
Video Traces
Michael N. Nunes
University of Calgary

nunes@cpsc.ucalgary.ca

ABSTRACT
In this paper we present video traces, a project that looks to
explore the design space for visualizations showing the history of
a video stream. When using video channels to create a media
space for communication, it becomes possible to broadcast
countless hours of streaming video. If we are to understand the
activities and events taking place in the space, we need methods
that allow us to navigate the video history to find these events. In
this paper we present and discuss several example visualizations
of video history. We consider how certain visualizations may be
useful, what their limitations may be, and what issues may arise
from their use.

General Terms
Design, Human Factors.

Keywords
Video communication, groupware systems, awareness, traces.

1. INTRODUCTION
The use of a video channel to augment communication amongst
remote collaborators is becoming increasingly popular with the
wide availability of inexpensive web cams. The capability to
include an office or a public space within a larger media space
becomes easy as the supporting technology is made available, but
this leads to the potential for countless hours of video footage to
be broadcast within the media space. With this wealth of video
data available, the opportunity to explore new techniques that
allow users to easily discover the activities and events occurring
within the media space arises.

The video traces project presented here is an exploration of
several visualizations that allow users to quickly explore the
history of a video stream from a media space. These visualizations
allow us to display video over time, which we can use to gather
information from more than just a single instant of video at once.
The use of these visualizations is intended to provide an observer
with an easy means to discover and understand the history of
activities and events that have occurred within the media space.

Traditional methods of navigating video include fast-forward and
rewind buttons, or seek bars. These methods may work well for
quickly perusing the content of a video, or skipping to an
approximate location, but they can be overly cumbersome when
attempting to look for specific events within a large video stream.
This is particularly so when the observer does not know when an
event has occurred and must manually search through hours of
video to find what might constitute only a few seconds of activity.
In the situation where the video stream is used to provide causal
awareness, the user may only periodically look at the stream and
will not know about potentially important events that may have
occurred and been missed. Because they are unaware of the

missed events, they have no motivation to expend the effort to
look through the incoming video stream.

The objective of this project is to explore the design space for
visualizations that allow observers to easily explore the history of
a video stream. In order to accomplish this we have developed
several example visualizations that will be presented. From these
examples we hope to show how different visualizations of history
in a video stream might be used. We examine the potential
strengths and weaknesses of the visualizations, and consider the
issues that may arise from their use in systems for group
awareness and communication.

2. RELATED WORK
Hill and Hollan presented a shared document editor called Edit
and Read Wear in which the interface elements showed artifacts
of past interaction [4]. This interface design shows how
visualization of the past can be used to promote change awareness
in a groupware system. The visualization of interaction history
provides users with the capability to “see through time”; this
capability is not possible in the real world, but can be
implemented in the virtual world to help users comprehend past
activities and events.

The traces work by Gutwin [3] looked at applying visualizations
of the recent past to virtual embodiments of users in a groupware
system rather than to interface elements. This work augmented the
telepointers representing users with a visualization of recent
movement history, such as motion blur, to increase understanding
of their actions over time. It was shown that the telepointer traces
were useful in combating service degradation during conditions of
network jitter; when delay occurred telepointer updates would pile
up resulting in jerky motion, but the original movement could be
reconstructed and shown as a trace. Gutwin also suggested that
traces could similarly be used with video to allow for casual
awareness, noting that people might only glance at a video stream
periodically and may miss important events.

The “When Did Keith Leave?” system presented by Hudson and
Smith [5] is an example of a system for casual awareness where a
recent history of images is pulled from a video stream showing
the last few moments of heavy activity detected within the space.
The main focus of this system was to demonstrate how privacy
issues might arise when providing awareness information; the
activities of a person within the space will not be hidden within a
large video stream, they are extracted and displayed in a way that
makes them persistent and easily visible. It is also noted that while
this system may cause issues of privacy, it is powerful in that it
easily allows users to see the recent activities and events that have
occurred within the space.

Other projects have similarly looked into the display of video over
time. The Video Streamer project by Elliott and Davenport [2]

looks at how more than an instant of video can be viewed at once.
In the Video Streamer, video is shown streaming into view and
forms a three-dimensional solid block. The intent of this project is
to look at how video can be turned into a malleable object with
the focus being on its use for video editing, rather than how it
might be used to provide awareness of activities and events within
the video stream.

