A few examples will be shown, but
full details on particular Phidget skins will be discussed in each chapter describing that
Phidget.. A later chapter illustrates how custom skins are constructed.

Programming the Servo Skin
You will create a program that displays a servo skin, which in turn will let
you adjust the servo motor positions by a slider.

We assume that you have assembled a 1 or 4 motor servo as described in Chapter 2,
that you have Visual Studio .NET and are reasonably familiar with using it, that all the
phidget software has also been installed on your machine, and that you have already
tried to run the servo example from that chapter.

If you don’t have a Phidget Servo, you can use any other phidget. However, you will
have to choose the component and the skin representing the Phidget you choose (e.g.,
an RFID and RFIDSkin for a Phidget RFID, an InterfaceKit and InterfaceKitSkin for
a Phidget InterfaceKit, etc). If you follow the basic idea of this example, your Phidget
should work

Chapter

4

A

What you need

 Draft of March 9, 2005

29

Start Visual Studio .NET and create a new C# Windows Application project. Give
it a descriptive name, e.g., servoTester, servoSkinExample, etc.

Open the Phidget Tab in the Toolbox. You will see quite a few Phidgets and
Phidget Skins listed (see figure below). Through this Phidget tab, you will be able to
use the interface builder supplied by .NET to rapidly construct the basics of your
Phidget programs.

Drag and drop the Servo component from the Toolbox onto the Form1 window.
After you do so, you will see a servo1 icon appear below the form. If you click on this,
it will raise the properties of the servo1 object in the properties window. The servo is
an object with properties and events; it does not have a graphical representation. This
sequence is annotated in red in the figure below.

What you have to
do

 Draft of March 9, 2005

30

Drag and position a ServoSkin from the Toolbox onto the Form1 window, as
illustrated in the next figure. This creates the graphical skin – a widget – that will let
you see and control the servo motor. It will likely be called servoSkin1. It too is an
object, but with graphical properties. Click on it to see its properties in the Properties
window.

Set the Servo property of the servoSkin1 to ‘servo1’. This connects the graphical
skin to the actual servo component. This step is annotated in red in the figure below.

 Draft of March 9, 2005

31

Build and execute the program in the usual way. The window below shows you
what should appear if you have properly connected a 1-motor servo. A 4-motor servo
would look almost identical, except you would see four trackbars, one for each motor.

Run the program

 Draft of March 9, 2005

32

Move the slider on the trackBar. As you move it, the servo motor plugged into the
Phidget Servo should rotate to the given angle. This angle can be between 0 to 180
degrees. The actual angle will appear on the right of the trackbar.

For 4 motor servos, try the other trackbars. Each trackbar, from top to bottom,
corresponds to the motors numbered 0 to 3.

Unplug the USB cable. You should see the window go gray (inactive), and the label
will say that the motor is not attached.

Plug the USB cable back in. The window will reactivate, and you can continue to
rotate the motor.

If you have other phidgets, try them out. Almost all phidgets have accompanying
skins, and they are inserted in a program in almost the same way as shown in the servo
example.

Skins are also a great way to explore the capabilities of your Phidget: most have
controls and/or displays that reflect all the things you can do with your particular
Phidget.

Try the skins for
your other
phidgets

 Draft of March 9, 2005

68

Appendices

 Draft of March 9, 2005

69

Installing Phidgets
The phidget software is fully integrated into .NET via a two-stage process. The
first stage installs the software on you r computer, while the second stage installs the
various phidgets components into Visual Studio .Net’s Toolbox

Phidgets comprise both software and hardware. If you want to use Phidgets, you must
make sure the proper version of the .NET-enabled Phidget software is installed on
your machine.

Before you install the Phidget software, you need the following.

• A computer with at least one available USB port

• The Windows 2000 or XP operating system (or later)

• Microsoft Visual Studio .NET

You should also be familiar with C# and the Microsoft Visual Studio .NET
programming environment. While this book provides basic details to guide the Visual
Studio and C# neophyte, it is not a tutorial on how to use Visual Studio nor how to
program in C#.

If you have previous versions of Phidget software on your machine, you should
uninstall them. You can do this by raising the Add or Remove Programs dialog box
(accessed through the Control Panel on the Start Menu), and removing any software
that has “Phidgets” as part of its title.

If you had previously installed any Phidget components in the Microsoft Visual Studio
.NET Toolbox, you should also remove those. For example, if they are all collected in
a tab, you can right-clicking on the tab to raise the context menu, and then select the
menu option that deletes the tab. If you don’t see any phidgets listed in your Microsoft
Visual Studio Toolbox, then you probably have no need to worry about this.

Installing phidgets software is similar to how most software is installed on a Windows
machine. Go to http://grouplab.cpsc.ucalgary.ca/phidgets. Follow the directions to
download the Phidgets.Net version. Click the link, which will execute the

Appendix

1

Preconditions

If you have
installed previous
versions of
Phidgets

Software
Installation

 Draft of March 9, 2005

70

Grouplab.Phidgets.msi (the installer package) and accept all the default
recommendations of the dialog boxes.

While your phidget software is now installed, there is one further step required if you
want it to appear in a convenient form within your Visual Studio .NET environment.
As you will shortly see, phidgets are designed as software components that can be
dragged and dropped from the Windows Toolbox onto the Form. For this to work,
you have to manually add the phidgets components into the Toolbox through the
following sequence of steps.

Open Visual Studio .Net and create a new project. You will probably see something
similar to this window.

An empty C# project. The Visual Studio .NET Toolbox in on the left.

Find the Toolbox. .NET’s Toolbox is a panel usually positioned on the left side of
the above screen. You are likely familiar with it already, as it is the normal place you go
to when you wish to drag and drop user controls (such as a Button, found in the
Windows Forms tab) and components (such as a Timer, found in the Components
tab) onto the form. If it is not visible, select the View Toolbox menu item.

Adding Phidgets to
the Toolbox

 Draft of March 9, 2005

71

Add a new tab in the Toolbox. Right click on the title of an existing tab (e.g., the
Components tab) to raise a context menu. Select the ‘Add Tab’ menu item (left side of
figure, below), which will create a new empty tab at the bottom of the Toolbox (center
of figure, below). The text cursor will be placed in there: type in the label “Phidgets” to
name this tab.

Open the Phidgets Tab by clicking on it (right side of figure, below). It should be
empty except for a cursor.

Select the Add/Remove Items menu item by right-clicking within the tab and raising
the context menu (right side of figure, below). The Customize Toolbox dialog box will
appear, and will resemble the window below.

First Add the Tab Then name it Phidgets Open the tab and select Add Items

Using the Customize Toolbox, add the Grouplab.Phidget.dll. Click the Browse
button (bottom right of the window on the following figure), and navigate to
C:\Program Files\UofC\PhidgetSetup\. Select Grouplab.Phidgets.dll. All the phidgets
components will now appear within your Customize Toolbox window, as shown
below.

 Draft of March 9, 2005

72

Click the Browse button, and browse to the Grouplab.Phidget.dll and add it

 The Phidgets Tab now lists a variety of Phidget components.

 Draft of March 9, 2005

73

A Catalog of Phidgets and
Peripherals

Appendix

2