In Stylized Video Cubes [6], Klein et al. used the metaphor of
video as a cube to construct a tool for non-photorealistic rendering
and processing of video data. The two-dimensional video frames
were used to construct a three-dimensional cube that could be
sliced and used as a rendering solid. In this project, the metaphor
of video as a cube was presented, but was being used for
rendering rather than for navigating or extracting information
from the video being processed.

In Artifacts of the Presence Era, Viegas et al. [7] created an art
installation system that provided a temporal visualization of a
video stream from a museum. The system used a rock formation
metaphor to construct the visualization. Layers were added to the
visualization by periodically taking slices from video frames.
Also, as new layers were added to the top of the visualization,
older layers were compressed by combining multiple frames and
replacing them with the resulting image. Visitors were able to
navigate the visual history accumulated by the system via a knob
that allowed them to uncover the past images captured within the
visualization. The intent of this project was to create an interesting
visualization for the passage of time, and to preserve memories of
the museum space. The visualization did allow for navigation of
the video history, however, it was not specifically intended to be
used as a way to retrieve information from the video stream.

The Last Clock project demonstrated by Angesleva and Cooper
[1] presented a visualization that shows the dynamics of space
over time. A slice from a live video feed was used to populate a
visualization that resembled the face of a clock. As the hands
move around the clock, they replace the underlying portion of the
clock face with a single row slice from a video stream. The Last
Clock was intended as a pleasing visualization to represent the
passage of time rather than as a means for extracting information
from the video stream. No means for navigating the accumulated
video history was provided.

3. VISUALIZATIONS
The related works described in the previous section show
examples of how visualization of past events can be useful in
providing awareness, and described a few ways in which the
history of video data can be visualized. However, the focus of the
example visualization projects were geared more toward
visualizing the passage of time rather than seeing how these
visualizations may help us find and understand the activities and
events occurring within the video stream.

In this section we present several example visualizations we built,
and discuss how they might be useful in navigating a video
stream, what their limitations are, and what issues arise from their
use.

Figure 1: Motion blur visualization applied with an update
rate of once per second. Notice that the visualization on the

right shows a blurred image of the subjects movement.

Figure 2: Motion blur visualization applied with an update
rate of once every ten seconds. The visualization on the right

shows ghost images of the subject in different areas of the
space.

3.1 Motion Blur
The first of the visualizations we have developed and will look at
is motion blur. The motion blur visualization allows us to see
more than an instant of video within a single frame. This is done
by compositing an update frame from several past frames.

Our demo application using the motion blur visualization can be
seen in figures 1 and 2. In the examples shown, the real time
video stream is displayed on the left, and the image updates using
the visualization are displayed on the right. In our demo
application image updates occur on a regular interval that is
adjustable. The motion blur image can be updated with a
frequency of once per second or lower. The updated images
displayed are a composite of five images that have been sampled
over the period of time since the last update. The result is an
image that shows traces of the activities and events that have
occurred over the period of time since the last update.

It is notable that when using motion blur with a fairly rapid update
rate (around once every second) moving objects in the video
stream simply appear blurred along their path of motion. An
example of this is shown in figure 1 where the visualization is
being used with an update rate of once per second; we can see the
blurred movement of the subject getting up. However, if a slower
update rate is used the update visualization shows ghost-like
images as people move about the scene. An example of this is
shown in figure 2 where the visualization is being used with an
update rate of once every ten seconds. We can see that the subject

has been moving about the room recently as evidenced by their
ghost appearance in multiple positions, but we do not see the
complete set of actions that may have taken place over the period
of time.

This type of visualization may be useful for casual awareness as
suggested by Gutwin [3]. Observers may only glance at the video
stream periodically, and as such may miss important events such
as a subject arriving at their desk in the morning and then leaving
to meet with another colleague. Another use for this type of
visualization may be to help reduce network load. When several
full frame rate video streams are being broadcast amongst users in
a system for awareness, the strain on the network can be high. If
the video frame rate is lowered to accommodate for the available
network bandwidth, users may similarly miss important events.
By sending an image that is composed of several frames sampled
over the update interval, we can reduce the network load and
provide some information detailing the activities that have
occurred between updates.

A limitation of this visualization is that it can only be used to
display a fairly recent history adequately. As the update rate is
lowered to show a longer period of time, we need to increase the
number of samples used to create the composite image if we hope
to create a reasonable display of the increased amount of activity
that may occur over the longer period of time between updates. If
we try to display too much activity, the frames will become
unintelligible, showing only a large amount of blur. Because we
are displaying the updated image as a single frame, we are limited
by the amount of information that can be displayed within that
frame. Thus, this visualization is best if used only to show only a
relatively short period of time.

3.2 Storyboard
The next visualization we have developed is the storyboard. The
storyboard visualization uses a technique similar to a movie
storyboard to display images showing the history of the video
stream.

Our demo application using the storyboard visualization can be
seen in figure 3. The real time video stream is shown on the left,
and the storyboard visualization is shown on the right. The
storyboard displays the video history as a series of miniature
images arranged in a grid. The storyboard is updated periodically
with a new image being added each time. Initially the storyboard
grid is blank, and images are filled in on each update starting with
the upper left corner, and working across and down. When the
storyboard becomes full the visualization starts updating again
from the upper left corner, overwriting the previous image with
the recent one. The result is a series of images showing the history
of activities as they unraveled.

An advantage of using the storyboard visualization is that we can
show more activity than with the motion blur visualization – the
updated miniature frames show only a single snapshot clearly, and
will not suffer from the same problem of becoming unintelligible.
If a longer history is required, a lower update rate could be used
(at the risk of missing quick events), or a larger storyboard could
be used to display more images (at the expense of more screen
real estate). Also, because the miniature frames only show
snapshots from the video stream in order, detail regarding when
activities happen is clearer. With the motion blur visualization it

can be difficult to tell the order of the activities taking place in the
composite frame, particularly with a long time between updates.
However, with the miniature frames in the storyboard we can tell
the order of events by scanning along the grid.

One of the difficulties that stems from the use of the storyboard
visualization is that it may be difficult to pick out detailed
information from the miniature images. If we are looking for a
small change in the image, such as someone walking past a
doorway for example, it may be too difficult to discern the change
in the miniature images. Another problem with the storyboard
visualization is that if we increase the size of the storyboard, we
increase the number of frames that an observer must scan through
to find some activity. Thus we may be again limited in the length
of history that can reasonably be shown due to the difficulty in
comprehending a large storyboard.

Figure 3: The storyboard visualization, miniature images in

the storyboard show a sampling of the video over time.

3.3 Video Cubism
The next visualization we have developed is called video cubism.
The reason for the name is that it is developed using the metaphor
that the two-dimensional video frames could be stacked together
to make a three-dimensional cube. This is similar to the metaphors
used in the video streamer [2], and in stylized video cubes [6].

The idea behind the video cubism visualization is that if we were
to slice the video cube and observe along the cut side, we would
be able to see the change occurring along a boundary in the video
stream. The result would give us a sense of the dynamics of the
space along that boundary. Thus, the video cubism visualization
creates a composite image by taking a specified column from each
frame from the video stream, building the visualization in a
manner which is similar to those used in Artifacts of the Presence
Era [7], and the Last Clock [1].

Our demo application showing the video cubism visualization is
shown in figure 4. The real-time video stream is being shown on
the left, and the video cubism visualization is shown on the right.
The visualization is built by taking a single pixel column from
each frame received from the video stream and adding it to the
composite image. The image is built with the most recent column
added on the right. When the composite image is updated with a
new column, the current image is shifted to the left to
accommodate. Initially, the visualization is blank, and as frames
are added the composite image streams out to the left. When the
image has reached its maximum size, the oldest column (on the
right) is removed to make way for the incoming column.

Figure 4: The video cubism visualization, the image on the
right is a composite of a single column of pixels taken from

each frame. Notice that with a frame rate of 30fps it is possible
to see images of the subject as they move past the slicing

column.

Additionally, the video cubism visualization allows the observer
to select the column that the video stream is being sliced on. In
our demo application, a slider is shown just under the real-time
video stream. Adjusting this slider allows the user to choose
which column is being used to make the composite image. When
the slider is adjusted, the current visualization is re-sliced from the
original stored video frames and updated. Any subsequent frames
added are also sliced along the new column. In this way the
visualization allows the observer to focus on a particular region of
the video stream. For instance, the observer could place the slicing
region along a doorway in order to easily see when someone
comes in and out of a room. It is also notable that when using a
high enough frame rate to populate the visualization, it is possible
to see images of objects as they cross the boundary set by the
slicing column. When an object is moved across the slicing
column, the result is similar to scanning the object one column at
a time. This can be seen in figure 4, as the subject moves across
the boundary, a recognizable image of their face is visible within
the visualization. Thus it may be possible not only to discern
when some activity takes place in the video stream, but also who
may be moving around.

The video cubism visualization also allows observers to navigate
the video stream using the composite image. By simply clicking
and scrubbing over the visualization, the image corresponding to
the frame under the cursor is retrieved and can be displayed. In
our demo application if the user clicks and moves within the
visualization on the right, the retrieved image is displayed on the
left rather than the current real-time stream. In this way the
observer can easily determine when periods of interesting activity
may have occurred from the visualization, and see them in full
detail by scrubbing over the visualization in that area.

The video cubism visualization is very powerful in that it provides
observers with an easy way to find and replay the events and
activities occurring within the video stream. However, the
downside to providing this power is that it will raise privacy
issues. By providing a persistent history of the video stream, and
a way to easily navigate it, we risk violating the privacy of those
being captured by the video stream. A user providing a web cam
stream from an office might expect the images sent to others to be
ephemeral. If some event accidentally happened on camera that
they did not want others to see they might move the camera and
hope no one was watching. However, the video cubism
visualization makes the video history persistent, and any
observers connected to the stream can easily go back and replay

Figure 5: Example of the time line visualization after a

demonstration. The minute line (top) shows the presenter
entering the space to shut down the system. The hour line

(mid) shows when the audience arrived for the demonstration.

Figure 6: Recent version of the time line visualization adds the
capability to load and save the captured contents to video files.

the events. In fact the change in dynamics that would occur if the
camera were moved would in fact draw attention to the moment
just before the user was able to move it in an attempt to protect
their own privacy.

3.4 Time Line
The final visualization we have developed and will discuss is
called the time line. The time line visualization is an extension of
the video cubism visualization that is designed to display and
allow the navigation of a large amount of video data, representing
days or weeks of footage. The approach taken in the time line
visualization is similar to that of the Last Clock [1] in that
multiple lines are used to show the last minute, hour, day, or week
of video. In this way the time line can behave like a timepiece, but
rather than being simply a visualization for the passage of time the
time line can be used as a means to navigate the video stream.

Our demo application showing the time line visualization is
shown in figures 5 and 6. Because the time line is used to
represent a large amount of video data, the demo application has
been designed to run in a full screen window, suitable for a public
display. In the demo, the real-time video stream is being displayed
in the floating window. Underneath, three visualization lines are
used to display specified time periods; the top line represents the
last minute of the video stream, the middle line represents the last
hour, and the bottom line represents the last day of video.

Depending on the available screen real estate, a fourth line (not
shown) will become visible representing the last week of video
below the day line. Individually, the lines work in a manner that is
similar to the video cubism visualization; the lines are periodically
updated by adding a single pixel column from the most recent
frame. Also, a slider in the video window is available, and allows
the observer to adjust the slicing column to focus on a specific
area of the image. Much like the video cubism visualization, when
the slicing column is changed the entire visualization is re-sliced
and updated to show the new slicing position.

Unlike the video cubism visualization, the individual time lines
are not simply updated at some arbitrary rate (for example, the
frame rate of the camera being used), but rather they are updated
with new data only frequently enough to fill the line with the
appropriate length of data. These lines allow the user to navigate
the stream captured by the visualization; in the demo application
clicking and scrubbing over a time line will retrieve the image
under the cursor and display it in the video window. From this we
see that the most frequently updated minute line will provide the
finest grain of video replay; events captured in the minute line
will be accurate the most accurate. Conversely, the infrequently
updated day or week lines will provide only course grain video
replay; the video stream represented in these lines is likely to miss
quick events occurring in the long period of time between
updates. The example in figure 5 shows the time line after running
for several hours as a public demonstration. In the minute line
(top) we see the movement of the presenter as they prepare to shut
down the display. In the hour line (middle) we see when the
audience arrived and the demonstration was given. In the day line
we see that the stream had been running for approximately five
hours, and as the slicing column was set near a window we see a
decrease in light as the sun sets in the evening.

Additionally, our time line demo application has the capability to
save its contents to a file, and reload them for future observation.
The time line visualization is powerful in that it can represent a
large amount of video data, and provides a means to navigate the
stream easily. A down side to its use is the screen real estate
involved in showing multiple time lines rather than just the single
line used in the video cubism visualization. Because it is making
the history of the video stream persistent, we again raise privacy
issues similar to those seen with video cubism. Thus this
visualization is best suited as a display piece in an area that is
largely accepted as public, rather than in a personal office or
workspace. Another potential application of the visualization
would be for security, where large amounts of video surveillance
data might need to be searched to find activities and events.

3.5 Change Detection
The next idea we discuss is not a visualization in itself, but can be
used in the design of other visualizations to improve the quality of
what they display. Motivation for incorporating change detection
within a video trace visualization can be found in some of the
examples seen thus far wherein the visualization is being
infrequently updated with sampled frames. When a long period of
time elapses between when samples are taken, we run the risk of
missing important events. Events such as a person entering a room
can be quick and can easily go unrepresented in the visualization.

Our solution to this problem is to use a form of change detection
in order to make smarter choices when picking frames to update
the visualization. Our method for change detection works by

Figure 7: Change detection algorithm is used with the video

cubism visualization on a regular sampling interval. The
visualization using change detection shown on top picks up
events that are missed by regular sampling shown on the

bottom, as evidenced by the appearance of more lines within
the visualization.

Figure 8: Change detection algorithm used with the video

cubism visualization with a threshold for update. Notice that
there are three periods of activity separated by lengthy spaces
shown in the regular sampled visualization (bottom). The top

visualization using the change detection threshold displays
these moments in greater detail, and minimizes the periods of

inactivity.

selecting the last frame included in an update as the base frame for
comparison. We compare every frame received during the period
between updates with this base frame. Comparison between the
base frame and the received frame is done by subtracting the
received frame from the base frame, and taking the absolute value
of the average pixel intensity in the resulting frame. The resulting
value gives us a way to quantify the amount of change between
the two frames. We can select a frame that is “most different” in
the update period by keeping track of the frame with the highest
change value. We can reduce the risk of missing events by
updating the visualization with the frame selected by the change
detection algorithm, rather than just using the frame sampled on
the update period. When the update has been made we reset the

base frame to be the newest frame we have selected to include in
the update.

With this change detection algorithm, we have developed two
schemes for updating the display. These are demonstrated when
used with the video cubism visualization in figures 7 and 8. The
first method is to update the visualization with the most different
frame within a regular sampling interval as shown in figure 7. In
this figure, two versions of the visualization are shown; the lower
visualization is only updated by sampling on a regular interval,
the top visualization is updated using change detection to choose
the most different frame within the update interval. In the figure,
an update rate of approximately one frame every four seconds is
used. We can see from the figure that the visualization using
change detection is capturing quick events that are not added to
the visualization that is not using change detection. We can see
this from the presence of more lines within the visualization,
indicating that some activity has been captured within that frame.
The advantage of using this method is that we more capable of
capturing the events occurring in the video stream, and we are
also able to keep the temporal relationship between events.

The second method using change detection to update the
visualization is to set a threshold value, and to update only when a
frame has been received that exceeds this threshold change value.
An example of this using the video cubism visualization is shown
in figure 8. In this figure, the lower visualization shows the result
of populating the display with frames sampled on a regular
interval. The top visualization shows the result of populating the
display with frames that exceed the threshold change value. The
lower visualization shows three periods of activity with a large
amount of time elapsing between them. The top visualization
using change detection also captures three periods of activity, but
captures each of them in greater detail, and condenses the periods
in between in which no activity occurs. The advantage afforded
by this approach is that we do not have to search through long
periods of inactivity to find frames of interest where activity is
occurring. The drawback of this is that we lose the temporal
relationship between events; we can no longer tell when an event
occurred using the visualization, we only know the relative order
of events captured.

The power of the change detection algorithm is that we can use it
to drive the various visualizations. We have already seen
examples of its use to drive the video cubism visualization. Using
change detection to update the display with the most different
frame in a given interval would be useful in the time line
visualizations where we have the infrequently updated lines
displaying the last hour or day of video. This would allow a
greater likelihood of capturing notable events within these lines.
However, the use of change detection would not make a
noticeable impact on a frequently updated visualization such as
the minute line, as samples are being taken often enough that
activity is unlikely to be missed.

Similarly, we have used the change detection algorithm to drive
the motion blur visualization shown in figures 1 and 2. By
dividing the update interval into five periods of time, we can use
change detection to choose the most different frames in each of
these periods to form the composite image. Also, the storyboard
visualization shown in figure 9 has the option to make use of
change detection. The implementation shown uses change

Figure 9: Storyboard visualization using change detection on a
regular sampling interval. The miniature images added to the

board are those that show the most change between update
periods.

detection to choose the most different frame between updates as
the next image to add to the storyboard of miniatures. With the
storyboard visualization it would also be sensible to use change
detection based on a threshold rather than a sampling interval.
This would allow us to populate the storyboard with images
showing change, similar to the way a storyboard might be used in
movie making.

3.6 Inclusion In Other Applications
One of the goals in developing the example visualizations was to
allow their inclusion within other applications relatively easily.
This gives us the ability to explore the design space for video
traces with the opportunity to rapidly test how the visualizations
may be used within real applications, and what issues might arise
from their use.

In order to achieve this, the visualizations have been developed in
C# as .NET user controls. Including a visualization is simply a
matter of dragging the desired control onto a form, and making
the appropriate connections so that updates will happen. In the
simplest case, the video cubism visualization can be updated by
simply calling the addImage method every time a new frame is
available to be added to the visualization. The addImage method
accepts frames as a Collabrary Photo object, making it easy to use
in conjunction with a Collabrary Camera object that may be
capturing the video stream. In more complex cases, a few
parameters may need to be set in order to start the visualization
updating correctly. These might include the incoming frame rate,
the desired update rate, which column to slice on when using the
video cubism or time line, and choice of using change detection or
not.

In order to allow navigation of the video stream, the video cubism
and time line visualization controls fire image retrieved events as
the user scrubs over the visualization. To allow navigation, the
application must attach an event handler that displays the
retrieved image when the event is called.

Figure 10: Community Bar media item developed using the

video cubism visualization.

As an example, a Community Bar media item was developed
using the same video cubism visualization as used in the demo
application. This example is shown in figure 10. This item allows
a user to share a video stream over the Community Bar, which is
augmented with the video cubism visualization to allow observers
to navigate the history of the video stream. In the figure, the
current video stream is displayed with in the tile. Opening the
transient reveals the visualization, and scrubbing over this
visualization will display the corresponding frames in the tile.

One of the issues encountered with the decision to implement
each visualization as a user control is that the underlying data is
stored within the control itself to reduce the complexity in
incorporating the visualization. This is not an issue in the demo
applications as they are meant to only show an example of the
visualization use, however in real applications the visualization
may disappear and reappear when needed, or we may wish to
switch to an expanded view of the visualization. Since the stored
video history is contained within the visualization itself, it is
difficult to keep the data persistent while the visualization is not.
Similarly, it is difficult to populate an expanded visualization with
data that has been captured in a smaller version.

4. CONCLUSION
4.1 Summary
In this paper we have taken a look at some of the design space for
visualizations of history in a video stream by presenting and
examining several examples of such visualizations. We have seen
visualizations that are good at displaying a recent history of the
video stream in the motion blur and storyboard examples. These
may be useful in a system to support casual awareness, where
users may only view the video stream periodically and may miss
events that occur in between these periodic glances. These
visualizations, however, are limited in the amount of data that can
comprehensibly be shown at once. We have also looked at other
visualizations that are designed to allow navigation and
exploration of a large amount of video data – the video cubism
and time line examples. These visualizations are powerful in that
they allow the observer to quickly pinpoint and replay sections of
activity, however, with this power comes the potential for privacy
invasion.

It is important to keep in mind privacy concerns when dealing
with visualizations that allow observers to easily browse video
history. By keeping a history of the video stream, we break the

expectation that our actions are short-lived, and will not be
reviewed. Because of this, we must ensure that we do not reveal
more information than the subjects within the media space are
willing to allow.

Additionally, we took a look at how we can augment the design of
these visualizations by using a change detection algorithm to drive
visualization updates. The change detection algorithm allows us to
reduce the risk that important events will be lost when infrequent
updating occurs, and can provide us with a way to show only the
activities that have occurred within the history of the stream, and
eliminate the need to sift through long periods where nothing
happens.

4.2 Future Work
Avenues for future work include increasing the power of the time
line visualization for searching through large video streams. This
could be done by allowing the observer to delve down into the
video stream beginning with the course-grained week or day time
lines. Selecting a frame in these time lines could trigger the finer
grained hour and minute timelines to be populated with data
surrounding the time represented by the selected frame. This
would provide the user with a powerful time-based method for
searching a long video stream to find detailed records of the
events that have occurred.

Another possibility for future work may involve finding other
methods for driving visualizations using change detection. The
two methods described allow us to either preserve temporal
relationships, or to maximize the visibility of events. It would be
of interest to see if another scheme could be devised that loosely
preserves time, but favors the inclusion of frames during periods
of high activity. This may be difficult to achieve when populating
a visualization from a real-time stream as optimal frame choice
would require some knowledge of future events.

Lastly, it would also be of interest to examine ways to store and
share these video histories. The trouble with the current
visualizations is that the underlying history data is contained
within the visualization itself. Users connecting to a media space
would be able to receive new frames, but would have no way of
acquiring the history in progress without some access to a stored
video history. The beginnings of this have been shown in the time
line application, which has the capability to save its accumulated
history to files, and to re-load from those files, but the challenge is
in finding a way to distribute and access long histories of video
data.

5. REFERENCES
[1] Angesleva, J. and Cooper, R. 2005. Last Clock. IEEE

Comput. Graph. Appl. 25, 1 (Jan. 2005), 20-23.

[2] Elliott, E. and Davenport, G. 1994. Video streamer. In
Conference Companion on Human Factors in Computing
Systems (Boston, Massachusetts, United States, April 24 -
28, 1994). C. Plaisant, Ed. CHI '94. ACM Press, New York,
NY, 65-68.

[3] Gutwin, Carl. 2002. Traces: Visualizing the Immediate Past
to Support Group Interaction. In Proceedings of Graphics
Interface 2002.

[4] Hill, W.C. & Hollan, J.D. Edit wear and read wear. Proc.
ACM CHI’92, 1992, ACM Press, 3-9.

[5] Hudson, S. E. and Smith, I. 1996. Techniques for addressing
fundamental privacy and disruption tradeoffs in awareness
support systems. In Proceedings of the 1996 ACM
Conference on Computer Supported Cooperative Work
(Boston, Massachusetts, United States, November 16 - 20,
1996). M. S. Ackerman, Ed. CSCW '96. ACM Press, New
York, NY, 248-257.

[6] Klein, A. W., Sloan, P. J., Finkelstein, A., and Cohen, M. F.
2002. Stylized video cubes. In Proceedings of the 2002 ACM
Siggraph/Eurographics Symposium on Computer Animation
(San Antonio, Texas, July 21 - 22, 2002). SCA '02. ACM
Press, New York, NY, 15-22.

[7] Viégas, F. B., Perry, E., Howe, E., and Donath, J. 2004.
Artifacts of the Presence Era: Using Information
Visualization to Create an Evocative Souvenir. In
Proceedings of the IEEE Symposium on information
Visualization (infovis'04) - Volume 00 (October 10 - 12,
2004). INFOVIS. IEEE Computer Society, Washington, DC,
105-111.

